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Formation of triangular-shaped Pt adatom islands on a Pt(111)

surface is investigated using a kinetic Monte Carlo approach.

The energy barriers are calculated with the generalized

embedded atom method and the nudged elastic band approach.

The numerical results reveal that the preferential orientation of

the triangles cannot be explained solely by the differences in the
diffusion coefficients of the atoms along the topologically

non-equivalent edges of the islands. For a self-consistent

explanation of the triangle orientations, one has to examine the

topological and energetic details of the diffusion paths for all

the edge diffusion processes, kink-formation or kink-breaking

events, and corner to edge jumps.
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
1 Introduction In the last two decades, several
experimental and theoretical studies were carried out in
order to understand the morphology of two-dimensional
(2D) islands formed by atoms deposited on crystalline
surfaces [1–11]. Besides the obvious interest from the view
of basic solid-state physics, such island morphologies might
also be important for engineering various nanostructures
with practical interest: nanodots, photonic crystals, or
patterned surfaces [12]. In the present work we will study
the topological and energetic details for the formation of
compact islands on the (111) surface of face centered cubic
(FCC) metals. On such surfaces the islands are bounded by
two types of topologically non-equivalent steps (edges).
These are the (100) microfacet (type A) and the (111)
microfacet (type B), as can be seen in Fig. 1.

During epitaxial deposition of Pt on the Pt(111) surface
in a quite broad temperature and deposition flux range,
triangular-shaped 2D adatom islands are formed. As a
function of the type of the triangle edges, these islands can be
ofA- orB-type (see Fig. 2). Usually at a parameter set just one
type of triangular islands can be observed.

Michely et al. [1] reported an interesting inversion of the
triangle orientation as the temperature of the sample was
changed. The experiments were performed in a special
scanning tunneling microscope (STM) apparatus where the
temperature could be controlled in a quite broad interval. At
low temperatures the nucleated atoms formed islands of
fractal or dendritic shape and at higher temperatures the
islands became compact. It has been found that by increasing
the substrate temperature the compact island can select
triangular (bounded by A steps), hexagonal (bounded by A
and B steps), inverted triangular (bounded by B steps),
and again hexagonal shape. Based on earlier studies for
the temperature dependence of the diffusion coefficient on
the A-type and B-type channels [13], the triangular shape of
the islands was attributed to the difference in the diffusion
speeds of the adatoms along the A- and B-type steps. It was
assumed that the lower the adatom migration speed along a
step edge, the higher the probability of a new step nucleation.
Therefore, the advancement of this step is faster and as a
result of this the step will disappear more quickly in time.
For lower temperatures, where the triangular shape on
A-type edges is dominating, Michely et al. concluded that the
diffusion coefficient along the A steps (DA) should be larger
than the one along the B steps (DB). For higher temperatures
the opposite should be true and for temperatures where the
island has hexagonal shape, naturallyDA�DB was assumed.
No microscopic mechanism supporting these assumptions
was given, however.

The same group who reported the experimental study
about the temperature-dependent shape change of the Pt
islands published in 1998 an interesting new result [2]. They
revealed that the triangle orientation at low temperatures is
an effect of carbon monoxide (CO) impurities which are
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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Figure 1 Geometry of the A- and B-type edges. Dotted circles
represent the sites of the substrate, circles and crosses represent
the FCC and HCP lattice sites of the growing layer, respectively.
The filled circles are the FCC sites of the growing layer which are
already occupied by the adatoms.

Figure 2 Topology of smallA- andB-type triangular FCC islands,
bounded, respectively, by only A- and B-type edges. Dotted circles
represent the sites of the substrate, circles and crosses represent the
FCC and HCP lattice sites of the growing layer, respectively. The
filled circles are the occupied FCC sites of the growing layer.
sticking preferentially to A steps. By reducing the amount
of CO in the deposition chamber, only islands bounded to
B steps are observed at any temperature. Therefore, the
inversion of the triangle orientation is not a purely
temperature effect, as was assumed earlier. Seemingly at
low temperatures CO passivates the A-step atoms more
efficiently than those on the B steps, leading to higher
diffusion on A steps, and as a consequence of this a faster
advancement and disappearance of B steps. At high
temperatures the lifetime of CO bounded to the Pt(111)
surface is small, and thus the normal orientation of triangles
(bounded to B steps) is observed. The formation of the
triangular-shaped islands bounded at the B step was assumed
to be similar to the case of Ir [14], where the responsible
phenomenon is the net flux of adatoms from B steps to A
steps.

