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Kinetic roughening of a soft dewetting line under quenched disorder: A numerical study
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1Babeş-Bolyai University, Department of Physics, 1 str. Mihail Kogălniceanu, 400084 Cluj-Napoca, Romania
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An elegant simulation method, suitable for investigating the dewetting dynamics of thin and viscous liquid
layers, is discussed. The efficiency of the method is exemplified by studying a two-parameter depinninglike
model defined on inhomogeneous solid surfaces. The morphology and the statistical properties of the contact
line are mapped in the relevant parameter space, and as a result critical behavior in the vicinity of the depinning
transition is revealed. The model allows for the tearing of the layer, which leads to a new propagation regime
resulting in nontrivial collective behavior. The large deformations observed for the interface are a result of the
interplay between the substrate inhomogeneities and the capillary forces.
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I. INTRODUCTION

Contraction of thin liquid layers on solid surfaces due to
dewetting or drying is a common phenomenon. It is observable
for instance, on plants’ leaves as the water breaks up into small
droplets, in nonsticking pans as the oil layer shrinks, or on an
outdoor oil-polluted surface after rain. Another well-known
example is the contraction of the liquid layer covering the
eyeball, the characteristic time scale of a complete contraction
being the time elapsed between two successive blinks [1,2].
Dewetting plays an important role in the tire industry as well:
when the contraction of the wetting layer on the tire’s groove is
too slow, aquaplaning is more likely to occur [3–5]. Dewetting
is also important in lubricant manufacturing; however, in this
case exactly the opposite effect is desired: the more a lubricant
remains on the surface of sliding pieces, i.e., the larger its
contraction time, the better.

Along with the development of the polymer industry,
contraction of polymer films started to gain interest [6–8].
Dewetting turned out to be a useful investigative tool for
determining various rheological and interfacial properties of
thin polymer films due to the fact that molecular properties
are reflected in the macroscopic shape of the solid-liquid-gas
triple interface [9].

In other cases, liquids are used as carriers for certain
substances (nanoparticles, for example); thus, dewetting was
eventually accompanied by drying on rough surfaces of such
solutions, resulting in deposition of the dissolved substance on
the substrate. In fact, this deposition process can only be con-
trolled through controlling the dynamics of the carrier liquid
film and, in particular, the evolution of the morphology of the
triple line. In a recent study, DNA molecules were deposited
in a highly ordered array by dissolving them in a solvent and
letting the solvent dewet a micropillar-structured surface [10].

The dynamics of wetting on flat solid and liquid surfaces is
quite well understood [8,11]; however, despite its applicability,
only a few experiments were performed on inhomogeneous,
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either patterned or disordered, surfaces [12–17], while the dy-
namics of a receding contact line remains almost unexplored.
In spite of the apparent simplicity of the phenomenon, there
are no simple, easily manageable models for describing it.
Although in the lubrication approximation the Navier-Stokes
(or, in the highly viscous regime, the Stokes) equation reduces
to two dimensions [18], the numerical modeling of layers with
large planar extent is still computationally time consuming
and cumbersome due to the discontinuities on the liquid-solid
and liquid-gas interfaces. These discontinuities are tackled
within the framework of phase-field models [19], but it remains
unclear, however, how substrate inhomogeneities would be
introduced in such models. It is also unsettled how the actual
dynamics of the layer is influenced by the chosen particular
form of the phase interface.

The continuous emergence of newer and newer schemes in
the topic suggests that the demand for a convenient approach
for modeling thin liquid layers’ dynamics is still unsatisfied
[19–24]. Based on the revolutionary paper of Joanny and
de Gennes on the perturbed contact line shape [25,26], a
series of depinning type models was constructed that aimed
to describe interface dynamics in the presence of disorder
[27–29]. These models are not restricted to dewetting phe-
nomena, as they apply to fracture front propagation or even
magnetic domain wall motion. In the framework of these mod-
els, small deformations of the interface and a linear restoring
force acting on the contact line resulting from a perturbative
approach are considered. They are, thus, inherently linear, and
the only source of nonlinearity is the disorder of the landscape
they propagate in. Although they have had a great success in
the sampling of the depinning transition and determination of
various critical exponents [30,31], they have the drawback that
they allow for neither large deformations nor local backward
movement of the line. Consequently, they are unable to account
for the tearing up of the dewetting film, which, in fact, is a
common phenomenon.

