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Abstract. Spontaneous synchronization of an ensemble of metronomes placed on a freely rotating plat-
form is studied experimentally and by computer simulations. A striking in-phase synchronization is ob-
served when the metronomes’ beat frequencies are fixed above a critical limit. Increasing the number of
metronomes placed on the disk leads to an observable decrease in the level of the emerging synchroniza-
tion. A realistic model with experimentally determined parameters is considered in order to understand the
observed results. The conditions favoring the emergence of synchronization are investigated. It is shown
that the experimentally observed trends can be reproduced by assuming a finite spread in the metronomes’
natural frequencies. In the limit of large numbers of metronomes, we show that synchronization emerges
only above a critical beat frequency value.

1 Introduction

Spontaneous synchronization of coupled non-identical os-
cillators is a well-known form of collective behavior [1–3].
The problem has been intensively studied since Huygens.
If the legend is true, presumably he was the first one
who noticed and reported the synchronized swinging of
pendulum clocks. By simple experiments he found that
the synchronized state is a stable limit cycle of the sys-
tem, because even after perturbing the system, the pendu-
lums came back to this dynamic state. Originally, Huygens
thought that this “odd kind of sympathy”, as he named it,
occurs due to shared air currents between the pendulums.
He performed several tests to confirm this idea. His ex-
perimental setup was really simple, with two pendulum
clocks hung from a common suspension beam which was
placed between two chairs [3]. After performing some ad-
ditional tests, Huygens observed a stable and reproducible
anti-phase synchronization, and attributed this to imper-
ceptible vibrations in the suspension beam. He summa-
rized his observations in a letter to the Royal Society of
London [4], and launched the study of synchronization
phenomena and coupled oscillators.

Recent studies have aimed at reconsidering various
forms of Huygens’ two pendulum-clock experiment as well
as realistically modelling the system. Bennet et al. [5]
investigated the same two pendulum-clock system as
Huygens did and came to the conclusion that several types
of collective dynamics are observable as a function of the
system’s parameters. For strong coupling, a “beat death”
phenomenon usually occurs where one pendulum oscil-
lates and the other does not. For weak coupling, synchro-
nization does not occur, and a quasi-periodic oscillation
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is observed. There is, however, an intermediate coupling
strength interval where the anti-phase synchronization ob-
served by Huygens appears. Hence, Huygens had some
luck with his setup as the coupling was just in the right
interval: strong enough to cause synchronization, but also
weak enough to avoid the “beat death” phenomenon.

Dilao [6] came to the conclusion that the periods of two
synchronized nonlinear oscillators (pendulum clocks) dif-
fer from the natural frequencies of the oscillators. Kumon
et al. [7] have studied a similar system consisting of two
pendulums, one of them having an excitation mechanism,
and the two pendulums being coupled by a weak spring.
Fradkov and Andrievsky [8] developed a model for such a
system, and obtained from numerical solutions that both
in- and anti-phase synchronizations are possible, depend-
ing on the initial conditions.

Czolczynski et al. [9] revisited Huygens’ original ex-
periment and found that the anti-phase synchronization
usually emerges, although in rare cases in-phase synchro-
nization is also possible. They also developed a more re-
alistic model for this experiment [10].

Pantaleone [11] considered a similar system, but he
used metronomes placed on a freely moving base (sus-
pended on two cylinders) instead of pendulum clocks. He
modeled the metronomes as van der Pol oscillators [12]
and came to the conclusion that anti-phase synchroniza-
tion occurs in some rare cases only. He proposed this setup
as an easy classroom demonstration for the Kuramoto
model [13] and extended the study for larger systems con-
taining up to seven globally coupled metronomes. He also
made quantitative investigations by tracking the motion
of the metronomes’ pendulum by acoustically registering
the ticks with a microphone. Ulrichs et al. [14] examined
the case when the number of metronomes was even larger.
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Fig. 1. Schematic view of the experimental setup: metronomes
are placed on the perimeter of a disk that can rotate around a
vertical axes.

The present state of this quite old field of physics was
recently reviewed by Kapitaniak et al. [15].

