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Abstract

Metronomes placed on the perimeter of a disc-shaped platform, which can
freely rotate in a horizontal plane, are used for a simple classroom illustration
of the Kuramoto-type phase transition. The rotating platform induces a global
coupling between the metronomes, and the strength of this coupling can be
varied by tilting the metronomes’ swinging plane relative to the radial direction
on the disc. As a function of the tilting angle, a transition from spontaneously
synchronized to unsynchronized states is observable. By varying the number
of metronomes on the disc, finite-size effects are also exemplified. A realistic
theoretical model is introduced and used to reproduce the observed results.
Computer simulations of this model allow a detailed investigation of the
emerging collective behaviour in this system.

(Some figures may appear in colour only in the online journal)

1. Introduction

Synchronization is the emergence of coherent dynamics in ensembles of interacting and
self-sustaining elements with periodic motion. In the case of oscillators this phenomenon is
observable as an adjustment of their rhythms due to a weak phase difference minimizing
interaction between them. Synchronization usually appears as a phase-locking scenario, and
the synchronized state is a stable limit cycle of the system [1-6]. Synchronization of totally
identical oscillators with a phase difference minimizing interaction between them is easily
imaginable. Because in real life one cannot find two totally identical oscillators, the real
challenge lies in understanding synchronization in ensembles of non-identical units, where
each oscillator has its own natural frequency.

The earliest known study of spontaneous synchronization between coupled non-identical
oscillators dates back to 1657, when Christian Huygens studied the motion of maritime
clocks. Due to the practical challenges, these devices were built using two clocks operating
simultaneously and in such a way that if one clock stopped, the other one was able to provide
timekeeping. This setup made it possible for him to discover an odd kind of sympathy because
in his clocks, which were suspended side by side, the pendulums swung at the same frequency
and 180° out of phase. After perturbing the system, the anti-phase synchronized motion

0143-0807/13/061451413$33.00 (©) 2013 IOP Publishing Ltd Printed in the UK & the USA 1451


http://dx.doi.org/10.1088/0143-0807/34/6/1451
mailto:zneda@phys.ubbcluj.ro
http://stacks.iop.org/EJP/34/1451

1452 Sz Boda et al

resumed. Driven by his scientific curiosity, he performed a series of controlled experiments,
and concluded that this strange phenomenon occurs due to small vibrations transmitted through
the clocks’ common suspension frame. He summarized his study in a letter to the Royal Society
of London [7], and this letter is the earliest known scientific discussion of the phenomenon
of synchronization. Recently, several research groups revisited Huygens’s original experiment
and for an excellent review we suggest the work of Kapitaniak et al [8].

A more general approach to the fascinating synchronization phenomenon of non-identical
oscillators was pioneered by Winfree. In 1966, as a graduate student at Princeton University,
he began to study coupled oscillator systems. Based on many experimental observations in
real systems, he proposed a novel modelling framework for explaining the emergence of
synchronization in large populations of coupled self-sustained oscillators, with a probabilistic
spread of their natural frequencies. He found that synchronization appears as a phase transition
when the coupling strength is increased above a critical limit [9]. Inspired by Winfree’s work,
a few years later Kuramoto and Nishikava reformulated and simplified this model in order to
make it analytically solvable [2]. They established one of the most successful and well known
models for understanding the synchronization of an ensemble of non-identical and globally
coupled oscillators. The key for getting an analytical solution was to choose a proper harmonic
form for the coupling. For a normal distribution of the oscillators’ natural frequencies, their
model, which is known today as the Kuramoto model, yields the critical coupling strength
at which collective rthythm emerges. The Kuramoto model is exactly solvable for uniform
and global coupling between the oscillators, and serves nowadays as a textbook example in
statistical physics for exemplifying and teaching second-order phase transitions. Therefore,
illustration of the Kuramoto-type phase transition through classroom experiments has great
pedagogical value.