Our purpose here is precisely to address the question of
large deformations and the eventual tearing of the film with
an efficient and easily manageable model for the contact line
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motion. Our method works best for viscous, flat, and extended
droplets with small wetting angle. It is shown that in this
regime, in contrast to the perturbative treatment [25], the
line is soft and ductile, meaning that a localized perturbation
of the line induces only short-range forces. Considering a
viscous regime, the line’s equation of evolution becomes an
overdamped one. In the following sections we will describe
this method in detail, we will show how to handle substrate
inhomogeneities, and an application will be presented.

II. BASIC CONCEPTS

Let the upper surface of the contracting fluid layer be
described by z = z(x,y,t). Our approach is restricted to the
description of large, flat layers in the highly viscous regime,
the same assumption that is made when deriving the lubricant
equations [18], i.e., |∇z| � 1. One further assumption we
make is that the relative change in the height of the droplet
is small, therefore its height is almost constant in time,
∂z/∂t → 0. Under these considerations, the layer’s free energy
has two terms. The first component is the joint contribution
of the well-known liquid-solid and liquid-gas (air) surface
tensions. If the layer is flat, its upper and lower surface areas
are approximately equal, S. Denoting by γXY the appropriate
surface tension coefficients, the surface energy is written as

Usurface = γSLS + γLGS = γ S. (1)

The second contribution to the total free energy of the layer is
the line energy which occurs due to the unbalanced forces
acting on the layer boundaries on the molecules from the
liquid-substrate-air triple interface. This is a curve with finite
thickness; thus, this energy is comparable to the surface energy
and it is proportional to the length of the triple interface, l:

Uline = αl, (2)

where α is the line tension coefficient. Neither the interpreta-
tion of α nor its measurement is straightforward; in fact, there
is still less consensus regarding its magnitude: values ranging
from 10−11N to 10−6N were measured or computed in various
experiments and simulations [32–37]. The major difficulty
arises from the fact that dewetting is often accompanied by
a precursor layer with a much smaller thickness than the rest
of the layer. In our case, in term (2) a contribution resulting
from the layer’s side surface has to be also considered. This
yields an extra surface energy that is also proportional with
l; consequently, we believe that an effective α has to be
used instead. Therefore in calculations larger values than
the presented range should be used. In the case of a real
two-dimensional flow (for instance, flow in a Hele-Shaw cell
[13,14]), the line tension is well defined and it is clearly a
result of the finite side surface of the layer between the plates.
For complete wetting, i.e., zero wetting angle, α = πγLGh/2,
where h is the distance between the plates of the Hele-Shaw
cell [13]. Alternatively, if a quantitative upscaling of the elastic
type of energy introduced in Ref. [25] was possible (properly
removing the third dimension from the model), it could provide
the correct expression for the line tension for sufficiently
flat droplets, bounded by one solid surface only. Such an
expression, however, is not available; hence, it remains an

open question. The total free energy of the system is the sum
of these two contributions: U = Usurface + Uline.

Our approach is based on the fact that both the surface
and the line energies are functionals of the shape of the triple
interface, which is a one-dimensional curve. When inertial
effects do not play an important role (the highly viscous, low
Reynolds number regime), the total energy of the system is
uniquely defined by the shape of the contact line; it is therefore
enough to track solely its dynamics.

In order to illustrate this, we consider a simple example:
the dynamics of a circular hole. Due to the symmetry of the
problem, an analytical study is possible. From energy terms
(1) and (2) the forces acting on the edge of the hole can be
derived, which due to symmetry considerations act in the
radial direction:

Fsurface = −∂Usurface

∂R
= − ∂

∂R
(−γπR2) = 2πγR, (3)

where R is the radius of the hole. Similarly, the force resulting
from the line tension

Fline = −∂Uline

∂R
= − ∂

∂R
(α2πR) = −2πα. (4)

Assuming an overdamped motion of the edge of the hole (the
triple interface), the following equation of motion is yielded
for its radius:

(Fline + Fsurface)m = dR

dt
. (5)

In the above expression, m is the mobility of the three-phase
line and is inversely proportional to its length; i.e., the longer
the line, the more sluggish it is: m = m0l0/(2πR), where m0

is the mobility of a line segment of length l0. The equation of
motion for the contact line is, thus,(