Our work is intended to continue this line of studies
showing that it is still possible to find interesting aspects
of this quite old problem in physics. In contrast to previous
works, we consider an ensemble of metronomes arranged
symmetrically on the perimeter of a freely rotating disk, as
illustrated in Figure 1. The free rotation of the disk acts as
a coupling mechanism between the metronomes and, for
high enough ticking frequencies, synchronization emerges.
Our aim here is to investigate the conditions favoring such
spontaneous synchronization by using a realistic model
and model parameters. In order to achieve our task, we
first study the dynamics of the system by well-controlled
experiments. Contrary to earlier studies that investigated
only the final stable dynamic state of the system, here we
also consider and describe the transient dynamics leading
to synchronization. The synchronization level is quantified
and measured. This is achieved by using an optical phase-
detection mechanism for each metronome separately. We
then construct a realistic model for the system and its
modeling power is proved by comparing its results with
the experimental ones. We discuss the reasons behind the
fact that only in-phase synchronization is observed in our
experiments. Finally, the model is used to investigate the
emergence of synchronization in large ensembles of cou-
pled metronomes.

2 Experimental setup

The experimental setup is sketched in Figure 1. The main
units are the metronomes (Figs. 1 and 3a), which are
devices that produce regular, metrical beats. They were
patented by Johann Maelzel in 1815 as a timekeeping
tool for musicians [16]. The oscillating element of the
metronome is a physical pendulum, which consists of a
rod with two weights on it (Fig. 2): a fixed one at the
lower end of the rod, whose mass is denoted by W1, and a
movable one, W2, attached to the upper part of the rod.

Fig. 2. Schematic view of the metronomes’ bob. The dotted
line denotes the horizontal suspension axis, and the white dot
illustrates the center of mass.

In general, W1 > W2 and the rod is suspended on a hor-
izontal axis between the two weights in a stable manner,
so that the center of mass lies below the suspension axes.

By sliding the W2 weight along the rod, the oscillation
frequency can be tuned. There are several marked places
on the rod where the W2 weight has a stable position,
yielding standard ticking frequencies for the metronome.
These ω0 frequencies are marked on the metronome in
units of beats per minute (BPM).

Another key part of the metronomes is the excitation
mechanism, which compensates for the energy lost to fric-
tion. This mechanism gives additional momentum to the
physical pendulum in the form of pulses delivered at a
given phase of the oscillation period. For a more detailed
analysis of this excitation mechanism we recommend the
work of Czolczynski et al. [10].

For the experiments, we used the commercially avail-
able Thomann 330 metronomes (Fig. 3a). From the 10
metronomes we had bought, the 7 with the most similar
frequencies were selected. Naturally, since there are no two
identical units, we have to deal with a non-zero standard
deviation of the natural frequencies in experiments

In order to globally couple the metronomes, we placed
them on a disk shaped platform which could rotate with
a very little friction around a vertical axis, as is sketched
in Figure 1 and illustrated in the photo in Figure 3a.

In order to monitor the dynamics of all metronomes
separately, photo-cell detectors (Fig. 3b) were mounted on
them. These detectors were commercial ones (Kingbright
KTIR 0611 S), and contained a light emitting diode and
a photo-transistor. They were mounted on the bottom of
the metronomes.

The wires starting from each metronome (seen in
Fig. 3) connect the photo-cell to a circuit board, allow-
ing data collection through the USB port of a computer.
The data was collected using a free, open-source program,
called MINICOM. [17]. The data was saved in log files,
and could be processed in real-time. It was possible to si-
multaneously follow the states of up to 8 metronomes. The
circuit board only sent data when there was a change in
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Fig. 3. (a) The experimental setup, with the metronomes
placed on the platform and the wiring that carries informa-
tion on the metronomes’ phases. (b) One of the light-gates
(Kingbright KTIR 0611 S), composed of an infrared LED and
a photo-transistor.

the signal from the photo-cell system (i.e. a metronome’s
bob passed the light-gate). At that point, it would record
a string such as 0 − 0 − 1 − 1 − 0 − 1 − 0 1450, where the
first 7 numbers characterize the metronome bob’s posi-
tion relative to the photo-cell (whether the gate is open or
closed) and the eighth number is the time, where one time
unit corresponds to 64 microseconds. Since we are inter-
ested in the dynamics of this system from the perspective
of synchronization, we computed the classical order pa-
rameter, r, of the Kuramoto model [13] in our numerical
evaluations:

r exp(iφ) =
1
N

∑
j

exp(iθj). (1)

Here, φ is the average phase of the whole ensemble, θj

is the phase of the jth metronome, N is the number of
metronomes, and i is the imaginary unit.

