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Abstract

Both predators and parasitoids can have significant effects on species’ life history traits, such as longevity or clutch size. In
the case of gall inducers, sporadically there is evidence to suggest that both vertebrate predation and insect parasitoid
attack may shape the optimal gall size. While the effects of parasitoids have been studied in detail, the influence of
vertebrate predation is less well-investigated. To better understand this aspect of gall size evolution, we studied vertebrate
predation on galls of Diplolepis rosae on rose (Rosa canina) shrubs. We measured predation frequency, predation incidence,
and predation rate in a large-scale observational field study, as well as an experimental field study. Our combined results
suggest that, similarly to parasitoids, vertebrate predation makes a considerable contribution to mortality of gall inducer
larvae. On the other hand, its influence on gall size is in direct contrast to the effect of parasitoids, as frequency of vertebrate
predation increases with gall size. This suggests that the balance between predation and parasitoid attack shapes the
optimal size of D. rosae galls.
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Introduction

The dynamics of populations are generally affected by

influences from all levels of their food-webs. As a consequence,

it can be difficult to understand population processes without

taking full account of the interactions at every level. Galls are

growths on plants usually caused by invertebrates as insects or

mites. Their morphological diversity is mostly explained as an

adaptation to lower the impact of natural enemies as insect

parasitoids. The effects of insect parasitoids on abundances of

plant galls have been studied extensively [1]. The influence of

predators, however, has received comparatively little attention. It

is thought that invertebrate predators’ impact is diminished

because of the galls’ architecture. In galls induced by gall wasps,

for instance, the gall chamber’s walls tend to become thick and

woody, and hence impenetrable for invertebrates, as they mature.

However, the same may not be true for vertebrate predators.

Vertebrate predators of plant galls can be small mammals like

squirrels and mice [2,3] or birds such as woodpeckers and

chickadees [4–6]. Predation by birds has been investigated in the

case of gall inducer species like Eurosta solidaginis [6,7], Rabdophaga

strobiloides [8], Giraudiella inclusa [9], Asteromya carbonifera [10]. In a

recent study, Schönrogge et al. quantified bird predation on

invading insect galls [11]. However, the impact of vertebrate

predation on a native gall ecosystem, was until now not published.

Here we look at vertebrate predation in an observational large

scale and an experimental field study to assess its impact on rose

galls.

The size of the gall created by gall inducing insects seems to be

an important life history trait. In the case of D. rosae, the body size

of gall inducer adults is positively correlated with the size of the

gall from which they hatched [12]. Thus, hatching from larger

galls can increase the fitness of gall inducers, because the number

of eggs laid increases with the size of the female [13,14]. Gall size

also influences fitness through larval mortality. With increasing

gall size, larval mortality, parasitism rate and abortive hatching

decreases while hatching success increases [10,15]. A possible

explanation for this effect is that larvae in smaller galls have to face

more frequent parasitoid attacks: they are in easier reach of the

parasitoids’ ovipositors as smaller galls have thinner outer walls.

These observations suggest that larger galls are more secure and

therefore, gall wasps inducing larger galls are more successful, in

term of avoiding parasitoids, than those inducing smaller ones

[15].

For predators, it can be more advantageous to attack larger

galls, because they contain more food and can more easily be

discovered [16–19]. Consequently, survival of whole galls

decreases as their size increases [10,20]. For instance, in the

goldenrod ball gall the rate of bird predation depends on the gall

size and the stem height [6]. Furthermore, in large galls,

competitive interactions between the developing larvae could also

be higher [10,13]. These counteracting selection pressures induced
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by parasitoids and predators may stabilize gall size at an

intermediate size. This balancing process may also explain why

the most frequent gall size in D. rosae is smaller than that predicted

to overcome insect parasitoid attacks [21].

Despite the fact that close interactions between birds and insects

are common, they have been not studied frequently in the

arthropod herbivore group [22]. Several studies have investigated

the effects and outcomes of bird predation on insects and found

that the removal of birds from host plants affected by herbivorous

insects increased the levels of herbivory [23–25]. Nevertheless, in a

study on 78 holometabolous species representing the major insect

orders, predators of insect herbivores had a smaller effect on their

abundances than parasitoids, but a greater one than pathogens.