γ − α

R

)
m0 l0 = dR

dt
. (6)

It can be seen that the equilibrium radius of the hole is
R0 = α/γ , which is an intrinsic length scale of the system.
For large radii (R/R0 � 1) the line energy can be neglected
and the velocity of the contact line is constant:

dR

dt
= γm0 l0. (7)

Note that when R is large R(t) ∝ t , which is in complete
concordance with previous results, for instance [8]. So far
the mobility of the triple interface has been introduced as a
phenomenological parameter which, in turn, defines the time
scale of the problem. Considering the case when no slippage
of the interface occurs (the flow of the interface is a Poiseuille
flow), in previous studies similar results to Eq. (7) have been
derived for the radial velocity of the triple interface for a drying
patch nucleated into a liquid film [8,38–40]:

dR

dt
= θ3

e

12
√

2 ln(θel/b)μ
γ, (8)

where θe is the equilibrium contact angle, l is the rim width,
b is the extrapolation length (the distance from the rim at
which the velocity extrapolates to zero), and μ is the viscosity.
Comparing Eq. (7) to Eq. (8) one can identify the mobility
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FIG. 1. Discretization of the contact line.

given now in terms of independently measurable quantities
that are now properties of the contact line:

m0 l0 = θ3
e

12
√

2 ln(θel/b)μ
. (9)

In case of a curvelike interface with parametric equation
�r = �r(u) (where u is some arbitrary parameter), the equation
of motion is written as

�̇r(u) = m[�r(u)] �F [�r(u)]; (10)

hence, the mobility and the force in this case are both
functionals of the shape of the interface.

III. THE SIMULATION METHOD

In order to model the dynamics of contact lines of arbitrary
shape, numerical methods are necessary. As a first step, the
contact line is discretized into representative points. After
the contour is discretized, the points are connected through
directed line segments (vectors). Each of the points “tracks”
its previous and upcoming neighbors and, by convention, the
vectors are directed so that the liquid always lies on their left
hand side. Following the direction of the vectors connecting the
points, a directed chain is established. We denote by Si the in-
dex of the ensuing point corresponding to point i and by Wi the
point preceding i (Fig. 1). In terms of the representative points’
coordinates, the line and surface tension energies are written as

Uline = α
∑

i

√(
xi − xSi

)2 + (
yi − ySi

)2
, (11)

Usurface = γ
1

2

∑
i

xiySi
− xSi

yi . (12)

Once the energies are obtained, the forces acting on the
representative points are computed as �Fi = −�∇iU . In our
two-dimensional approximation, the two components of this
force are

Fix = −∂U

∂xi

= −α

[
xi − xWi

di,Wi

+ xi − xSi

di,Si

]
+ γ

(
ySi

− yWi

)
, (13)

Fiy = −∂U

∂yi

= −α

[
yi − yWi

di,Wi

+ yi − ySi

di,Si

]
− γ

(
xSi

− xWi

)
, (14)

where dk,l is the distance between points k and l. It can be
readily seen that each point interacts with its nearest neighbors
only, therefore a simulation method resembling the classical
molecular dynamics method is suitable for investigating their
dynamics. We emphasize that the localized nature of the
forces is a direct consequence of our primary hypothesis; i.e.,
the droplet is flat and its height profile does not change signifi-
cantly during the movement of the contact line. Either at lower
scales, where the fine structure of the contact line becomes
relevant, or in the case of nonflat droplets, the Green’s function
of the contact line (its response to a localized perturbation)
is of long-range nature. As mentioned in the introduction, a
perturbative treatment for small deformations of the contact
line is described in Ref. [25], while the propagation of such
lines in random media resulting in a depinning transition
and a consequent advancing accompanied by avalanches is
extensively studied in Refs. [28,29]. For the present case, we
stick to the lubricant approximation, thus proceeding with
Eq. (13). The overdamped equation of motion for the points is

.�ri = mi
�Fi. (15)

The mobility mi associated to point i is inversely proportional
to the length element of the respective point on the triple
interface:

mi = m0
2dmax

di,Si
+ di,Wi

, (16)

where we recall that di,Si
is the distance between point i and

its upcoming neighbor, while di,Wi
is the distance between

point i and its previous neighbor. During their dynamics, the
representative points will approach or move away from each
other. In order to preserve numerical accuracy, their density
on the triple line should be kept constant. Imposing a constant
density, however, is incompatible with the movement of the
individual points; therefore, an optimal fluctuation around an
average value is necessary. This issue is solved by inserting
a new point between two neighboring points whenever they
move farther than a predefined distance dmax. In case they come
closer than another predefined distance dmin, one of the points
is removed. As a rule of thumb, we consider dmin = 0.8 dmax/2,
which ensures that no insertion is necessary right after a
removal. With this choice, m0 is then the mobility of one line
segment. Note that continuous indexing of neighboring points
is not possible due to the repeated insertions and removals.