Panteleone [10] proposed in this sense a simple mechanical setup of two metronomes
placed on a light, easily movable platform. From acoustic observation of the metronomes
beats, he found that, for small frequency differences, the metronomes were able to synchronize,
independently of the initial conditions, in a time interval of the order of tens of seconds.
However, synchronization was not achieved for larger frequency differences. Pantaleone
also derived approximate equations of motions for the time evolution of the metronome
ensemble, using for the metronome escapement and damping a term borrowed from van der
Pol oscillators [11]. He also suggested that extending the model to a multimetronome system
would provide additional opportunities for observing much interesting behaviour.

As a feedback to Panteleone’s work, Ulrichs et al [12] examined the behaviour of many
(up to 100) globally coupled metronomes by using numerical simulations. For the dynamics
of the coupled system they used the equations of motion derived by Pantaleone. They reported
that the Kuramoto-type transition is observable in their system as well. In agreement with
the observations of the real metronome system made by Pantaleone, they also confirmed the
absence of anti-phase synchronization, and reported only in-phase synchronization.

This paper intends to continue the above sketched line of studies, considering a direct and
straightforward experimental illustration of the Kuramoto-type phase transition for several
metronomes. In our experimental setup the metronomes are arranged symmetrically on the
perimeter of a freely rotating disc, as illustrated in figure 1. The rotation of the disc induced
by the metronomes’ beats acts as a coupling mechanism between the metronomes’ phases.
Continuing our previous study [13], where we examined the influence of metronome number
and their nominal frequency on the observed synchronization level, we now examine the
influence of the coupling strength in the system. The coupling strength is adjusted in a
very simple manner by placing the metronomes at different angles with respect to the radial
direction on the disc. The coupling strength will thus decrease to zero as we approach 90°.
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Figure 1. The order parameter of the Kuramoto model as a function of the coupling strength
between the rotators. The continuous line is for a system composed of an infinite number of
oscillators, the dashed line corresponds to a finite system. At K = K, an order—disorder phase
transition is observable.

A realistic model with experimentally determined model parameters is used to confirm the
experimentally obtained data and for extrapolating the results in the limit of hundreds of
metronomes.

The rest of the paper is organized as follows. First, we briefly discuss the classical
Kuramoto model and its main achievements, then we present our experimental setup and
results. We consider realistic equations of motion for the dynamics of the system, and
computationally investigate this model with experimentally determined model parameters.
We illustrate both by experiments and simulations the appearance of the Kuramoto-type
phase transition, and compare our experimental and theoretical results. We believe that
the presented experiments and model are suitable for university level student projects and
laboratory demonstrations and could also be of interest for specialists in the field of emerging
synchronization.

2. Kuramoto model

The model is elaborated by Kuramoto and Nishikawa [2, 5], and considers an ensemble of
globally coupled rotators. Each rotator i (oscillator) has its own, intrinsic w; frequency, which
is distributed according to a g(w) probability distribution. The dynamics of the system is given
by a set of coupled first-order differential equations

26, K< . :

> _a),+Nj;sm(Gj 6,), i=1-N, (1)
where N is the number of rotators, K is the coupling constant and 6; is the phase of unit i.
Without coupling (K = 0) the system decouples in a trivial manner and each rotator follows
its own natural frequency, thus no synchronization is possible. The chosen harmonic form for
the coupling has the effect of reducing the phase difference between the oscillators, and allows
a self-consistent separation of the coupled equations. An analytic and exact solution can be
obtained in the thermodynamic limit (N — oo) for the (r € [0, 1]) order parameter which
characterizes the level of synchronization in the system:

1
rexp(iy) = + ZNexp(in). (2)

j=1



1454 Sz Boda et al

Figure 2. Schematic view of the experimental setup: metronomes are placed on the perimeter of a
disc that can rotate around a vertical axis. We also illustrate one metronome displaced by an angle
« relative to the radial direction on the disc.