Over the years several theoretical studies were done to
explore the atomistic mechanism for the shape selection and
orientation of the Pt islands on Pt(111) surfaces. By rescaling
the theoretically calculated energy barrier values for
different elementary FCC–FCC atomic movements [15], or
by choosing the hopping energies in a consistent manner with
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
the field ion microscope (FIM) experimentally measured
values [16], kinetic Monte Carlo (kMC) simulations were
able to find parameter sets that reproduced the experimen-
tally observed compact island shapes and the transitions
between them.

Theoretical explanations were pointing not only to the
discussed edge diffusion anisotropy, but considered also
the kink-breaking and corner-crossing phenomena. For the
dendritic Ag or Pt islands (with a triangular envelope)
formed on the Pt(111) surface, Brune [5] and Brune et al. [6]
found by effective medium theory (EMT) calculations that
the responsible processes are the anisotropic jumps from
corners to different types of edges (A or B). A kMC study
performed with first-principles parameters for compact Al
islands on the Al(111) surface [7] showed that reversing the
edge diffusion anisotropy has no effect on the orientation of
the triangular islands. The island orientation changes only
when the corner diffusion anisotropy is reversed. The same
conclusion was derived also for compact Pt islands by Wu
et al. [4]. This group used also kMC simulations to clarify
the main mechanisms responsible for the formation of
the triangular-shaped islands and the inversion of their
orientation. In their study, three elementary atomic processes
are discussed: (i) the edge diffusion, characterized by the
activation energyE2!2; (ii) the edge to corner diffusion, with
activation energyE2!1; and (iii) the corner to edge diffusion,
with activation energy E1!2. Generally, one would expect
for a given type of edge the following relation between these
energies: E1!2 < E2!2 < E2!1. Using activation energies
for Pt strictly from Feibelman’s first-principles calculation
[3] for a clean Pt epitaxial growth, they found islands
bounded by B-steps only, independently of the surface
temperature values. They also concluded that the only
parameter that could influence the inversion of triangles is
the edge to corner energy barrier. By interchanging their
values for A and B steps, the triangular islands changed their
orientation. It was thus assumed that the presence of CO will
weaken the binding energy of Pt at theA step so much that the
difference in the edge to corner diffusion rates for the two
steps is reversed in sign. Arguments based on the energetics
of the diffusing atoms are given also in the book of
Michely and Krug [8] and in the seminal paper of
Evans et al. [9]. Besides kMC simulation methods for
investigating this problem, it is worth mentioning an
approach based on genetic algorithms for optimizing the
shape of 2D adatom islands on (111) surfaces [10] and a
dynamical model based on surface interaction potentials
and ab initio calculations [11].

In the present work we continue the investigations
concerning the formation of the triangular-shaped compact
Pt islands on Pt(111) surfaces, and give further details about
its kinetics, using a previously tested lattice kMC method
[19]. We feel that a numerical study based on the generalized
embedded atom method (gEAM) and on the nudged elastic
band (NEB) calculation method for the hopping energy
barriers can still be useful for understanding this interesting
phenomenon. The present paper is organized as follows. In
www.pss-b.com
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Section 2 we present briefly the used kMC method and its
parameters. In Section 3 we present the obtained simulation
results and discuss numerical calculations for the micro-
scopic mechanisms responsible for the formation of
triangular-shaped islands. Section 4 is devoted to our
conclusions.

2 The used kMC method and computational
details Lattice kMC methods proved to be appropriate
for studying several phenomena related to the epitaxial
growth of thin films, such as island nucleation, growth and
coalescence [17], island diffusion [18, 19], stacking fault
related phase boundary [20], and even co-deposition of
several types of atoms [21, 20].

The kMC method is useful for simulating those
dynamical phenomena where processes with widely differ-
ent rates are simultaneously present. In the case of the
epitaxial growth or surface diffusion this is the case: (i) atoms
can be deposited on a crystalline surface with a given rate;
(ii) atoms can diffuse on the surface governed by hopping
rates that are determined by their interaction energy with
neighboring atoms; (iii) decohesion of surface atoms can
occur with a given rate. The main idea of the kMC simulation
method [22] is that in each simulation step one process is
randomly selected (with probability proportional with its
rate) and carried out. The time is updated non-uniformly and
non-deterministically, depending on the rates of all possible
processes at that given moment [22]. For thin-film growth
simulations generally, the deposition rate is fixed and
calculated from the deposition speed (deposition flux) given
as the number of new monolayers deposited in unit time
(ml/s). The diffusion rate ðrX!YÞ of an atom is governed by
the thermodynamic temperature (T) of the system and the
potential barrier ðDUX!YÞ that the atom has to overcome
between the initial (X) and the final (Y) positions:
www
rX!Y ¼ f0 exp �DUX!Y