The recorded data only tell us the exact moment at
which the metronome’s bob passes through the light-
gate, so some additional steps are needed in order to
get the phases θj of all metronomes and to compute the
Kuramoto order-parameter for a given moment in time.
In order to achieve this, we first excluded from the data
those time-moments when the metronome’s bob passed
through the light-gate for the second time in a period, and
after that we retained the pass-times corresponding to a

Table 1. Standard deviation of the seven metronomes used
for different nominal frequencies.

ω0 (BPM) 160 168 176 184 192 208

σ (BPM × 10−7) 8.4 7.9 7.8 9.8 8.5 8.7

given directional motion only. With this “cleaned data”,
we calculated the period of each cycle and interpolated
this time-interval for the θj phases (between 0 and 2π,
corresponding to the state of a Kuramoto rotator) as-
suming a uniform angular-velocity. This way, the phase
θj of each metronome (considered here as a rotator) could
be uniquely determined at each moment in time, and the
Kuramoto order parameter (1) could be computed.

Before starting the experiments, we monitored each
metronome separately and recorded their exact frequency,
ωi, for all the standardly marked rhythms. These frequen-
cies had a small, but finite fluctuation around the nominal
frequency, ω0. We have selected those 7 metronomes that
had their ωi standard frequencies relatively close to each
other, and precisely measured these values. From these
values the standard deviation, σ, of the used metronomes’
natural frequencies could be determined (Tab. 1).

3 Experimental results

As already described in the introductory section, the met-
metronomes oscillate with different natural frequencies,
depending on the position of the adjustable weight on the
metronomes’ rod. For our experiments we have used the
standard frequencies marked on the metronome. These
frequencies are given in BPM units.

Before discussing the experimental results in detail,
we have to emphasize that, independently of the cho-
sen initial condition, only in-phase synchronization of the
metronomes was observed. The reasons for this will be
given in a separate section (Sect. 6).

In the very first experiments, we were studying how
the chosen frequency influences the detected synchroniza-
tion level. We fixed all the metronomes’ frequencies on the
same marked ω0 value and placed them symmetrically on
the perimeter of the rotating platform as indicated in Fig-
ure 3a. In reality, of course, this does not mean that their
frequencies were exactly the same since no two macro-
scopic physical systems can be exactly identical. We ini-
tialized the system by starting the metronomes randomly,
and let the system composed of the metronomes and plat-
form evolve freely.

For each considered frequency value we made 10 mea-
surements, collecting data for 10 min. The dynamics
of the computed Kuramoto order parameter averaged
across the 10 independent experiments are presented in
Figure 4a.

The results suggest that the obtained degree of syn-
chronization increases as the metronomes’ natural fre-
quencies increase. The standard deviations of the natural
frequencies of the independent oscillators are indicated in
Table 1.
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Fig. 4. Dynamics of the order parameter for different natu-
ral frequencies and numbers of metronomes. (a) Results for
seven metronomes, different curves corresponding to different
frequencies as indicated in the legends. (b) Results are for
the fixed frequency (ω0 = 192 BPM) and different numbers
of metronomes as indicated in the legend. On both graphs, the
results are averaged across 10 independent measurements.

Since there is no clear trend in this data as a function
of ω0, the obtained result suggests that the observed ef-
fect is not due to a decreasing trend in the metronomes’
standard deviation. We have also found that, for the stan-
dard metronome frequencies below 160 BPM, the system
did not synchronize. It is interesting to note, however,
that if one inspects visually or auditorily the system, one
would observe no synchronization for frequencies already
below 184 BPM. This means that we are not suited to
detect partial synchronization with an order parameter
below r = 0.75.

In a second experiment, we were investigating the
influence of the number of metronomes on the syn-
chronization level. In order to study this, we fixed the
metronomes at the same frequency (ω0 = 192 BPM) and
repeated the previous experiment with increasing numbers
of metronomes placed on the rotating platform.

Again, we performed 10 measurements for each con-
figuration so as to obtain accurate results and averaged
the observed order parameter. The averaged results are
presented in Figure 4b.