Several investigations have demonstrated that for gall inducers,

including D. rosae, parasitoid attacks are the most common

mortality factor [20,26–28]. The level of predation on galls of D.

rosae, however, has not been explicitly reported. The fact that levels

of (i) parasitoidism and (ii) predation can easily be quantified by

identifying parasitoids emerging from galls and visually inspecting

destructive gall openings, respectively, provides a unique oppor-

tunity to compare the effect of parasitoidism and predation on the

population processes of rose gall inducers.

The gall wasp (Diplolepis rosae) is the most abundant galling

species on Rosa shrubs in Europe. D. rosae usually induce galls on R.

canina, but may also do so on other rose species [13,29,30].

Females induce multi-chambered galls. They emerge from galls in

early spring and lay their clutches in new rose buds within one or

two months. The new gall finishes its development in late summer

and pupae overwinter within the gall. Parasitoid pressure on D.

rosae galls is high, as is the frequency of the inquiline species

Periclistus brandtii [31].

The most abundant parasitoid species on D. rosae galls are

Orthopelma mediator, Torymus bedeguaris, Glyphomerus stigma, Pteromalus

bedeguaris. On the other hand, Caenacis inflexa is exclusively a

parasitoid of the inquiline P. brandtii. Other species, such as

Torymus rubi, Eupelmus urozonus, Eupelmus vesicularis, Eurytoma rosae,

can be parasitoids of both the gall inducer and inquiline [32,33].

Here we investigate the following questions: (i) Is there any

preference by vertebrate predators towards larger D. rosae galls? (ii)

How does gall inducer mortality caused by vertebrate predation

compare to that caused by insect parasitoids? If the predation on

galls by vertebrates has a significant effect on the success of gall

inducers then this may explain why galls of small sizes exist, even

in the face of the high parasitoid pressure that has been shown

previously for our study populations [21]. We investigated these

questions with both a large-scale observational field study, as well

as an experimental field study.

Materials and Methods

Ethics Statements
All study sites were located in public areas and no specific

permission was required for these sites and experiments. Field

studies did not involve endangered or protected species. During

the study no invasive collecting and sampling methods were used.

We evaluated the effect of vertebrate predators based on their

feeding signs.

Study Sites
Data were collected in Hungary and Romania between 2008

and 2012 from semidry and dry pastures with high rose shrub

abundances. Predation of rose galls had also been observed in

previous years at all collecting sites.

For the observational study, two distant sites were chosen, one

near Cluj-Napoca, Romania (site 1a, N 46.770208, E 23.493241),

and the other near Derecske, Hungary (site 2, N 47.332944, E

21.561032) to obtain coverage on a large spatial scale. Both sites

consisted of semidry and dry pastures close (cca. 100–300 meters)

to oak and hornbeam-oak forests, with shrub species Prunus spinosa

and Crataegus spp. in addition to the dominant Rosa canina.

For the gall predation experiment, two sites were chosen in the

vicinities of Cluj-Napoca, Romania (Figure 1). One was one of the

observational study sites (site 1a), the other (site 1b, N 46.836305, E

23.623328) was 13 kilometres from site 1a. Site 1b was far from any

secondary hornbeam-oak forests, and the closest deciduous-only

habitat was an old orchard 1.5 kilometers away; rather, in the

close vicinity (cca. 100–300 meters) there were plantations of Pinus

nigra mixed with Elaeagnus angustifolia and Pyrus pyraster.

Gall Predation Experimental Setup
At both site 1a and site 1b we chose three patches of shrubs, each

consisting of three shrubs of similar size. At site 1a the shrubs were

10–20 meters from the edge of the hornbeam-oak forest, while at

site 1b the closest trees were at a distance of 100–120 meters from

the chosen shrubs. At both sites, the following treatments were

randomly allocated among the shrubs within each patch. We

placed ten large (diameter: mean = 3.08 cm, SD = 0.52) galls on

one shrub, and ten small (diameter: mean = 1.66 cm, SD = 0.43)

ones on another, while the third shrub received five small and five

large galls (these galls were collected from shrubs outside the

experiment patches, and the shrubs in the experiment had no galls

beforehand). Hence, 30 galls were placed in each shrub patch,

giving 90 galls at each site. Galls were bound with thin wires of the

same color as the shrub shoots at approximately at the same

height, between 1.5–2 meters high. Galls were placed on shrubs in

December, and collected in late March to early April. All

experimental galls yielded living hymenopteran adults belonging

to the community of the gall inducer, allowing us to assume that

they were viable. The experiment was run at both sites in 2009,

2010, and 2011, and only at site 1a in 2012. Emerging specimens

were only collected in 2011; in other years, we assumed the galls’

viability based on freshness of gall samples. Placed experimental

galls were numbered according to a combination of site name,

shrub patch number, shrub type (with small, large and combined

gall sizes), and gall number.

