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An array of pulse-emitting oscillators capable of emerging collective behavior is investigated by
computer simulations and through a simple experimental setup. The oscillators emit pulse-like
signals and detect the signal emitted by the others. They have stochastically fluctuating periods
and can operate in two different modes, one with a short output pulse and one with a longer
one. The switching between modes is governed by a simple optimization rule: whenever the total
output in the system is lower than a desired f∗ threshold level they emit long pulses and when
the output is higher than f∗ they emit short-length pulses. This simple dynamical rule optimizes
the average output level in the system around the f∗ value and acts as a coupling between the
units. As a side-effect of this simple dynamics complex collective behavior appears. In spite of
the fact that there is no direct phase-minimizing interaction between the units, for a certain
f∗ interval the pulses of the oscillators synchronize. Synchronization appears and disappears
abruptly as a function of the f∗ threshold parameter, suggesting a dynamic phase-transition.
In the synchronized phase the collective output of the system has a better periodicity than the
oscillators individually. A simple experimental setup with flashing multimode oscillators is built.
For a given range of the threshold parameter the experimental setup reproduces the theoretically
predicted synchronization.
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1. Introduction

Physics has dealt with collective behavior much ear-
lier than when the expression collective behavior
first began to appear. Systems with a big number
of interacting components that can together pro-
duce emerging effects on a larger scale are familiar
to physicists. Synchronization [Strogatz, 2003] is the

most well-known form of collective behavior in sci-
ence, and maybe it was first studied by the physics
community. If the legend is true, the Dutch physi-
cist Christian Huygens was the first to study sci-
entifically this phenomenon following the dynamics
of two pendulum clocks hanging on the same
wall. The observation made by Huygens launched
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research into coupled oscillator systems. From the
viewpoint of collective behavior science is interested
in the emerging synchronization of a large number
of coupled oscillators. In a broad sense any system
exhibiting a quasi-periodic dynamics can be consid-
ered an oscillator. Such systems are very frequent
in nature, and the most interesting ones are in liv-
ing organisms. Pacemaker cells in the heart or neu-
rons which control rhythmic activities are capable of
synchronization. Synchronization of chirping crick-
ets, flashing fireflies in south-east Asia, menstrual
cycles in women or clapping of spectators are also
well-known examples [Pikovsky et al., 2002]. Syn-
chronization in such systems have a more complex
mechanism than synchronization of simple physi-
cal pendulums. Biological and sociological systems
usually do have a tendency to optimize their evo-
lution, and probably synchronization is not their
primary aim, it is just a byproduct of some com-
plex optimization procedure. Models that aim to
describe realistically such systems should take this
difference into consideration and should consider a
more complex approach than those offered by inter-
acting mechanical oscillators. The present paper
intends to contribute in such sense by studying the-
oretically and experimentally the collective behav-
ior of a system of flashing oscillators governed by a
simple optimization dynamics. More specifically, we
will revisit the simple physical system described in
our recent works [Nikitin et al., 2001; Néda et al.,
2003; Sumi et al., 2009] and extend it by considering
a novel dynamics and an experimental realization
for this.

Despite the fact that Huygens discovered the
synchronization in the 17th century, mathematical
models appeared just after 1960, and were elabo-
rated by biologists. The models progressed rapidly
due to the quick evolution of the computers, and
by studying methods borrowed from physics and
mathematics (for a review please consult [Strogatz,
2000]). Most of these models fall into two broad
categories: those describing phase-coupled oscilla-
tors, and those which use pulse-coupling between
the units.

The classical phase-coupled model of synchro-
nization was first introduced by Winfree [1967] and
solved analytically by Kuramoto and Nishikawa
[1987]. These type of models are known as
Kuramoto type models. In the simplest version of
the model, each oscillator has an associated phase
between 0 and 2π. The oscillators evolve according

to a set of coupled first order differential equations,
with a coupling that minimizes the phase difference
between them. The form of the coupling was cho-
sen by Kuramoto and Nishikawa in a manner that
allows for an analytic solution. In the thermody-
namic limit, this model shows a second-order phase
transition as a function of the coupling strength.
There is a critical coupling and below this the
system does not synchronize. Above the critical cou-
pling value the system exhibits partial synchroniza-
tion, and the synchronization level increases in a
monotonic manner with the coupling strength. The
critical coupling depends on the variance of the
oscillators’ frequencies. An ensemble of oscillators
with widely different frequencies will have a large
critical coupling value, whereas a system composed
by oscillators with similar frequencies will have a
low critical coupling.