Although the standard deviation of the metronomes’
natural frequencies (Tab. 2) does not present a clear trend

Table 2. Standard deviation of the metronomes’ natural fre-
quencies for different numbers of metronomes on the rotating
platform (ω0 = 192 BPM).

N 2 3 4 5 6 7

σ (BPM × 10−7) 5.1 8.1 7.5 7.1 6.7 8.5

Fig. 5. Schematic view and notations for the considered me-
chanical model. The white dots denote the center of mass of
the physical pendulums and the gray dots are the suspension
axes.

as a function of the number of metronomes, N , we see a
clear trend in the detected synchronization level: increas-
ing the number of metronomes will result in a decrease in
the synchronization level.

4 Theoretical model

Inspired by the model described in reference [10], it is
possible to consider a simple mechanical model for the
system investigated here. The model is composed of a ro-
tating platform and physical pendulums attached to its
perimeter, as is sketched in Figure 5.

The Lagrange function of such a system is written as:

L =
J

2
φ̇2 +

N∑
i=1

Jiω
2
i

2
+

N∑
i=1

mi

2

{[
d

dt

(
xi + hi sin θi

)]2

+
[

d

dt
(hi cos θi)

]2}
−

N∑
i=1

mighi(1 − cos θi). (2)

The first term is the kinetic energy of the platform, the
second is the kinetic energy due to the rotation of the pen-
dulum around its center of mass, the third one is the ki-
netic energy of the pendulum’s center of mass, and the
last term is the potential energy of the pendulum. In the
Lagrangian we have used the following notations: the in-
dex i denotes the pendulums, J is the moment of inertia of
the platform with the metronomes on it – taken relative to
the vertical rotation axes, φ is the angular displacement
of the platform, mi is the total mass of the pendulum
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(mi ≈ W
(i)
1 + W

(i)
2 , neglecting the mass of the rod), hi is

the distance between the center of mass and the suspen-
sion point of the pendulum, xi is the horizontal displace-
ment of the suspension point of the pendulums due to the
rotation of the platform, θi is the displacement of the ith
pendulum’s center of mass, in radians, Ji is the moment
of inertia of the pendulum relative to its center of mass
and ωi is the angular velocity of the rotation of the pen-
dulum relative to its center of mass. It is easy to see that
xi = Rφ̇ and ωi = θ̇i. Assuming now that the mass of all
the weights suspended on the metronomes’ bobs are the
same (W (i)

1 = w1, W
(i)
2 = w2, and consequently mi = m),

and disregarding the mighi constant terms, one obtains:

L′ =
(

J + NmR2

2

)
φ̇2 +

∑
i

(
mh2

i

2
+

Ji

2

)
θ̇2

i

+ mRφ̇
∑

i

hi cos θi · θ̇i + mg
∑

i

hi cos θi. (3)

The Euler-Lagrange equations of motion yield:(
J + NmR2

)
φ̈ + mR

∑
i

hi

[
θ̈i cos θi−θ̇2

i sin θi

]
= 0, (4)

[
mh2

i + Ji

]
θ̈i + mRφ̈hi cos θi + mghi sin θi = 0. (5)

The above equations of motion are for a Hamiltonian sys-
tem where there is no damping (no friction) and no driving
(excitation). Friction and excitation from the metronomes’
driving mechanism has to be taken into account with some
extra terms. The system of equations of motion may be
written as:

(J + NmR2)φ̈ + mR
∑

i

hi

[
θ̈i cos θi − θ̇2

i sin θi

]

+ cφφ̇ +
∑

i

Mi = 0 (6)

[
mh2

i + Ji

]
θ̈i + mRφ̈hi cos θi

+ mghi sin θi + cθ θ̇i = Mi, (7)

where cφ and cθ are coefficients characterizing the friction
in the rotation of the platform and pendulums, and Mi

are some instantaneous excitation terms defined as:

Mi = Mδ(θi)θ̇i, (8)

where δ denotes the Dirac function and M is a fixed
parameter characterizing the driving mechanism of the
metronomes. The choice of the form for Mi in equation (8)
means that excitations are given only when the metrono-
me’s bob passes the θ = 0 position. The term θ̇ is needed
in order to ensure a constant momentum input, indepen-
dently of the metronomes’ amplitude. It also ensures that
the excitation is given in the correct direction (the direc-
tion of motion). It is easy to see that the total momentum
transferred, Mtrans, to the metronomes in a half period
(T/2) is always M :

Mtrans =
∫ t+T/2

t

Mδ(θi)θ̇idt =
∫ θmax

−θmax

Mδ(θi)dθi = M.