kBT

� �
: (1)
In expression (1), kB is the Boltzmann factor and f0 is the
attempt rate, which is roughly the vibration frequency of
atoms in the crystal ( f0¼ 1012 Hz). Since the value of the
barrier is not straightforward to estimate (even if the pair-
interaction potential between the atoms is known), several
approximating methods are used [23–26]. The desorption
rate is obtained either by fixing a phenomenological
potential barrier Edec for this process or by calculating the
more realistic potential barrier from first principles, as
the binding energy of the chosen atom at the given site.
Simulations are usually performed in a 2D geometry, the
atoms being allowed to occupy the sites of a pre-defined
lattice. By this approach one reproduces an idealized
situation where a new layer is growing on a perfect
crystalline substrate.

Here, the kMC method is used for modeling the
formation of 2D triangular-shaped Pt adatom islands during
the sub-monolayer epitaxial growth on a Pt(111) surface.
.pss-b.com
The method was already tested and its applicability was
proven in a recent study concerning the 2D self-diffusion
of Pt atom clusters on a Pt(111) surface [19]. A bulk FCC
substrate is considered with a (111) triangular lattice surface.
The accepted 2.77� 10�10 m lattice constant value is used
for the surface atoms [19]. The atoms can be deposited and
can diffuse on this surface using the sites of the two available
sublattices, namely the FCC and hexagonal close packed
(HCP) sites (Fig. 1). The interaction potentials between the
atoms are calculated using the gEAM potential [27, 28]; the
hopping barrier is determined by the NEB method [24, 25].
Similarly with our earlier study [19], only in-layer single-
atom diffusion mechanisms are considered. Furthermore, for
any non-zero deposition flux we consider that the atoms
deposited on the top of an existing island are automatically
reassigned for a randomly selected site on the edges of the
island. This rearrangement does not alter the random site
deposition in a sub-monolayer epitaxial growth process and
speeds up the simulation by handling elegantly the diffusion
of the atoms on the top of the islands and their final jumps to
the island edges. Simulations are done with both zero and
non-zero deposition fluxes.

2.1 Calculation of the hopping barrier The NEB
method [24, 25] is used for finding the minimum energy path
(MEP) of every atomic jump. This method is efficient in
determining the saddle points, and therefore the energy
barrier for transitions with given initial and final states. The
method uses a number of replicas of the moving atom,
displaced along a continuous path between the initial and
final states of the transition. The replicas are connected with
fictitious springs acting only along the path and ensuring its
continuity. The external forces are projected however
orthogonally to this path. The relaxing force acting on the
ith image may be written as
Frel
i ¼ �rUðRiÞj? þ ðFi

spring � tiÞti

¼ �rUðRiÞ þ rUðRiÞ � ti½ �ti

þ kðRiþ1 þ Ri�1 � 2RiÞ � ti½ �ti; (2)
where k is the spring constant,Ri the coordinate vector of the
ith image, U (Ri) the potential, and Fi

spring is the spring force
acting on the image. ti is the normalized tangent vector at
the location of the ith image, used to project the desired
components of the forces. ? represents the perpendicular
projections of the vectors relative to the tangent vector.

The initial coordinates of the replicas which are forming
the band are determined by a simple linear interpolation
between the initial and final states of the assumed jump. In
order to reach the MEP, the band is optimized using the
steepest descent method. The energy barrier of the transition
is taken as the sum of the differences between the
consecutive potential energy minima and maxima along
the oriented MEP. Usually, multiple energy minima and
maxima can appear on the MEP when the path passes in the
neighborhood of an intermediate lattice site. Such situation
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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can appear for example in an FCC–FCC jump, where the
path contains an intermediate minimum due to a neighboring
HCP site. In the present work we consider the band
discretized with 19 replicas and the used spring constant is
chosen as k¼ 0.65 eV/Å.

2.2 Interatomic potential The gEAM potential [27,
28] was used to calculate the interatomic potentials. The
gEAM potential is a many-body approach which was used
with success for calculating bulk properties of multilayer
films [28], but also successfully applied in kMC simulation
for surface diffusion of 2D Pt islands on Pt(111) surfaces [19]
and for molecular dynamics (MD) simulation for structural
deformation and mechanical strength of a defective Cu
nanowire, which contains about 22–38% surface atoms [29].
In the gEAM approach the potential energy for an atom i is
the sum of two terms:
Fðr

� 20
Ui ¼
X
j6¼i

fðrijÞ þ FðriÞ: (3)
The first term contains the pair-interaction potentials
between the ith and all the other atoms:
fðrijÞ ¼
A� exp �a

rij
re
� 1

� �h i

1 þ rij
re
� k

� �20

�
B� exp �b

rij
re
� 1

� �h i

1 þ rij
re
� l

� �20
; (4)
Table 1 gEAM parameters for Pt.

re (Å) 2.771
fe (eV/Å) 2.336
re (eV/Å) 34.108
a 7.079
where rij is the distance between atoms i and j and re is the
equilibrium distance between nearest-neighbor atoms. A, B,
a, b, k, and l are adjustable parameters of the potential.