Whenever two segments intersect, the points are recon-
nected such that the line breaks up, hence allowing for tearing
the layer. The used reconnection mechanism is sketched in
Fig. 2.

IV. INHOMOGENEITIES

Similarly to previous descriptions, one may introduce
inhomogeneities of the substrate in terms of pinning points.
Whenever the contact line hits a pinning point, it is blocked as
long as the force acting on it does not reach a given threshold.
Equation (10) then modifies to

�̇r(θ ) = m[�r(θ )]{ �F [�r(θ )] + �Fpin[�r(θ )]}, (17)
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FIG. 2. The reconnection mechanism for the tearing of the layer. The label values in braces indicate the succeeding order in the oriented
chain. Please note that step 1 and step 2 are made in the same time moment.

where �Fpin is the pinning force resulting from inhomogeneities:

�Fpin(�r) =
{

−η(�r)
�F (�r)

| �F (�r)| if | �F (�r)| > η(�r)

− �F (�r) if | �F (�r)| � η(�r)
. (18)

Here η(�r) will characterize the pinning strength at the site with
position �r . In case of pointlike inhomogeneities, localized at
spatial coordinates �rk ,

η(�r) =
{
ηk if �r = �rk

0 �r 	= �rk

, (19)

where ηk are the thresholds of the pinning points. In the
following, spatially uniformly distributed and uncorrelated
inhomogeneities are considered. For simplicity, the ηk thresh-
old values are considered also uniformly and uncorrelatedly
distributed on the [0,η0) interval.

The concentration of the pointlike inhomogeneities is

c = lim
S→∞

1

S

∫
S

∑
k

δ(�r − �rk)d�r, (20)

while their average distance is given by L0 = 1/
√

c.
Note that the disorder is quenched, which means that in

principle their positions would have to be generated and fixed
right from the beginning of the simulation. The line segments
have to be tested at every instant of the simulation, whether
they cross any of the pinning points, a procedure which is
extremely time consuming. In order to avoid this, a simplified
procedure is used to generate pinning points on the run, yet
preserving their statistical properties.

If the line segment belonging to point i sweeps a small area
	S within a time interval 	t (Fig. 3), the probability of finding
exactly n pinning points within that area has a Poissonian
distribution:

P (n) = 1

n!
(c	S)n exp(−c	S). (21)

Since the pinning is related to thresholds, whenever the
line segment crosses n pinning points, with thresholds
{η1,η2,...,ηn}, it will experience an effective threshold which
is the maximum of all the thresholds of the points within 	S:

ηeff = max{η1,η2,...,ηn}. (22)

Bearing in mind that ηk is uniformly distributed on the [0,η0)
interval, the probability distribution of the maximum is given
by

P (ηeff|n) = nηn−1
eff ηn−2

0 where ηeff < η0. (23)

At every time step, for each site, the number of pinning
points is drawn according to the Eq. (21) distribution, while the
thresholds are generated according to the Eq. (23) distribution.

V. APPLICATION: A SOFT DEWETTING LINE UNDER
QUENCHED DISORDER

As an application to the previously discussed method, we
will study the dynamics and topology of a moving dewetting
line on a substrate with uniformly distributed quenched
disorders. Disorders act as pinning centers, and we consider
them pointlike with the statistical properties described in
the previous section. The initial state of the interface is a
straight line along the x axis [y(t = 0) = 0], and the liquid
is considered to be under this line in the y < 0 semiplane.
Periodic boundary conditions are imposed along the x axis;
hence, while the liquid contracts, the contact line moves toward
the negative y direction. After a transient period, the line
reaches a dynamic equilibrium state, in which its statistical
properties are stationary.