This driving will be implemented in the numerical solu-
tion as:

Mi =

⎧⎪⎨
⎪⎩

M/dt if θi(t − dt) < 0 and θi(t) > 0

−M/dt if θi(t − dt) > 0 and θi(t) < 0

0 in any other case

where dt is the time-step in the numerical integration of
the equations of motion. Clearly, this driving leads to the
same total momentum transfer M as the one defined by
equation (8).

The coupled system of equations (6) and (7) can be
written in a form more suitable for numerical integration:

φ̈ =
mR

∑
i hiθ̇

2
i sin θi − cφφ̇ −∑i Mi + A + B − C

D
,

(9)

θ̈i =
Mi − mRφ̈hi cos θi − mghi sin θi − cθ θ̇i

mh2
i + Ji

, (10)

where

A = m2gR
∑

i

h2
i sin θi cos θi

mh2
i + Ji

,

B = mRcθ

∑
i

hiθ̇i cos θi

mh2
i + Ji

,

C = mR
∑

i

hiMi cos θi

mh2
i + Ji

,

D =

(
J + NmR2 − m2R2

∑
i

h2
i cos2 θi

mh2
i + Ji

)
.

Now taking into account that the metronomes’ bobs have
the form sketched in Figure 2b and the L1 distances are
fixed and assumed to be identical for all the metronomes,
the hi and Ji terms of the physical pendulums in our
model will be calculated as:

hi =
1

w1 + w2

(
w1L1 − w2L

(i)
2

)
(11)

Ji = w1L
2
1 + w2

(
L

(i)
2

)2

. (12)

5 Realistic model parameters

The parameters were chosen following the experimental
device: w1 = 0.025 kg, w2 = 0.0069 kg, L1 = 0.0358 m,
L2 ∈ [0.019, 0.049] m depending on the chosen natural
frequency, R = 0.27 m and J ∈ [0.0729, 0.25515] kg m2

depending on the number of metronomes placed on the
platform.

The damping and excitation coefficients were esti-
mated as follows. For the estimation of cθ, a single
metronome on a rigid support was considered. Switching
off the excitation mechanism, a quasi-harmonic damped
oscillation of the metronome took place. The exponen-
tial decay of its amplitude as a function of time uniquely
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defines the damping coefficient, hence a simple fit of the
amplitude as a function of time allowed the determina-
tion of cθ. Switching the excitation mechanism on lead
to a steady-state oscillation regime with constant ampli-
tude. Since cθ has already been measured, this amplitude
value is defined by the excitation coefficient M . Solving
equations (6) and (7) for a single metronome and tuning
it until the same steady-state amplitude is obtained as
in experiments makes the estimation of M possible. Now
that both cθ and M are known, the following scenario is
considered: all the metronomes are placed on the plat-
form and synchronization is reached. Then the platform
has a constant-amplitude oscillatory motion. In order to
determine cφ, its value is tuned while solving equations (6)
and (7) until the same amplitude of the disk’s oscillations
is obtained as in the experiments. This way, all the pa-
rameters in the model can be related to the experimental
quantities. Using the method defined above, we estimated
the following parameter values: cθ = 0.00005 kg m2/s,
cφ = 0.00001 kg m2/s and M = 0.0006 Nm/s.

6 In-phase synchronization versus anti-phase
synchronization of two metronomes

As described in the introductory section, many previous
works have reported a stable anti-synchronized state in
the case of two coupled oscillators [5,8,9]. Due to the fact
that no such stable phase was observed in our experiments
(independently of the starting conditions), we feel that in-
vestigating this issue is important. Starting from our the-
oretical model described in Section 4, we will show that
the in-phase synchronization is favored whenever there are
large enough equilibrated damping and driving forces act-
ing on the metronomes.