In the equation i represents a collective phase of the synchronized state. For randomly
distributed 6; phases there is no synchronization in the system and one gets » = 0. In the case
of complete synchronization all phases are the same, and we get r = 1. A value r € (0, 1)
indicates partial synchronization. Kuramoto and Nishikawa found that the coupled rotator
system presents an order—disorder-type phase transition in the thermodynamic limit. For a
given rotator ensemble, there is K, critical coupling in the system so that for K < K, the
system is in a disordered phase, the units will not synchronize, and r = 0 will be the stable
solution. For K > K, partial synchronization appears and r > 0is the stable solution. Complete
synchronization (r = 1) appears in the K — oo limit. For a normal distribution of the oscillator
frequencies characterized by a o standard deviation, the critical coupling is
2

K = 0 3)
The phase transition monitored through the r order parameter is sketched in figure 1. Results
for a system composed of an infinite number of rotators are plotted with a continuous line, the
results expected for finite system sizes are plotted with a dashed line.

3. Experimental setup and results

We consider a system composed of metronomes placed on a freely rotating disc-like platform.
By tilting the metronomes’ orientation relative to the radial direction on the disc we are
able to reproduce the Kuramoto-type phase transition. A schematic view of the setup and a
magnification for one metronome is sketched in figure 2.

Metronomes were patented by Johann Maelzel in 1815 as a timekeeping tool for
musicians [14]. They produce regular, metrical beats, hence the native frequency unit for
their beat frequency is given in beats per minute (BPM). The oscillating part of the metronome
is a physical pendulum, which consists of a rod with two different weights on it (see figure 3).
One of these weights is fixed at the lower end of the rod (denoted by W;) and the other one,
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Figure 3. Schematic view of the metronome’s bob with the two masses W; and W,. The dotted
line denotes the horizontal suspension axis, and the white dot illustrates the centre of mass of this
system.

W,, is movable and can be fixed at some marked values. In our case W; > W, and the rod is
suspended on a horizontal axis between the two weights in a stable manner, so that the centre
of its mass lies below the suspension axis.

The metronomes’ frequency can be tuned by sliding the W, weight on the rod. The
marked positions for the W, weight lead to oscillations with standard nominal beat frequencies
ranging from 40 to 208 BPM. In order to overcome the unavoidable energy dissipation and
to maintain the self-sustaining motion, the metronomes have their own exciting mechanism.
This mechanism yields additional momentum to the physical pendulum in the form of pulses,
delivered at a given phase of the oscillation period. The pulse given by the exciting mechanism
is in the pendulum’s swinging plane, and this pulse will be the main source of coupling in
our system. These momenta (p) can be decomposed into two components, one parallel to
the radial direction on the disc (p|) and one perpendicular to this direction (p,). Rotating
the pendulum’s swinging plane by o < 90° (illustrated in figure 1), the p, component will
decrease (p = p - cos(a)), and the p;; component will increase (p; = p - sin(a)).

The global coupling between the metronomes is realized by the small angle oscillations
of the platform. These oscillations appear as a result of the p, terms. We can adjust the
coupling by rotating the metronomes. One can easily realize that the coupling will be maximal
if o = 0 or @ = 180, and there will be no coupling for « = 90. The setup is thus appropriate
for modeling a globally coupled oscillator system, where the coupling strength between the
oscillators can be controlled. To control the tilting angles, ¢, of the metronomes we mounted a
needle on their bottom, perpendicular to the bob’s swinging plane. We used six metronomes,
which were evenly spread on the perimeter of the disc, and for each of the positions we
marked with red lines well-defined « angles, ranging from 0° to 180° with a step of 15°. This
is illustrated both in the schematic setup from figure 2 and in the photo of our experimental
apparatus in figure 4(a).