The galls placed on the experimental shrubs in 2011 were

removed in spring 2012 and stored individually in plastic cups,

with cellophane covers allowing air inside, and kept under

standard laboratory conditions [33]. Emerged specimens were

separated, then stored in 70% ethanol until identification.

Insect parasitism was assessed through identification of emerged

parasitoids, while vertebrate predation was assessed through visual

identification of gall openings that appeared during the winter.

Insect predation on gall chambers of D. rosae is not possible after

the matured, both because of the hardness of the gall walls and

because of the timing of maturation, which occurs at the end of the

vegetation period. In addition, the openings observed on the

exposed galls were the result of hard punctures with presumably

conical or tapered beaks, and did not resemble the sawing pattern

produced by the incisor teeth of rodents.

Statistical Analyses
For each gall the level of predation was characterized by the

following dependent variables: (i) presence of predation signs on

galls (hereafter, gall predation incidence) (ii) the number of opened

gall chambers per gall (hereafter, gall predation), and (iii) the

proportion of opened chambers to the estimated number of the
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gall chambers (hereafter, gall predation rate). Gall parasitism rate,

i.e. the ratio of the number of total emerged parasitoids and the

estimated number of chambers for each gall was also included in

the analyses as a dependent variable. The estimation of the

number of gall chambers was based on a power law relationship

between gall diameter and gall chamber number established in a

previous study [33]; the estimated chamber number was rounded

to the nearest integer.

For the observational field study, we entered years, sites, and ID

of shrubs in the generalized linear mixed effect models (GLMM) as

random factors. Gall diameter was used as a fixed factor. Gall

diameter was calculated as the average of the largest three

orthogonal diameters of each gall [33].

For the experimental study, years, sites, and ID of shrubs were

used in the GLMM as random factors. As fixed factors we entered

the gall diameter, shrub treatment type (with large, mixed and

small galls), and the site (site 1a and site 1b). To compare the effects

of gall predation and parasitism we entered mortality rate as a

dependent variable and the cause of mortality (i.e. predation or

parasitism) as a fixed factor, and we used gall diameter as a

covariate. This last analysis was performed only on the experi-

mental data from 2011–2012.

The analyses were performed in the statistical programming

language R [34]. For the observational and experimental studies

we used GLMMs with different error distributions. For the gall

predation data we used a zero inflated negative binomial GLMM.

For the gall predation incidence and gall predation rates we used a

binomial GLMM. In the case of gall predation rates we set up a

pair of ‘‘success’’ and ‘‘failure’’ variables [35]: successes were the

gall predation data; failures were the number of chambers minus

gall predation. For the comparison of gall predation and

parasitism rates we used a GLM with quasibinomial error

distribution and a logit link function. The quasibinomial error

distribution was due to the overdispersion of the outcome variable.

The used R packages were ‘‘glmmADMB’’ [36], ‘‘lme4’’ [37],

‘‘MASS’’ [38] for analyses and ‘‘ggplot2’’ [39] for graphics. For

presentation of parasitoid attack and vertebrate predation rates as

Figure 1. Map of the study sites. Large red circles show the locations of observational study sites. Small red circles show the locations of the
experimental study. Green polygons are forest patches around study locations. Orange polygon is a larger hillock between the study site and woody
vegetation.
doi:10.1371/journal.pone.0099806.g001
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Figure 2. Frequency distribution of gall sizes for theobservational study.
doi:10.1371/journal.pone.0099806.g002
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the function of gall diameters we used non-parametric locally

weighted polynomial regression [36].