First, let us investigate the case without any damping
and with no driving forces. The equations of motion for
such a system are given by equations (4) and (5). Con-
sidering the case of two identical metronomes (N = 2)
with small-angle deviations (θmax

1,2 � π/2), we investigate
the synchronization properties of such a system. The syn-
chronization level will be studied here by an appropriately
chosen order parameter for two metronomes, z, that indi-
cates whether we have in-phase or anti-phase synchroniza-
tion. Although we could have used the Kuramoto order pa-
rameter for this purpose, we decided to introduce a new,
more suitable order parameter. Note that this new order
parameter is only useful for small ensembles, because its
calculation would be very time consuming for large sys-
tems. In order to introduce a proper order parameter, let
us consider the dynamics of two metronomes as a func-
tion of time by plotting θ1,2(t) (Fig. 6). Let us denote the
time-moments where metronome i reaches a local mini-
mum and maximum θ1 values by tmin

i and tmax
i , respec-

tively. We denote the time-moments where metronome 2
has local maximum θ2 values by T max

j . With these nota-
tions, we define two time-like quantities that characterize
the average time-interval of the maximum position of θ2(t)
relative to the maximum and minimum positions of θ1(t),

t

θ

θ1
θ2

t
i

max
t
i

min T
j

max
t
i+1

max
t
i+1

min T
j+1

max
t
i+2

max

Fig. 6. Dynamics of two metronomes as a function of time,
and the quantities used for defining the z order parameter.

respectively:

t1 =
〈

min
{i}
{∣∣tmax

i − T max
j

∣∣}〉
j

, (13)

t2 =
〈

min
{i}
{∣∣tmin

i − T max
j

∣∣}〉
j

. (14)

In the above equations the averages are considered over
all j maximum positions of θ2(t), and the “min” notation
refers to the minimal value of the quantity in the brackets.
Now, the z order parameter is defined as:

z =
t2 − t1
t2 + t1

. (15)

It is easy to see that z is bounded between −1 and 1. For
totally in-phase synchronized dynamics we have t1 = 0,
leading to z = 1. For totally anti-phase synchronized dy-
namics t2 = 0, and we get z = −1. Negative z values sug-
gest a dynamic where the anti-phase synchronized states
are dominant, positive z values suggest a dynamic with
more pronounced in-phase synchronized states.

The z order parameter was estimated numerically for
different initial conditions. A velocity Verlet-type algo-
rithm was used, and simulations were performed up to
a t = 4000 s time interval, with a dt = 0.01 s time-step.

Initially the deviation angle of the first metronome was
chosen as θ1(0) = θmax = 0.1 rad and θ2(0) was chosen
in the interval [−0.1, 0.1] rad, leading to various initial
phase-differences between them. The computed z values
as a function of θ2(0) are plotted in Figure 7.

The above results suggest that for the friction-free
and undriven case (Fig. 7), synchronization and phase-
locking of coupled identical metronomes are possible only
if they start either in completely in-phase or completely
anti-phase configurations. Depending on how the phases
are initialized, the ticking dynamics statistically resem-
ble either the in-phase or the anti-phase states, but no
phase-locking or synchronization is observable. Starting
from an arbitrary initial condition a complete in-phase or
anti-phase synchronization is possible only if there is dissi-
pation and driving. For small dissipation and driving val-
ues both the in-phase and anti-phase synchronization are
possible, as the results obtained for M = 6 × 10−5 Nm/s
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Fig. 7. The z order parameter as function of the initial phase
θ2(0). The results obtained without damping (cθ = 0, cφ = 0)
and driving (M = 0) indicate that phase-locking and complete
synchronization is possible only if the system starts from such
a situation. For small damping and driving values (M = 6 ×
10−5 Nm/s), both in-phase and anti-phase synchronization is
possible. For large driving intensities (M = 6 × 10−4 Nm/s),
only the in-phase synchronization is stable. The later is the
realistic parameter for the experimental metronome setup.

suggest. In this limit in-phase synchronization will emerge
if the initial phases are closer to such a situation. Alterna-
tively, if the initial conditions resemble the anti-phase con-
figuration, a stable anti-phase synchronization emerges.
For higher dissipation and driving values (characteristic
for our experimental setup, M = 6× 10−4 Nm/s) this ap-
parently symmetric picture breaks down, and the in-phase
synchronization is the one that is stable. Anti-phase syn-
chronization is unlikely to be observed; it will appear only
in the case when the two metronomes are started exactly
in anti-phases (θ2(0) = −θ1(0)).