In the experiments we used commercially available Thomann 330 metronomes. Initially
we bought ten pieces, but finally we selected six metronomes, so that their natural ticking
frequencies for the 192 BPM marked frequency could be as similar as possible. For the
experiments we fixed all the metronomes at this 192 BPM nominal frequency. We have chosen
this frequency because in previous experiments [13] we found excellent synchronization for
this nominal frequency value. Naturally, since there are no two identical units, in experiments
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Figure 4. (a) Experimental setup, with the metronomes placed on the disc and the wiring that carries
the information on the position of the metronomes’ phases. (b) One of the light gates (Kingbright
KTIR 0611 S) used for detecting the position of a metronome’s bob. It is composed of an infrared
LED and a phototransistor.

we have to deal with a non-zero standard deviation of their real natural frequencies and
synchronization will not appear without a coupling mechanism.

One can easily check this by blocking the motion of the platform. Although the nominal
frequencies are identical in this case, due to tiny differences in the real frequency values, one
never observes a spontaneous synchronization of the beats.

In order to separately monitor the dynamics of all of the metronomes, photocell detectors
(figure 4(b)) were mounted on them. These detectors are commercial ones (Kingbright KTIR
0611 S [15], available for purchase from many distributors, for example Transfer Multisort
Elektronik [16]), and contain a light emitting diode and a phototransistor. They were mounted
on the bottom of the metronomes, in the bob’s movement plane.

The wires from each metronome (seen in figure 4) connect the photocells to a circuit
board, allowing data collection through the USB port of a computer. For data collection we
used a free, open-source program called MINICOM, which saves the collected data in log
files [17]. Our setup is able to monitor the states of up to eight metronomes simultaneously.
To reduce the data flow, the circuit board is programmed in such a manner that data are sent
only when there is a change in the signal from the photocell system (i.e. a metronomes’ bob
passes the light gate). At such moments it sends a string like: 0 — 1 — 1 — 0 — 1 — 0 1450.
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Figure 5. Experimental results for the synchronization level of the metronome system for several
orientations of the metronomes on the disc. The averaged Kuramoto order parameter is plotted as
a function of the « angle characterizing the metronomes’ orientation on the platform. Different
symbols correspond to different metronome numbers on the disc, as indicated in the legend.

The first six numbers characterize the metronome bobs’ position relative to the photocell
(whether the gate is open or closed) and the seventh number shows the time moment, where
one time unit corresponds to 64 us. Some additional steps are required in order to approximate
the 6; phases of all metronomes and to compute them for given time moments using the
Kuramoto order parameter.

As a first step we must exclude from the data those moments when the metronome’s bob
returns and passes the second time through the light gate in one period. After this is done,
in a second step we calculate the period of each cycle, and interpolate this time interval for
the 0; phases between 0 and 27 (corresponding to the state of a Kuramoto rotator) assuming
uniform angular velocity. In such a manner, the 6; phase of each metronome (considered
here as a rotator) will be uniquely determined for each time moment, and the Kuramoto
order parameter (2) is computed. All the presented results are averaged for ten independent
experimental realizations. Experiments were carried out for two, three and six metronomes.
The averaged results for the Kuramoto order parameter as a function of the « orientation angle
of the metronomes is plotted on figure 5.

The curves suggest an order—disorder-type phase transition around « ~ 50°. The transition
from the partially synchronized state to an unsynchronized one appears as a result of the
decreased coupling strength: p; = p - cos(«). In agreement with the expected finite-size
effects, by increasing the number of metronomes on the disc, sharper and sharper transition
curves are observable. Going over « = 90°, the p, component increases again. However, in
parallel with this increase, the metronome’s bob gets closer to the rotation axis of the disc,
leading to a decrease in the torque produced by the p, pulse. The combined result of these
two opposite effects will lead to a less evident second transition. It is worth noting that for
the o € [0°, 90°] interval both effects weakened the coupling, hence a sharper transition was
observable.

4. Theoretical model

Inspired by the model described in [18], it is possible to consider a realistic model for
the coupled metronome system. In this model we represent the metronomes by a rigid box
containing a physical pendulum, as sketched in figures 6(a), (b). These boxes are placed
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Figure 6. (a) Schematic view and notations for the considered mechanical model. The white dot
denotes the centre of mass of the physical pendulums and the grey dot is the suspension axis.
(b) A view from the top of the system with two metronomes (boxes represents the metronomes),
the black point inside the box is the centre of mass of the metronome and the black line inside the
box is the pendulums’ swinging plane.

equidistant from each other on the perimeter of the disc, so that the swinging plane of the
metronome forms an angle of 90° — « with the radial direction on the disc (figure 6(b)).