Pulse-coupled oscillators are mainly used in
integrate-and-fire type models [Burkitt, 2006].
These models are probably the simplest ones able
to approximate the collective behavior of a neuron
ensemble [FitzHugh, 1955]. Each oscillator has a
phase and a state variable, linked by a monotonic
function. The dynamics of an isolated oscillator is
simple: the phase increases monotonically until it
reaches a given value. At this point the oscillator
emits a pulse (it fires) and resets its state and phase-
variable. In an ensemble of interacting oscillators
when one oscillator fires, the state variable of all
those other oscillators that can detect the emitted
pulse increases instantly by a fixed value. Accord-
ingly, the phase of these oscillators increases too.
Under the right conditions, a single pulse can trig-
ger an avalanche of pulses in the system causing
a high proportion of the units to fire at the same
time. Synchronization in such systems can appear
under very broad conditions. Detailed studies con-
cerning synchronization in such systems were done
in [Mirollo & Strogatz, 1990; Bottani, 1996].

Synchronization of firing oscillators acquired
new perspectives and interest with the pioneering
work of Wolf Singer [Singer, 2001], after his hypoth-
esis of the mammalian brain that generates contin-
uously highly dynamic states which are modulated
by input signals. Due to this modulation the sys-
tem of neurons rapidly converge towards points of
transient stability that correspond to the respective
input constellation.

In the present work we consider a different
type of synchronization mechanism: one in which
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the interaction between the oscillating units is not
chosen explicitly to induce synchronization. Instead
of being the result of an evident phase-difference
minimizing force, synchronization arises as a side
effect of a simple optimization rule. Such models
are described in our earlier works [Nikitin et al.,
2001; Néda et al., 2003; Sumi et al., 2009]. The
present work aims to extend the conditions under
which synchronization can be obtained by following
a simple optimization dynamics. Such systems are
interesting in the view of the hypothesis formulated
by Singer.

2. The Model

The synchronization model under investigation con-
sists of an assembly of N oscillators able to emit and
detect pulses. At each time-moment the oscillators
can either be active by outputting a signal (pulse)
of strength 1/N , or inactive, outputting no signal
at all. The total output intensity of the assembly
will vary thus between 0 and 1. The easiest is to
picture these oscillators as flashing units (this is
in fact how the experimental setup works), so the
active oscillators will be referred to as lit, while the
inactive ones will be called unlit. Correspondingly,
the total output level of the system can be thought
of as the total light intensity. The units are stochas-
tic oscillators, which means that their period fluc-
tuates in time. They are also multimode elements
which means that as a function of the global signal
in the system they can operate in different modes.
In previous studies, the possible modes were distin-
guished by the time-length of the inactive states. In
contrast to this, here we investigate systems where
the modes are distinguished by the time-length of
the active (light emitting) state.

Each oscillator cycles between three states,
which will be denoted here by A, B and C [see
Fig. 1(a)] [Nikitin et al., 2001; Néda et al., 2003;
Sumi et al., 2009]. We discuss in detail now the
model, following the A, B and C states of the
cycle. State A is the stochastic part of the oscil-
lators period. Its length, τA, is a random variable
following an exponential distribution:

ρ(τA) =
1
τ∗ e−(τA/τ∗). (1)

The average duration of state A is 〈τA〉 = τ∗.
This distribution is the one that describes the
escape times of a stochastically driven particle from
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Fig. 1. (a) Sketch of the oscillator dynamics. Each oscillator
cycles between three states, A, B and C. As a function of the
f/f∗ value two modes are possible. (b) Output of oscillator
i as a function of time. The duration of phase C can be long
or short (τC1 or τC2).

a potential valley, and it is believed to be rel-
evant for neuronal systems as well. In fact, one
can choose any normalized distribution for the τA

values, without influencing the main results of the
present work.

State B is the waiting or “charging time” and
has a fixed length τB . This state ensures that the
oscillator stays unlit for at least a time-length τB. In
the previous studies, the oscillation modes were dis-
tinguished by the length of this state. This means,
that several discrete time-lengths were allowed for
τB. In the simplest version of the model τB could
take two possible values: τB1 and τB2 = 2τB1. In
the model considered here the time-length of state
B is the same for all possible modes.

State C is the lit state of the units, and
in the present model can have different durations.
The duration of state C will distinguish between
the modes. We consider two possible values for the
duration of state C, a longer one, τC1, and a shorter
one, τC2. These correspond to oscillating modes 1
and 2, respectively (see Fig. 1).