In view of these results, one can understand why only
the stable in-phase synchronized dynamics was observed
in our experiments. The results also emphasize the im-
portance of using realistic model parameters in order to
reproduce the observed dynamics.

7 Simulation results for several metronomes

Using the model defined in Section 4, our aim here is
to theoretically understand the experimentally obtained
trends. The equations of motion (9) and (10) were numer-
ically integrated using a velocity Verlet-type algorithm as
the integration method. A time-step of dt = 0.01 s was
chosen. First, we intended to explain the experimental re-
sults presented in Figure 4. Seven metronomes with the
same ωi natural frequencies as the experimentally mea-
sured ones were considered, and the time-evolution of the
Kuramoto order parameter was computed. Results ob-
tained for different ω0 frequency values are presented in
the top panel of Figure 8. For the sake of better statistics
we averaged the results of 100 simulations.

The obtained results are in good agreement with the
experimental results presented in Figure 4.

Following our experiments, we have also studied
the time-evolution of the order parameter for different
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Fig. 8. Simulation results for the time-evolution of the
Kuramoto order-parameter. (a) Results for the same natural
frequencies as the ones used in the experiments. (b) Results for
the same number of pendulums, and nominal beat frequency
(ω0 = 192 BPM) as the ones used in the experiments. For both
graphs, the presented results are an average over 100 indepen-
dent simulations. The corresponding experimental results are
presented in Figure 4.

numbers of pendulums, setting the same ω0 = 192 BPM
natural frequency as in the experiments. Again, we aver-
aged the results for 100 independent simulations. The ob-
tained trend is sketched on the bottom panel of Figure 8.

The trend of the simulation results is in agreement
with the experimental ones: increasing the number of
metronomes results in a decrease in the observed synchro-
nization level. In simulations, however, this decrease is not
as evident as in the experiments. The reason for this could
be the oversimplified manner in which we have handled
the differences between the metronomes. In our model,
the only difference between the metronomes are in the
L

(i)
2 values (the distance of the movable weight from the

horizontal suspension axes, see Fig. 2). In our simulations,
the non-zero spread of these values is the sole source of the
σ standard deviation for the frequencies ωi. However, in
reality many other parameters of the metronomes are dif-
ferent, leading to more different model parameters in their
equations of motion. As a result of this, a more pronounced
variation in the synchronization level is expectable.

In spite of the above discussed discrepancy, the simu-
lation results suggest that our model with realistic model
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Fig. 9. Comparison between the simulated and experimentally
obtained equilibrium synchronization level. Circles represent
the results obtained for the ω0 frequencies shown in Table 1.
The straight dashed line indicates the optimal rsim = rexp

limit.

parameters works well for describing the dynamics of the
coupled metronome system. In order to illustrate the ef-
fectiveness of our approach more quantitatively, we have
plotted the simulated equilibrium synchronization level,
rsim, as a function of the experimentally determined value,
rexp, for the case of N = 7 metronomes. The plot from
Figure 9 suggest that there is a satisfactory correlation.

Thus, one can investigate several interesting cases
through simulations that are not feasible experimentally.
Many interesting questions can be formulated this way.
Here, we focus however only on clarifying the problems
that we have investigated experimentally, namely the in-
fluence of the number of oscillators and the chosen natural
frequency on the observed synchronization level.

Computer simulations will allow us to consider a higher
number of metronomes and will also allow for a continu-
ous variation of the metronomes’ natural frequencies. Par-
ticularly, we are interested in clarifying whether, in the
thermodynamic limit (N → ∞), there is a clear ω0 = ωc

frequency threshold below which there is no synchroniza-
tion in a system with fixed standard deviation (σ) of the
metronomes’ frequencies. Also, we would like to show that
the reason for not obtaining a complete synchronization
(r = 1) of the metronomes is the finite value of σ.

Considering a normal distribution of metronomes’ nat-
ural frequency ωi with a fixed standard deviation around
the mean value of the standard deviations presented in
Table 1 (σ = 8 × 10−7 BPM), we first studied how
the Kuramoto order parameter, r, varies as a function
of ω0. Results obtained for a wide range of the number of
metronomes, N , are plotted in the top panel of Figure 10.