In the reference frame of the Earth, the Lagrangian for such a system without damping
and driving forces can be written as

L= {¢2 + i mi I:i(xi cos ; + h; sin 9,-)j|2 + |:i(x,- sin ai)]z
2 = 2 dr dr
d 2 N ,'C()~2 N
+ [a(hi cos 9,»)] + ; - ;m,-gh,»(l — cos ;). 4)

The first term is the kinetic energy of the platform, the second one is the total kinetic energy
for all of the pendulums’ centre of masses, the third one is the total rotational kinetic energy
of the pendulums around their centre of masses, while the last term is the total gravitational
potential energy of all of the pendulums’ centre of masses. The following notations are
used: the index i labels the pendulums, J is the moment of inertia of the platform with the
metronomes on it—taken relative to the vertical rotation axis passing through the centre of the
platform, ¢ is the angular displacement of the platform, m; is the total mass of the pendulum
i(m; ~ W](’) + W(’), and we neglect the mass of the pendulum’s rod), x; is the horizontal
displacement of the pendulum’s suspension point due to the rotation of the platform, « is the
orientation of the metronome’s swinging plane, #; is the distance between the pendulum’s
suspension point and their centre of mass, 6; is the displacement angle of the ith pendulum
relative to the vertical direction, J; is the moment of inertia of the pendulum relative to its
centre of mass and w; is the angular velocity for the rotation of the pendulum relative to its
centre of mass. We assume that the distance between the centre of mass of the metronome and
the centre of the disc is R, and this value remains constant, independent of «;. (We remark that
the centre of mass of the metronome is not in the pendulum’s swinging plane. The heaviest
part of the system is the driving mechanism, and in our simple model we assume that the
position of this part remains unchanged when we rotate the metronome by an angle «.) One
can immediately realize that x; = r;¢p, where r; = R+ s, - cos« and s; is the distance between
the pendulum’s swinging plane and the centre of mass of the metronome. Also, it is obvious
that w; = 6,. We assume that the mass of all the weights suspended on the bobs are the same
(Wl(’) = wi, Wz(’) = wjy, and consequently m; = m), and consider also o; = «. Neglecting the
m;gh; constant terms, one obtains:
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The Euler-Lagrange equations of motion yield:

(J + NmR?)¢ + mr cos(a) Z hi[6; cos 6; — 67 sin6;] = 0 (6)

[mh,2 + J,-]é[ + mr cos(a)q'b'h,' cos 0; + mgh; sin6; = 0. @)

These equations are valid for an ideal conservative system, where frictions and excitations are
absent. Friction and excitation should thus be added separately:

(J + NmR*)¢ + mrcos(a) Zhi[éi cosb; — 9',.2 sin Qi] + C¢q5 + cos(w) ZM; =0 (8)

[mh} + J;)6; 4+ mr cos(a)h; cos 6; + mgh; sin 6; + co6; = M. 9)

In the above equations of motion ¢4 and ¢y are coefficients characterizing the friction in the
rotation of the platform and pendulums, respectively. M; are instantaneous excitation terms
defined as

M; = M5(6,)6;, (10)

where § denotes the Dirac function and M is a fixed parameter characterizing the driving
mechanism of the metronomes. The choice of the form for M; in equation (10) means that
excitations are given only when a metronome’s bob passes the & = 0 position. The term 6
is needed in order to ensure a constant momentum input, independent of the metronomes’
amplitude. It also ensures that the excitation is given in the correct direction (direction of the
motion). It is easy to see that the total momentum transferred, Mg, to the metronomes in a
half period (7' /2) is always M:
1+T/2 Oma

Migans = / M5 (6;)0; dt = M§(0;)d6; = M
t

- emax

This driving will be implemented in the numerical solution as

M/dt if 6;(t —dt) < 0and 6;(t) >0
M; = ¢ —M/dt if6;(t —dr) >0and6;(z) <0
0 in any other case

where df is the time step in the numerical integration of the equations of motion. It can be
immediately realized that this driving leads to the same total momentum transfer, M, as the
one defined by equation (10).