Results

Gall Size
The sizes of galls collected in the observational field study had

right-tailed frequency distributions (Figure 2). At site 1a in 2008 the

median gall size was 1.17 cm (IQR = 0.89, min = 0.47,

max = 4.06, N = 175), and in 2009 it was 1.75 cm (IQR = 0.83,

min = 0.57, max = 3.73, N = 880). At site 2 in 2009 the median gall

size was 2.30 cm (IQR = 1.43, min = 0.50, max = 5.87, N = 110).

For the experimental study the statistics of the gall sizes are given

in Table 1.

Observational Study: Predation
At site 1a and site 2, out of a total number of N = 1165 galls

N = 245 (21%) had been opened by predators. The opened galls

were observed on N = 52 out of N = 166 (31%) rose shrubs

(Table 2). At site 1a, the median number of opened gall chambers

of predated galls was 6 (IQR = 8, min = 1, max = 50), while at site 2

it was 8 (IQR = 11, min = 1, max = 60). The incidence of

predation was 21% when both years and sites were combined;

at site 1a it was 23% and at site 2 it was 20%. After controlling for

year, site and shrub ID, all dependent variables characterizing

predation increased with gall size (gall predation: negative

binomial GLMM, estimate = 0.95, SE = 0.11, z = 8.55, p,0.001;

incidence of gall predation: binomial GLMM, estimate = 1.29,

Table 1. Diplolepis rosae gall size (cm) descriptive statistics for the experimental study.

year site shrub type median IQR min. max.

2009 site 1a large 2.71 0.43 1.59 3.78

mixed 2.09 1.46 0.67 3.50

small 1.82 0.64 0.83 2.45

site 1b large 2.97 0.89 1.76 3.81

mixed 2.43 1.94 1.18 5.45

small 2.06 0.61 1.50 3.07

2010 site 1a large 3.72 0.63 2.55 4.78

mixed 2.52 1.39 1.54 4.70

small 2.20 0.40 1.50 2.87

site 1b large 2.65 0.83 1.29 4.41

mixed 2.60 1.34 0.88 4.26

small 1.51 0.74 0.55 2.78

2011 site 1a large 3.17 0.59 1.59 4.27

mixed 2.35 1.48 0.66 3.81

small 1.59 0.45 1.05 2.14

site 1b large 2.65 0.47 1.53 3.93

mixed 2.15 1.33 0.82 4.87

small 1.62 0.64 0.90 2.28

2012 site 1a large 3.26 0.41 2.49 4.78

mixed 2.07 1.60 1.00 4.25

small 1.55 0.58 0.99 2.32

In the experiment we used in total N = 630 galls, N = 90 on each site in each year. Shrub treatment types: large had only large galls, mixed had half large and half small,
and small had only small galls.
doi:10.1371/journal.pone.0099806.t001

Table 2. Vertebrate predation frequencies for Diplolepis rosae galls in the observational study.

year site shrubs galls

predated not predated predated not predated

2008 site 1a 13 1 37 138

2009 site 2 30 82 179 701

2009 site 1a 9 31 29 81

sum 52 114 245 920

percent 31.33 68.67 21.03 78.97

total 166 1165

doi:10.1371/journal.pone.0099806.t002
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SE = 0.25, z = 5.11, p,0.001; and predation rate: quasibinomial

GLMM, estimate = 0.17, SE = 0.05, df = 1050, t = 2.9, p = 0.002).

Experimental Study: Predation
At the two experimental study sites (site 1a and site 1b), out of a

total number of N = 630 galls N = 159 (25.23%) had been opened

by predators. The opened galls were observed on N = 14 rose

shrubs out of N = 18 (77.77%) (Table 3). The largest number of

opened gall chambers was at site 1a on shrubs with large galls, and

the smallest at site 1b on shrubs with small galls (Figure 3). The

pattern was similar in the case of the incidence of predation

(Figure 4) and predation rates (Figure 5).

Similarly to the observational study, after controlling for year,

site and shrub ID, all dependent variables characterizing predation

increased with increasing gall size (gall predation: negative

binomial GLMM, estimate = 0.85, SE = 0.17, z = 4.78, p,0.001;

the incidence of gall predation: binomial GLMM, estimate = 1.09,

SE = 0.18, z = 5.89, p,0.001; predation rate: quasibinomial

GLMM, estimate = 0.36, SE = 0.11, df = 521, t = 3.21, p = 0.001).