R0 = α/γ is chosen as the unit length of the simulation.
All the lengths are then expressed in terms of dimensionless
coordinates �̃r = �r/R0. Let us introduce R1 = η0/γ , which
would correspond to a flat line element subjected to a capillary
force that would move it over a pinning dot with threshold

FIG. 3. (Color online) Handling the substrate inhomogeneities.
In this example, the line segment corresponding to point i crosses four
pinning centers, each with its own threshold. The effective threshold
experienced by point i is the largest one out of those four. The pinning
points are considered pointlike, with no planar extension.
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FIG. 4. (Color online) Contact line morphology for equally spaced time moments (plots in the x-y plane). Evolution of the interface is
from top to bottom (from the blue line to the black one). The inset graphs from left to right correspond to increasing R̃1 values (indicated in
the horizontal direction), while from bottom to top we consider increasing L̃0 values (indicated in the vertical direction). The roughness and
velocity fluctuations increase, and long-range correlation and large deformation develop as the system approaches the depinning transition. In
the two bottom-right cases, after sweeping a finite distance, the line is pinned. In order to better visualize every position of the line within the
desired interval, different scales on the y axis have been used. The scale in the x direction is always 200 units.

η0. Its dimensionless form is R̃1 = R1/R0. The dimensionless
time is t̃ = γm0t . The equation of motion (17) can then be
rewritten in terms of these dimensionless quantities, which
leaves us with two parameters only: the length scale R̃1

defined by the amplitude of the inhomogeneity thresholds and
the length scale L̃0 = L0/R0 defined by their concentration.
Consequently, the dynamics of the line is a result of the
competition between these two length scales.

Simulations were carried out for a system length along the x

direction L̃x = 160, representative points distance d̃max = 0.2,
and a time step 	̃t = 10−3. As mentioned previously, tearing
up of the layer is possible; however, the resulting droplets
(droplets left behind as a result of tearing) are disregarded as
they have no more influence on the dynamics of the main line.
Wherever it was meaningful, an ensemble average over ten
ensembles (independent runs) was considered.

VI. RESULTS AND DISCUSSION

We present now the results obtained for the dynamics of
the model system described in the previous section (Sec. V.).
First, we study qualitatively the dynamics of the interface.

Figure 4 shows the time evolution of the contact line for various
parameters R̃1 and L̃0. As the line’s average velocity decreases,
i.e., as it approaches the depinning transition, its length and
roughness increase. One will observe that the contact line
reaches a statistically stable conformation, and its shapes are
in good qualitative agreement with the experiments carried out
by Clotet et al. [14] and Paterson et al. [13,41] in a Hele-Shaw
cell, although both experiments were carried out for wetting
on disordered substrates, i.e., the opposite dynamics of the
contact line.

In the dynamic equilibrium (stationary regime of the
moving interface), the mean velocity of the interface along the
y direction presents a nontrivial, phase-transition-like behavior
as a function of L̃0. There is a critical concentration, below
which the line is depinned (Fig. 5), and this is what we call
depinning transition.

This critical concentration (or the associated length L̃c
0)

depends on the pinning strength. From Fig. 5 we also learn
that L̃c

0 increases with R̃1 and converges to L̃c
0 = 1/2 ± 0.1

as R̃1 → ∞. This value is significantly lower than L̃c
0 = 2,

which would be the critical length for a regular array of defects
with infinite strength that would prevent tearing. Collective
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FIG. 5. (Color online) Mean velocity of the interface along the
y axis, in the stationary regime, as a function of L̃0 for different
R̃1 parameters. The inset shows the mean velocity as a function of
L̃0/L̃

c
0. A reasonable collapse is obtained.

trapping of parts of the contact line, thus, is possible if the
distance between the neighboring defects is less than 2. The
existence of such a threshold lower than L̃c

0 = 2 has been
shown experimentally [41]; however, since the experiment was
carried out in gravity, its value is related to the capillary length.
In our case, the obtained lower limit is merely a consequence
of the competition between the line and surface tensions and
the value L̃c

0 = 1/2 is, thus, a consequence of the underlying
disorder. It is related to the percolation of the contact line
between the localized defects. As it is expected for a critical
behavior, the mean velocity curves have a reasonable collapse
if they are plotted as a function of L̃0/L̃

c
0. The inset in Fig. 5

shows the results in such a scenario.
Although the number of the simulated data points was

rather limited for this purpose, we made an attempt to find the
L̃c

0 = L̃c
0(R̃1) dependence. We considered the mesh illustrated

in Fig. 6 in the R̃1-L̃0 plane to detect the occurrence of
the depinning transition. The inset in Fig. 6 shows that
L̃c

0 = 1/2 − R̃−1
1 is a reasonable fit for describing the boundary

between the two phases in the mapped region. Interestingly,
this fit suggests that for R̃1 < 2 a total pinning is not possible.