The coupled system of equations (8) and (9) can be written in a more suitable form for
numerical integration:

mrcos(a) Y., hi6?sin6; — csp — cos(a) 3, M; +A+B—C
D 9

¢= (11)
M; — mr cos(a)&h,- cos 0; — mgh; sin 6; — g6

b =
mhlz +J,'

(12)
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where
hl2 sin 6; cos 6;
mh? + J;
h; 9 cos 6;
mh? +J;’

s

A= ngrcos(a) Z
B = mrcg cos(a) Z

h iM; cos 0;
= mrcos(a) Z hZC_iSJ

mhl2 + J;

Taking into account that the metronomes’ bobs have the shape sketched in figure 3 and the
L, distances are fixed, the &; and J; terms of the physical pendulums in our model will be
calculated as:

h? cos? 6;
D= |:J + NmR* — m*r? cos® («) Z &:|

1 .

hi = ———(wiL; — wyLY) (13)
w1 + w»

Ji = wlL% =+ wz(L;i))2. (14)

Equations (11) and (12) are numerically integrated using a velocity Verlet-type algorithm.
It was shown that a time step of df = 0.01 s is sufficient to get good convergence. In order
to characterize the synchronization level in the system, we used the classical Kuramoto order
parameter, r, defined in section 2.

5. Model parameters

The parameters in our theoretical model were chosen in agreement with the characteristic
values of our experimental device: w; = 0.025 kg, w, = 0.0069 kg, L; = 0.0358 m,
L, =0.029m, R =0.27m,s =4 cmand J € {0.0729, 0.10935, 0.2187} kg m? depending
on the number of metronomes placed on the platform.

The damping and excitation coefficients were estimated from simple experiments. For the
estimation of the ¢y value, a single metronome was considered on a rigid support. Switching off
the excitation mechanism, a quasi-harmonic damped oscillation of the metronome took place.
The exponential decay of the amplitude as a function of time uniquely defines the damping
coefficient, hence a simple fit of the amplitude as a function of time allowed the determination
of cy. Switching the exciting mechanism on leads to a steady-state oscillation regime with a
constant amplitude. Since ¢y has already been measured, this amplitude is now uniquely defined
by the excitation coefficient M. Solving equations (8) and (9) for a single metronome and tuning
it until the same steady-state amplitude is obtained as in the experiments makes the estimation
of M possible. Now that both ¢y and M are known, the following scenario is considered: all the
metronomes are placed on the platform and synchronization is reached. In such a situation the
platform has a constant amplitude oscillation. The angular amplitude of this oscillation will
determine the c; damping coefficient. Its value is tuned by solving the equations (8) and (9),
so that the experimentally observed amplitude of the disc’s oscillations are reproduced. By
performing these simple experiments all model parameters are realistically determined. The
following parameter values were estimated: ¢y = 5 x 1075 kg m? s71, cp = 1075 kg m? s7!
and M =6 x 1074 Nm s~!

One should also take into account the differences in the metronomes’ natural frequencies,
i.e. their non-zero standard deviation, o. For the used 192 BPM nominal frequency value,
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Figure 7. Comparison between the experimental and simulated results for the Kuramoto order
parameter. As indicated in the legend, lines correspond to the simulated results and symbols
correspond to the experimental results.

our metronomes had a non-zero standard deviation in their natural frequencies. In order to
introduce these differences into the simulation, we added a noise in the L, terms. This leads
to slightly different /; values, in agreement with equation (13). The magnitude of the noise
was chosen in such a manner that the standard deviations of the metronomes in the simulation
were as close as possible to the experimental values.