Furthermore, the difference in predation level between treat-

ment types was only significant between shrubs containing large

and small galls (gall predation: negative binomial GLMM,

estimate =22.10, SE = 0.51, z =24.12, p,0.001; incidence of

gall predation: binomial GLMM, estimate =21.56, SE = 0.50,

z =23.12, p,0.001; predation rate: quasibinomial GLMM,

estimate =21.88, SE = 0.62, df = 521, z =23.00, p = 0.002).

Shrubs with mixed gall treatments showed no difference compared

to those with large galls.

Figure 3. Frequencies of vertebrate predation (opened gall chambers) in the experimental study. Pooled yearly replicates are shown
separately for the two experimental sites. Boxes show medians, 1st and 3rd quartiles, error bars represent minimum and maximum values. Dots
represent outliers.
doi:10.1371/journal.pone.0099806.g003
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Finally, there was a highly significant difference in predation

between the two sites (site 1a and site 1b) (gall predation: negative

binomial GLMM, estimate =22.05, SE = 0.44, z =24.64, p,

0.001; the incidence of gall predation: binomial GLMM,

estimate =22.25, SE = 0.31, z =27.26, p,0.001; predation rate:

quasibinomial GLMM, estimate =22.13, SE = 0.26, df = 521,

t =28.30, p,0.001).

Extent of Parasitism and Predation Rates
From the galls placed on the experimental shrubs in winter 2011

and re-collected in spring 2012, 649 hymenopteran specimens

emerged in the case of site 1a and 419 specimens in the case of site

1b (Table 4). From site 1a 28.22% of the gall chambers yielded

parasitoids and inquilines, while from site 1b it was 51.77%. Gall

predation was 57.80% at site 1a, and 43.07% at site 1b.

Consequently, the reproductive success of the gall inducer D.

rosae was 13.97% at site 1a and 5.16% at site 1b.

The effect of gall size on mortality rate varied according to the

causes of mortality (Figure 6; gall size 6 cause of mortality

interaction: quasibinomial ANCOVA, estimate = 0.97, SE = 0.26,

z = 4.79, p,0.001). There was a significant negative correlation

between parasitism rate and gall size (quasibinomial ANCOVA:

estimate =20.37, SE = 0.15, z =22.53, p,0.001); in contrast,

predation rate and gall size showed a significant positive

correlation (quasibinomial ANCOVA: estimate = 0.60,

SE = 0.14, z = 4.29, p,0.001).

Figure 4. Incidences of vertebrate predation (galls opened or not) in the experimental study. Pooled yearly replicates are shown
separately for the two experimental sites. Boxes show medians, 1st and 3rd quartiles, error bars represent minimum and maximum values. Dots
represent outliers.
doi:10.1371/journal.pone.0099806.g004
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Discussion

We observed a remarkable level of vertebrate predation on the

galls of Diplolepis rosae, for all sites and years. We found that

predation is a major contributor to the mortality of the gall

inducer. Moreover, the vertebrate predation rate increased with

increasing gall size, while insect parasitism decreased. These

interactions suggest that the optimal gall size may be the result of a

trade-off between avoiding both insect parasitism and vertebrate

predation.

Gall size distribution was asymmetric, with predominantly

smaller galls in our samples. This was previously documented for

D. rosae galls collected in the vicinities of our study sites [21].

Previous studies on other species have found similarly shaped

distributions of gall size: for instance, large galls are less common

than small ones in the cases of Dryocosmus kuriphilus [22], Asteromyia

carbonifera [10] and Urophora cardui [37].

In the observational study we found that galls with larger

diameters were more frequently attacked by vertebrate predators.

Furthermore, our experimental result confirms the preference of

vertebrate predators for larger galls, and it also corroborates the

findings of studies on other galling systems, which show that bird

predation of larger galls is more intensive [6,18].

Both parasitoids and predators may be responsible for shaping

gall size distribution [38]. The preference of predators for large

galls is advantageous for small galls; at the same time, parasitoids

are more successful at attacking small galls, thus driving galls to

become larger [17].