For the high inhomogeneity and low threshold regime
(L̃0 � 1, R̃1 � 1), one would expect the possibility of a
classical depinning transition, with small deformations of the
contact line. Interestingly, however, we could not observe such
a transition, even for extremely low values of L̃0 and R̃1. In
their experiments, Duprat et al. [15] investigated the depinning
of a wetting contact line from an individual defect. They
reported that depending on the pinning strength the contact
line either jumped off the defect or completely wetted it, and
advanced by tearing up and leaving an air hole behind. For an
individual or localized group of inhomogeneities we observed
the same behavior; however, it turned out to be impossible to
recover a collective depinning transition without the tearing
up of the film. This is probably the result of the high ductility
of the contact line. The classical depinning transition occurs
due to the competition between disorder and long-range elastic
restoring forces [42], while in our case we lack the long-range
part; therefore, we encounter a new transition, which is mainly

FIG. 6. (Color online) Phase diagram of the contact line in the
(R̃1,L̃0) parameter space. Symbols indicate parameter values at which
simulations were performed. Blue squares indicate the obtained
pinning phase, and green dots indicate the depinning phase. The inset
derived from the separation points shows that the two phases are
delimited by the curve L̃c

0 = 1/2 − R̃−1
1 , the dashed line indicating a

slope −1. Please note the logarithmic scales for the inset graph.

governed by large deformations and tearing up of the layer. In
the experiments of Paterson and Fermigier [41], the authors
distinguish between strong and weak pinning as a function of
the spatial distribution of the inhomogeneities. In the strong
pinning case, defects were spread randomly and uniformly
over the whole surface, while in the weak pinning case they
were spread by positioning randomly only one defect in each
unit cell of a larger square lattice, hence obtaining a more
homogeneous pattern. For the same defect concentration, the
second case results in smaller average distance L̃0 between
the defects. The observation that in the strong pinning case
(small L̃0) the contact line breaks up, and in the weak pinning
case (large L̃0) it advances with a rather smooth shape, is
compatible with our simulation results, even though we tuned
L̃0 by changing the defect concentration rather than changing
their distribution or correlation.

Another major difference compared to classical depinning
models is that in our system local backward movements of the
interface may appear, and, indeed, approaching the transition,
positive velocities of the representative points occur, which
plays an important role in the roughening mechanism (see
the scenario presented in Fig. 7). This backward motion does
not imply, however, that the interface will sweep over the
same substrate area twice. This scenario will never happen,
and in this sense our method for generating the pinning
points is consistent. The local backward motion has to be
understood in the context that the withdrawing liquid layer
has a complex shape, and the contraction is realized in a
complicated manner, as it is sketched in Fig. 7. The contraction
of some peninsulalike formations can lead to such backward
oriented motion of the interface.

Figure 8 shows how the distribution of the velocity
components in the y direction changes as we approach the
transition point. Far from the transition point we experience
an almost bimodal distribution (one peak corresponds to the
unpinned part, while the other one, at zero, corresponds
to the pinned part), while close to it we obtain an almost
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FIG. 7. (Color online) An example from computer simulations
where local backward movement of the interface occurs. The liquid
layer sketched in gray contracts by moving in the bottom direction
(negative direction of the y axis). Due to the highly deformed shape
of the interface, there will be parts of the interface where the velocity
vector of the interface will have a positively oriented y component.

zero-averaged symmetric distribution. Clearly, it is due to
the slight asymmetry that the contact line moves forward on
average.