The results plotted in Figure 10 suggest that, in the
N → ∞ limit, a clear phase-transition like phenomenom
emerges. Around the value of ωc = 185 BPM the order pa-
rameter exhibits a sharp variation, which becomes sharper
and sharper as the number of metronomes is increased.
This is a clear sign of phase-transition like behavior.

Plotting the standard deviation of the order parame-
ter values obtained from different experiments, we get a
characteristic peak around the ωc = 185 BPM value. As
is expected for a phase-transition-like phenomenon this
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Fig. 10. Simulation results for the Kuramoto order parameter
(a) and its standard deviation, σr, for the 100 computational
experiments (b) as a function of the ω0 frequency. Different
curves are for different numbers of metronomes as indicated
in the legends. In each case, the standard deviation of the
metronomes’ natural frequency ωi is fixed as close as possi-
ble to σ = 8 × 10−7 BPM.

peak narrows as the number of metronomes on the disk
increases.

Our next aim is to prove that the reason for not
reaching the r = 1 complete synchronization is the finite
standard deviation of the metronomes’ natural frequen-
cies. Simulations with up to 64 identical metronomes with
ω0 = 192 BPM were considered, and the r(t) dynamics of
the Kuramoto order parameter was investigated. Results
for different numbers of metronomes are plotted in Fig-
ure 11. From these graphs one can readily observe that
in each case the completely synchronized state emerged.
This proves that the lack of complete synchronization is
due to the finite spread in the metronomes’ natural fre-
quencies. From this simulation we have also learned that
variations of the equilibrium order parameter value as a
function of N is also due to the finite σ value.

8 Conclusions

The dynamics of a system composed of coupled metro-
nomes was investigated both by simple experiments
and computer simulations. We were interested in find-
ing the conditions for the emergence of synchronization.
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Fig. 11. Simulation results for identical metronomes. The
time evolution of the order parameter for various numbers of
metronomes, ranging from 2 to 64, is plotted (ω0 = 192 BPM).

Contrarily to many previous studies, here the problem was
analyzed not from the viewpoint of dynamical systems,
but from the viewpoint of collective behavior and emerg-
ing synchronization.

The experiments suggest that there is a limiting natu-
ral frequency of the metronomes below which spontaneous
synchronization is not possible. By increasing the fre-
quency above this limit, partial synchronization will emer-
ge. The obtained synchronization level increases monoton-
ically as the natural frequency of the oscillators increases.
The experiments also suggest that increasing the number
of metronomes in the system leads to a decrease of the
observed synchronization level.

In order to better understand the dynamics of the sys-
tem a realistic model was built. We have shown that damp-
ing due to friction forces and the presence of driving are
both important in order to understand the emerging syn-
chronization. The parameters of the model were fixed in
agreement with the experimental conditions and the equa-
tions of motion were integrated numerically. The model
proved to be successful in describing the experimental re-
sults, and reproduced the experimentally observed trends.
The model allowed a fine verification of our findings re-
garding the conditions under which spontaneous synchro-
nization emerges and the trends in the observed synchro-
nization level. Computer simulations suggested that, for
an ensemble of metronomes with a fixed standard devi-
ation of their natural frequencies, the order parameter
increases as a function of the metronomes’ average fre-
quency, ω0. The model also suggests that this increase
happens sharply for large ensembles, closely resembling a
phase-transition like phenomenon. With the help of the
simulations we have also shown that the reason behind an
incomplete synchronization (r = 1) is the finite spread of
the metronomes’ natural frequencies (σ �= 0).

The successes of the discussed model opens the way
for many further studies regarding the dynamics of this
simple system. Indeed, many other interesting questions
can be formulated regarding the influence of the met-
ronome and rotating platform parameters on the obtained

synchronization level and the observed trends. Also, one
can study systems where the metronomes or groups of
metronomes are fixed to different natural frequencies, or
where there is an external driving force acting on the
system. The discussed model has the advantage that the
equations of motion are easily integrable and the model
parameters are realistic, with a direct connection to the
parameters of an experimentally realizable system.

Finally, we hope that the novel experimental setup and
the results presented here will help in clarifying some as-
pects for one of the oldest problems in physics, namely the
spontaneous synchronization of coupled pendulum clocks.
Although several similar problems have been considered in
previous studies, we have shown that there are still many
fascinating aspects that one can investigate in this simple
mechanical system.
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