The units follow an output intensity optimiza-
tion dynamics, similar to the one used in the previ-
ous studies [Nikitin et al., 2001; Néda et al., 2003;
Sumi et al., 2009]. When entering state C, the oscil-
lators decide how long to stay in that state based on
the total output of the system. If the total output f
is less than a prescribed value f∗, the oscillator will
choose mode 1. If f > f∗, it will operate in mode 2.

By choosing mode 1 when f < f∗ and choos-
ing mode 2 when f > f∗, the units try to keep the
output close to f∗. In such manner the dynamics
optimizes the value of the total output by changing
the length of the lit period. The system is glob-
ally coupled, since each unit detects the output of
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all the other units. In the earlier models [Nikitin
et al., 2001; Néda et al., 2003; Sumi et al., 2009],
instead of phase C, it was the length of phase B
that was different between the two modes. Note that
unlike in the earlier versions, in the present model
the length of a full oscillation period is lengthened
rather than shortened by a low total output. As a
side effect of this optimization, for certain values
of the model parameters the oscillators will flash
synchronously, and the total output of the system
becomes approximately periodic in time. This is the
collective behavior we are interested in.

3. The Periodicity Level of the
Output

To back up the claim that the units are capable
of flashing in unison, we need an objective way to
detect and measure synchronization in the system.
Several order parameters are appropriate for this,
however most of them needs the knowledge of the
states for all the individual units. Here a simple
order parameter will be used, that can be deter-
mined solely from the knowledge of the total out-
put intensity as a function of time: f(t). This order
parameter characterizes the periodicity level of the
global signal, and it is suitable for those experimen-
tal studies where one has knowledge only about the
total output intensity in the system.

For calculating the order parameter, first a
∆(T ) function is defined. This carries information
about how appropriate a periodic function with
period T is to characterize the global signal f(t)
([Nikitin et al., 2001; Néda et al., 2003]):

∆(T ) =
1

2M
lim

x→∞
1
x

∫ x

0
|f(t) − f(T )|dt (2)

where

M = lim
x→∞

1
x

∫ x

0
|f(t) − 〈f(t)〉|dt and

〈f(t)〉 = lim
x→∞

1
x

∫ x

0
f(t)dt

(3)

The general shape of this function is sketched
in Fig. 2. The more periodic the output signal is
(assuming a period T ), the smaller the value of
∆(T ) will be. Thus the period of the approximately
periodic function f(t) can be considered to be Tm,
where ∆m = ∆(Tm) is the deepest minimum of
∆(T ) (excluding the obvious minimum at T = 0).
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Fig. 2. Shape of the ∆(T ) function for parameters f∗ = 0.2,
τ∗ = 0.05 and N = 2000.

It is easy to see that for a perfectly periodic function
of period T1, ∆m(T1) = 0.

We define now the periodicity level of the out-
put as p = 1/∆m. The quantity p/p1, was chosen
as the order parameter characterizing the synchro-
nization level of the assembly of oscillators. Here,
p1 is the periodicity level of a single unit oscillating
in the long mode (C1), hence p/p1 is the increase
in the periodicity level of the output due to the
coupling between the oscillators.

4. Simulation Results

First the model is studied by computer simula-
tions. Following our earlier studies we were pri-
marily interested about the influence of the main
parameters τ∗ and f∗ on the synchronization level.
The other parameters of the model were fixed at the
following values: τB = 0.8, τC1 = 0.4 and τC2 = 0.2
units. Considering other choices for these values
leads to qualitatively similar results.

Similarly to earlier models and studies, where
the modes differed in the value of τB , the present
system partially synchronizes for an island-like
region in the τ∗–f∗ parameter space (Fig. 3). For a
given τ∗ value, synchronization starts at a f∗

min > 0
value and disappears over an f∗

max value. As the
value of τ∗ increases the f∗ interval in which syn-
chronization is present gets shorter and the f∗

min
values get also smaller.

It was found that in the region where syn-
chronization is present, the synchronization level
quantified by p/p1 increases monotonically with the
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Fig. 3. Synchronization level as a function of τ∗ and f∗.
Lighter shades of grey indicate a higher p/p1 value. Synchro-
nization occurs only in a certain region of the f∗-τ∗ space.

number of units in the system (see Fig. 4). More-
over, the p/p1 > 1 values suggest that the ensemble
as a whole generates a signal with better periodicity
than the isolated units by their self. These results
are in agreement with the findings in the earlier
models, where the value of τB distinguished the two
modes.