The second term of Eq. (3) is the many-body term
resulting from the interaction energy which is needed to
embed the ith atom in the local-electron density, ri, provided
by the other atoms. To ensure a well-working embedding
energy function over a wide range of electron density, three
cases are separated, ri< rn, rn � ri < r0, and r0 � ri,
where rn¼ 0.85 re, r0¼ 1.15re and re is the equilibrium
electron density:
b 3.775
A (eV) 0.449
B (eV) 0.593
k 0.413
l 0.826
h 1.393
Fn0 (eV) �4.099
Fn1 (eV) �0.754
Fn2 (eV) 1.766
Fn3 (eV) �1.578
F0 (eV) �4.17
iÞ ¼

P3
x¼0

Fnx
ri
rn

� 1

� �x

if ri < rn; rn ¼ 0:85re;

P3
x¼0

Fx
ri
rn

� 1

� �x

if rn � ri < r0;

r0 ¼ 1:15re;

Fe 1 � ln
ri
re

� �h� �
ri
re

� �h

if r0 � ri:

8>>>>>>>>>><
>>>>>>>>>>:

(5)
F1 (eV) 0
The local-electron density ri can be calculated using

F2 (eV) 3.474
F3 (eV) 2.288
Fe (eV) �4.174
ri ¼
X
j 6¼i

fj rij
� �

; (6)
12 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
where fj(rij) is the electron density of atom i, which can be
written as
fjðrijÞ ¼
fe � exp �b

rij
re
� 1

� �h i

1 þ rij
re
� l

� �20
; (7)
where fe is the equilibrium electron density.
All the parameters that are used in the above equations

for the case of Pt are listed in Table 1.
It is known that gEAM is a less accurate approximation

than the ab initio methods (for a review, see Ref. [30]).
However, ab initio MD simulations need extremely long
computational time and therefore the applications of such
potentials are restricted for relatively small systems and short
simulation times. For simulating a surface phenomenon
with a longer time evolution (seconds or minutes), a list of
hopping barriers of pre-defined events is used from ab initio
calculations [4, 7]. Another possibility is to use rescaled
theoretical [15] or experimental [16] barrier values or to
use semi-empirical potentials [28]. Here, in order to maintain
a reasonable speed and accuracy we use lattice kMC
simulations, the gEAM method to calculate the potential
and the NEB method with 19 replicas to calculate the MEP
and the hopping barrier of all possible diffusion jumps. By
using this method we take into account also the complete
surroundings of the jumping atoms over the paths, leading to
more realistic effective potential barrier values. Since gEAM
is mainly used for bulk systems, its use for surface diffusion
processes on Pt(111) surfaces can be debated. However, in a
previous study [19] we have shown that it predicts proper
migration energy values for the diffusion of free atoms on
surfaces. For the free diffusion of one Pt atom on a Pt(111)
surface, the method predicts an effective migration barrier
energyEm¼ 0.2 eV. This is in acceptable agreement with the
Em¼ 0.26� 0.03 eV results indicated by FIM experiments
www.pss-b.com
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Figure 4 Time evolution of A (right) and B (left) type triangles
without an external deposition flux. Each box indicates the initial
(upper) and final (lower) configurations at different temperatures:
(a) 488 Monte Carlo steps (corresponding to simulated time
7.6� 10�2 s) at 300 K, (b) 490 Monte Carlo steps (6.9� 10�3 s)
at 400 K, (c) 149 Monte Carlo steps (1.4� 10�3 s) at 500 K, and
(d) 151 Monte Carlo steps (1.1� 10�4 s) at 600 K.
[31]. It is also in good agreement with the simulations using
the analytic embedded atom method (AEAM), which yields
Em¼ 0.19 eV [32].

3 Results and discussion
3.1 kMC simulation results The performed kMC

simulations investigate the kinetic shape of the islands. As a
first step, deposition of Pt atoms was simulated, starting from
a compact seed containing seven atoms. We have chosen the
starting configuration with seven atoms due to the fact that
these islands are already quite immovable (as pointed out by
Müller et al. [33]). Even for such high deposition fluxes as
1000 ml/s, the kinetic shapes of the simulated islands are
compact and triangle-like, as can be seen in Fig. 3.