6. Simulation results

Simulations were done for o values between 0° and 180°, varying o with a step of 1°. For
better statistics we averaged the results of 100 independent simulations for each « value,
using randomly chosen initial conditions. The results obtained for N = 2, 3, 6 metronomes
allowed us to test our model and directly compare the results with the experimental data.
For this comparison we have chosen the natural frequencies of the metronomes as close as
possible to the experimentally measured values for the used metronomes. This means that the
standard deviation o of the natural frequencies is always adjusted close to the experimentally
determined value. Comparison between the experimental and simulation results is done in
figure 7.

Apart from the case when the system is composed of three metronomes, the experimental
and theoretical results are in good agreement. Differences in the three metronome case are due
to the fact that for three metronomes and & € [90°, 180°] experiments have shown that in many
cases one metronome beats in anti-phase with the others. This is less frequently reproduced in
the simulations, leading to a higher order parameter value.

Fixing now the standard deviation for the metronomes as close as possible to the exper-
imentally determined value for the ensemble of all six metronomes (¢ = 6.7 x 10~ BPM),
we have investigated in more detail the Kuramoto-type phase transition for much larger
metronome numbers, considering systems with up to N = 100 units. These studies allow a
better illustration of the finite-size effects. For the 100 independent simulations realized at the
same « value, the standard deviation o, of the r order parameter is also computed. Plotting
o,(a) allows an excellent illustration of the increased fluctuations in the neighbourhood of the
phase transition point. Results are plotted in figure 8.
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Figure 8. Simulation results for different numbers of metronomes on the disc. Each simulation point
is the average of 100 simulations with randomly chosen initial conditions. (a) The synchronization
order parameter as a function of the metronomes’ orientation. (b) The fluctuation of the order
parameter as a function of the metronomes’ orientation on the disc.

In agreement with our expectations for larger systems, a sharper transition is observed.
Fluctuations of the order parameter are also increased for larger system sizes. One can note
again the asymmetric nature of the curves for the « € [0°, 90°] and o € [90°, 180°] intervals.

7. Summary

A globally coupled mechanical oscillator system consisting of metronomes placed on a freely
rotating disc was investigated and used to illustrate the Kuramoto-type phase transition.
Displacing the metronomes on the perimeter of the disc, the free rotation of the platform
induces global coupling between them. By tilting the swinging plane of the metronomes
relative to the radial direction on the disc, the coupling strength is finely tuned. As a function
of the coupling strength, the system shows an order—disorder-type phase transition, similar
to the one known in the Kuramoto model. For strong coupling, in-phase synchronization is
observed. As the coupling strength is decreased, the spontaneous synchronization disappears.
Finite-size effects can also be exemplified in this system. As the number of metronomes on
the rotating platform is increased, sharper transitions are observable. A realistic theoretical
model was considered in order to better understand the emerging collective behaviour in this
system. The model was capable of reproducing the experimental results, and allowed the study
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of systems with much larger number of metronomes, where a sharper transition in the order
parameter is observed.

Instead of a rotating disc, the experiments can also be realized on a simple platform placed
on two parallelly oriented cylinders that can freely roll on a table, as it is sketched in the work
of Pantaleone [10]. The coupling will be controlled again by tilting the swinging plane of the
metronomes relative to the axis of the cylinders. However, the advantage of using a rotating
platform is that it does not require precise alignment of the cylinders, making the setup more
robust and easier to use in classroom demonstrations. On the rotating platform the coupling
can be also adjusted by manipulating the R distance (figure 2). We considered this scenario too,
and found that the great disadvantage of this method is that one cannot reduce the coupling to
zero due to the finite size of the metronome boxes.

Many additional classroom experiments can be done as a continuation of this study. One
can investigate what happens if we change the metronomes’ nominal beat frequencies or the
metronomes’ physical parameters. Also, one can investigate the system when external periodic
driving is imposed. Studies can be done both on the experimental setup and/or by numerically
simulating the presented realistic model.
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