For a fixed τ∗ value, synchronization appears
and disappears abruptly as f∗ is varied [see
Fig. 5(a)]. It is also observable that the transition
gets sharper as the number of units, N , is increased,
suggesting dynamic phase-transitions in the system.
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Fig. 4. Synchronization level as a function of the number
of oscillators (τ∗ = 0.05 and f∗ = 0.3). Small black dots
connected by thin dashed line indicates the rough simulation
results and the red line indicates an average realized on a
moving window of length ∆N = 50.
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Fig. 5. Synchronization level as a function of f∗. (a) Results
for the case of global coupling (τ∗ was fixed at 0.05, and the
number of units, N , is indicated in the legend). (b) Compar-
ison of results for different types of coupling: global, coupling
with neighbors in 1D and 2D geometry for a system composed
of N = 2500 oscillators.

This nonequilibrium phase transition seems quite
different from the ones discussed in the literature
[Henkel et al., 2008]. The system has no absorbing
states, and synchronization is achieved by persistent
shift between the modes without a phase-locking
mechanism. The phase-transition in this system is
thus a special one, and one cannot simply catego-
rize it in the presently established classes. It is worth
mentioning that synchronization appears also in the
case of local coupling, when the oscillator detects
only the pulses emitted by its neighbors.

Considering a lattice topology and interaction
with enough neighbors, the synchronization sce-
nario as a function of f∗ is similar. In Fig. 5(b),
we show results in this sense considering N = 2500
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Fig. 6. Distribution of the oscillation modes for various val-
ues of f∗. Results obtained for τ∗ = 0.05 and N = 2000.

oscillators placed on a one-dimensional (1D) lat-
tice or on a two-dimensional (2D) square-lattice. We
have observed that when considering only interac-
tions with a few neighbors (in 1D 2–4 and in 2D
4–8), synchronization is not detectable.

Similarly with the model discussed in [Nikitin
et al., 2001; Néda et al., 2003; Sumi et al., 2009]
synchronization appears when both modes are
active. This means that the units continuously shift
between the modes in order to optimize the average
output level around the desired f∗ value. In order to
prove this, the distribution of the followed oscilla-
tion modes is plotted in Fig. 6 for a few values of f∗.
As expected, for those values of f∗ where synchro-
nization occurs, both modes are present. For low or

high f∗ values solely one mode occurs. There are
only random shifts in the length of oscillation peri-
ods and thus synchronization cannot appear.

5. Experimental Realization

We consider now an experimental realization of the
discussed two-mode oscillator ensemble. Electronic
oscillators capable of light emission and detection
were built. Due to their flashing behavior we called
these units “electronic fireflies”. These electronic
fireflies are integrated circuits having a simple cir-
cuit diagram (Fig. 7).

The heart of the oscillators is an 8 bit RISC-
core (Reduced Instruction Set Computer) micro-
controller from Atmel. Figure 8 presents a picture
of one unit, where one can easily identify the main
parts of the electronic firefly: the micro-controller,
the photo-resistor, and the Light Emitting Diode
(LED). To ensure a natural behavior, as time ref-
erence the internal RC oscillator of the micro-
controller was chosen. The photo-resistor measures
the light intensity in the system, and it is in
conjunction with three normal resistors of 10 KΩ,
100 KΩ, and 1MΩ, which enables several sensitiv-
ity ranges. Setting up a low pass filter on the photo-
resistor signal by choosing one of the two 10 nF or
100 nF capacitors on the INT0 and INT1 pins is also
possible.

The reference signal U (which corresponds to
the value of f∗ in the model) applied to the oscil-
lators and the voltage on the photo-resistor can

Fig. 7. Circuit diagram of the flashing multimode oscillators.
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Fig. 8. Picture of the flashing oscillators (electronic fireflies) and sketch of the main electronic parts.

either be measured by a 10-bit resolution analog-
digital converter or compared by a built-in hard-
ware comparator. The output of the oscillator will
be given by the LED. A hardware pulse width mod-
ulation can be used to alter this light intensity.
The main advantage of this system is the software-
oriented flexibility. Once the τB , τC1 and τC2

parameters are fixed we burn the program in the
micro-controller’s Programmable Erasable Read-
Only Memory (EPROM). Due to the fact, that we
use real electronic components, there is an intrin-
sically built in stochasticity in the system, so we
do not need an extra stochastic state. This small
stochasticity is equivalent with nonzero, but still
very small τ∗ value. The program stored in the
EPROM governs the dynamic of the units. The elec-
tronic fireflies are placed on a circuit board con-
nected to a PC, which drives the input and output

Fig. 9. Circuit board with the electronic fireflies and the
computer interface.

of the relevant information like in which state the
oscillators are and what are the values of f∗. In
Fig. 9 we present this circuit board and its PC
interface.