Large galls’ preferential attack by vertebrate predators could

occur because vertebrate predators are more likely to notice larger

Figure 5. Rates of vertebrate predation in the experimental study. Pooled yearly replicates are shown separately for the two experimental
sites. Boxes show medians, 1st and 3rd quartiles, error bars represent minimum and maximum values. Dots represent outliers.
doi:10.1371/journal.pone.0099806.g005

Rose Gall’s Predation

PLOS ONE | www.plosone.org 9 June 2014 | Volume 9 | Issue 6 | e99806



galls thus also predating them more frequently. Evidently, larger

galls also provide more food. However, in contrast to our results,

another study found that birds preferred small willow pinecone

gall midge galls (Rhabdophaga strobiloides) [8]. This preference may

be explained by considering the amount of energy/time invested

in handling food: opening small galls is easier, and birds gain food

in a shorter time than if they had chosen large galls instead [19]. In

other instances, the pattern can be explained by the larger amount

of larvae yielded by larger galls.

The difference in predation levels between shrubs containing

large and small galls remained significant, even after controlling

for gall size. This implies that large galls were predated

disproportionately more and more often than predicted based

on their size difference. This result implies an accentuated

preference for patches of large galls by the predators of D. rosae.

The reason for this could be the aggregated concentration of large

galls: predators search an area more thoroughly if they find

profitable prey, i.e.in large galls [33]. A higher concentration of

large galls can also increase the likelihood of them being detected

by predators. A positive density dependence of bird attacks also

was observed for cynipid galls on oak [16]. Our results also suggest

that vertebrate predators are able to discriminate between food

rewards from galls of different sizes. In contrast, vertebrate

predators of goldenrod ball galls did not seem to discriminate

between differently sized galls [2].

Table 4. Numbers of gall chambers predated by vertebrates, as well as numbers of emerged gall inducers, inquilines and
parasitoid specimens in the experimental study.

site 1a site 1b

No. opened chambers by predators 889 317

Diplolepis rosae 215 38

No total parasitoids and inquilines 434 381

Periclistus brandtii 21 3

Orthopelma mediator 266 208

Torymus bedeguaris 10 29

Glyphomerus stigma 86 56

Pteromalus bedeguaris 45 37

Caenacis inflexa 1 24

Eurytoma rosae 3 21

Eupelmus urozonus 2 3

doi:10.1371/journal.pone.0099806.t004

Figure 6. Parasitoid attack and vertebrate predation rates as a function of gall diameters. The fitted curves represent non-parametric
locally-weighted polynomial regression curve (loess), the shaded region represents the 95% confidence interval.
doi:10.1371/journal.pone.0099806.g006
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Larvae of D. rosae developing in galls may serve as food for both

small mammals and birds. The predation pattern we observed in

individual galls, however, indicates that the predators opening rose

gall chambers may be birds rather than mammals. The opened

galls look like they were punctured using powerful strikes (as from

a bird’s beak), resulting a conical pattern with the tip closer to the

gall center (Figure 7b), rather than sawed finely from the outside

towards the center (as from a mammal’s teeth). We also observed

predated Diplolepis mayri galls that were close to the ground with

their surfaces sawed finely from the outside towards the center.

This latter feeding pattern suggests predation by mice rather than

birds. Figure 8 shows a lesser spotted woodpecker (Dendrocopos

minor) opening and feeding with a D. rosae gall.

Predator-avoidance behaviour is strongly affected by predator-

prey interactions, i.e. if predators are absent preys will lose their

aversion towards them, but not rapidly, only in an evolutionary

time scale [39]. When predation pressure declines, antipredatory

behaviours may decrease in frequency or disappear entirely. This

loss or inhibition of ability to act against predators may occur

either on evolutionary or ecological timescales [39]. We found a

much higher frequency of predation at site 1a than site1b. The fact

that this site was much closer to the forest edge might indicate that

gall predation is somehow more frequent near forests. As the forest

cover in the Carpathian Basin has rapidly decreased over the last

500–1000 years [40], one might hypothesise that populations

further away from forests may have larger gall size than those

closer to forest edges, if predation pressure is lower. Our results

only show a correlation, and only at one site, thus they do not

constitute solid evidence for this hypothesis. However, this could

be a fruitful topic for future research.

To summarize, we found that the galls induced by Diplolepis rosae

are under rather high pressure from both vertebrate predators and

insect parasitoids. The directions of predation and parasitism are

opposite with respect to gall size. We suggest that optimal gall size

is based on a trade-off between reducing both predation and

parasitism rate.
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