In order to quantify the morphology of the contact line
around the transition, we performed a classical rasterization
analysis. The length of the contact line L was measured by
taking into account only every 	th representative point, and
the scaling of L with respect to 	 was investigated. This
means that, for 	 = 1, L is computed by adding up the
distance between each nearest neighboring point, for 	 = 2
it is computed by summing the distance between each second
neighbor point, and so on; hence, the length of the curve is
approximated at different precisions. Figure 9 shows that as
the system approaches the depinning transition the scaling
converges to a power law, L(	) ∝ 	−1/4. This suggests a
fractal-like structure and a scale-free morphology with a

FIG. 8. (Color online) Distribution of the y component of ve-
locities along the contact line for L̃0 = 0.5. Note that when we
approach the depinning transition (R̃1 → 102) a considerable local
backward movement (vy > 0) of the interface occurs. Also, far from
the transition (R̃1 � 102), the pinned part of the line is quite well
separated from the moving part.

FIG. 9. (Color online) Development of the scale-free morphol-
ogy as the system approaches the critical state, the normalized length
L(	) of the contact line as a function of 	 (see the text for the
definitions), and results for R̃1 = 102 and different values of L̃0. The
dashed line is a guide for the eye, and has a slope −0.25. A natural
upper cutoff arises due to the finite system size, and a lower cutoff
arises from the discretization.

diverging total length as 	 decreases. This is again a direct
consequence of the undergoing phase transition.

Since 	 can be used to parametrize the contact line
[x(	),y(	)], further information concerning its shape can be
extracted by investigating the structure factor Sy(k	) defined
as the power spectrum of y(	): Sy(k	) = |ŷ(k	)|2 where
ŷ(k	) is the Fourier transform of y(	). Figure 10 shows
the convergence of Sy(k	) to a power law in the vicinity of
the transition point: Sy(k	) ∝ k−2

	 . This suggests again the
scale-free, fractal-like shape for the interface. As expected,
the main difference between the various curves Sy(k	) arises
from the low frequency and, hence, large wavelength values,
showing that long-range correlation develops close to the
transition point.

FIG. 10. (Color online) Development of the scale-free morphol-
ogy as the system approaches the critical state, the structure factor
Sy(k	) as a function of k	 (see the text for definitions), and results for
R̃1 = 5.0 and different values of L̃0. The dashed line has a slope −2.0
and the range 1 � 	 < 2048 was used for the Fourier transform.
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FIG. 11. (Color online) Average position of the
contact line as a function of time, for R̃1 = 102 and
L̃0 = {0.4,0.5,0.6,0.7,0.8,0.9,1.0}. The arrow indicates increasing
values of L̃0. Note how fluctuations increase approaching the
transition point and the dynamics becomes intermittent. The inset
shows the avalanche size distribution for R̃1 = 102 and L̃0 = 0.5,
while the solid line has a slope −2.0.

The average position of the contact line was also followed
as a function of time. Results for a fixed R̃1 = 102 value
and a wide range of L̃0 values are plotted in Fig. 11. When
approaching the critical point, fluctuations increase and the
sudden jumps in the average position become more and more
dominating. These jumps are the result of either the slip
of the contact line over individual defects or the tearing
up of the layer. Analogous to jumps in the magnetization
(Barkhausen noise), these jumps are termed avalanches, since
the average position of the line is governed by fast slips. Close
to the transition, the sizes of the jumps exhibit a power-law
distribution with an exponent −2 (inset of Fig. 11). Our results
along this line are, however, modest (the scaling is on an
interval less than two orders of magnitude), due to the lack of

statistics for the large avalanche sizes. It is important to note,
however, that experimental data presented in Ref. [43] clearly
show values around −2, giving, thus, some confidence in the
results of our model.

VII. CONCLUSIONS

An efficient off-lattice simulation method, resembling clas-
sical molecular dynamics, has been introduced for investigat-
ing the dynamics of thin and viscous liquid layers, dewetting
on inhomogeneous surfaces. By using this simulation method
the existence of an unusual depinning transition was revealed.
This transition is governed by large deformations of the
interface and the breaking up of the layer. The two-dimensional
parameter space of the investigated system was thoroughly
explored, and the obtained results were discussed in view
of available experimental observations. We learned that the
contact line’s dynamics is a result of an interplay between
the capillary forces and the substrate disorder; however,
with the appropriately introduced adimensional form, both
relevant parameters are related to the inhomogeneities. In
such an approach, the universal properties of the contact line
can be viewed as a result of the competition between the
inhomogeneities’ strength and their density. The difference
between the dynamics of a receding and an advancing contact
line (dewetting versus wetting), other than the contact angle
hysteresis, remains an open question and could be investigated
in the future by introducing pressure in our model.
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