In order to assure, that the system is globally
coupled and is not influenced from the outside light,
we isolate the system in a box covered with tinfoil,
which reflects, and scatters the light emitted by the
electronic fireflies, so the coupling in the system is
global with a fair approximation. A program run-
ning on the PC helps to gather information about
the state of the units, saving all the relevant infor-
mation in a file. This program allows also to change
the value of the reference voltage U (which corre-
sponds to the value of f∗) and to control the length
of the measurement times.

6. Experimental Results

Experiments were carried out using a relatively
small system of 4 × 4 flashing two-mode oscilla-
tors. The oscillators were programmed with the
τB = 768 ms, τC1 = 384 ms and τC2 = 192 ms val-
ues. These values are chosen proportionally with the
ones used in computer simulations. The U thresh-
old parameter, which corresponds to f∗, was var-
ied between 0 and 5000 mV, with a step of 10 mV.
For each U value data collection for 10 minutes
were done. Recordings for the first two minutes
were neglected since it was considered as a tran-
sient period. The p order parameter was computed
in the remaining 8 minutes. Results are plotted in
Fig. 10.

The experimental parameters were chosen
proportionally with those ones in computer
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Fig. 10. Experimental results for a system of 4 × 4 oscilla-
tors. The periodicity level p is plotted as a function of the
U threshold value. The system parameters are: τB = 768 ms,
τC1 = 384 ms and τC2 = 192 ms.

simulations. One can immediately observe that
experiments yield similar results with computer
simulations of the model. Synchronization, as char-
acterized by the p periodicity level, appears for a
finite interval of the U threshold value, similarly
with the behavior depicted in Fig. 5. Unfortunately
due to the small number of available flashing oscil-
lators and the small number of available places on
the common circuit board we could not study larger
systems. For much smaller systems however (4–9
units), synchronization did not appear, so in such
conditions finite-size effects were not possible to
investigate experimentally.

7. Conclusions

An ensemble of simple oscillators capable of com-
plex emerging behavior was studied by computer
simulations and by a simple experimental setup.
The considered oscillators are multimode stochas-
tic elements, resembling those considered in ear-
lier studies [Nikitin et al., 2001; Néda et al., 2003;
Sumi et al., 2009]. In each period the oscillators
emit a pulse with a finite duration and detect the
pulses emitted by the others. The modes are dis-
tinguished by the length of the emitted pulses. The
system is different from that already studied in the
literature, where the modes are distinguished by
the length of the waiting-time between two con-
secutive pulses. The dynamics of the units is gov-
erned by the same output-intensity optimization
dynamics as the one considered in [Nikitin et al.,

2001; Néda et al., 2003; Sumi et al., 2009]: when-
ever the total output detected by one oscillator is
lower than an f∗ threshold value, the oscillator fol-
lows a mode with a longer pulse, and when the
detected total output is higher than the f∗ value it
follows a mode with a shorter pulse-length. The aim
of the present research was to investigate whether
the output-intensity optimization realized by the
varying pulse-length will be able to reproduce the
previously observed nontrivial synchronization and
periodicity enhancement. The main conclusion is
that similarly with the results obtained in [Nikitin
et al., 2001; Néda et al., 2003; Sumi et al., 2009] par-
tial synchronization appears for a given f∗ thresh-
old interval. Increasing the number of oscillators in
the system will increase the periodicity level of the
global output. Surprisingly, the periodicity level of
the global signal can be higher than the periodic-
ity of one isolated unit, thus starting from nonper-
fect oscillators the collective dynamics produce an
oscillator with stable period. This is a clear fault-
tolerant behavior, which allows to engineer oscilla-
tors with very stable periods using imperfect units.
The periodicity of the system is also stable against
faults in the individual oscillators. We believe that
biological systems might use similar mechanism for
achieving a stable circadian rhythm. Following the
novel ideas formulated by Singer [2001], such sys-
tems could be also useful for detection purposes,
since the collective behavior is rather sensible for
the threshold value. Further studies can consider
thus the onset of collective behavior depending on
spatial and/or temporal patterns.
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