The islands drawn with crosses are formed on HCP sites
and the ones plotted with disks are formed on FCC sites.
Formation of the stable HCP stacking islands is due to
the high deposition flux (1000 ml/s) and low temperature
(300 K). Under such conditions the islands created with
more than five atoms on the HCP sites are stable in time, in
spite of the well-known fact that the FCC stacking islands
are energetically more favorable than the HCP ones. The
triangular-shaped FCC and HCP stacking islands are both
B-type islands. Due to the topological differences for the
two different stackings, the direction of the HCP triangles
is just the opposite of the FCC triangles.

As a second kMC study, in order to illustrate the stability
of islands of different types, A- and B-type FCC triangular
islands formed by 21 atoms are evolved at different
temperatures, without depositing new atoms (deposition
flux is zero). As can be seen in Fig. 4, for all the simulated
temperatures (300, 400, 500, and 600 K) the B-type
triangular islands will keep their orientation or become
truncated B-type triangles. This clearly does not hold for
the A-type islands. The islands that are initially of A type
are distorted at lower temperatures and even inverted to
B-type triangles at higher temperatures.
Figure 3 kMC simulation results for 1000 ml/s adatom deposition
flux at 300 K after 227 kMC steps (corresponding to a real time of
4.3� 10�5 s). The simulated system size is 64� 64� 4, disks and
crosses represent the atoms in the growing layer occupying FCC
and HCP lattice sites, respectively.

www.pss-b.com
3.2 Energy barrier calculations For a better under-
standing of both the triangular-shaped island formation
phenomenon and the higher stability of the B-type triangular
islands, in the following we will calculate the characteristic
energy barriers for the relevant microscopical events.

First, the diffusion of Pt atoms on A- and B-type edges is
studied. The energy barriers (or activation energies) for
the jumps along the edges can be computed also from the
statistics of the atom diffusion on these edges. On the top of a
bulk FCC substrate a compact monolayer strip with three
atomic rows is considered (Fig. 5). The diffusion of single Pt
atoms can be now studied by kMC simulations on the two
sides of this band. The bottom and top sides correspond to
A- and B-type edges, respectively. The three atomic rows
width of the band is enough, and is equivalent in our
approach with an infinite-width step because the cutoff
Figure 5 Diffusion of single atoms along A- and B-type edges of
a 2D strip. Dotted circles represent the sites of the substrate, circles
and crosses represent the FCC and HCP lattice sites of the growing
layer, respectively. The filled circles are the FCC sites of the growing
layer which are already occupied by the adatoms.

� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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distance of the potential is set to three lattice constants. We
recall here that the same cutoff distance was imposed also
for all potential calculations on the bulk FCC lattice.

The diffusion coefficient (D) is calculated from the
mean-square displacement of the atoms as a function of
time. The common definition of D is
-4

-3

-2

-1

ln
(D

)

Figu
A- a

� 20
D ¼
ðDrðtÞÞ2

D E
2d � t

; (8)
where ðDrðtÞÞ2
is the mean-square displacement of the atom

in time t and d is the dimensionality of the motion. The
ensemble average represented by the square brackets is an
average computed from several independent realizations. In
our case d¼ 1, the motions being restricted along the edges.

D is computed by plotting ðDrðtÞÞ2
D E

as a function of time

and by determining the slope of the obtained linear
dependence.

The diffusion coefficient is expected to exhibit the well-
known Arrhenius-like behavior:
D ¼ D0exp � Em

kBT

� �
: (9)
Table 2 Energy barrier results for FCC–FCC jumps. Column 1
In Eq. (9),D0 is the pre-factor of the diffusion coefficient,
Em is a phenomenological activation energy (or migration
energy) for the diffusing particle, kB the Boltzmann constant,
and T is the thermodynamic temperature of the system.
D0 and Em can be calculated by plotting lnðDÞ as a function
of 1/kBT. Results for single-atom diffusion on both the
A- and B-type edges are presented on Fig. 6. These results
prove the validity of the Arrhenius relation and indicate for
the A-type edge Em¼ 0.36 eV and D0¼ 5.14� 10�3 cm2/s
and for the B-type edge Em¼ 0.6 eV and D0¼
4.38� 10�3 cm2/s.

These activation energies are of course effective values,
taking into account all possible type of jumps, namely the
FCC–FCC, FCC–HCP, HCP–FCC, and HCP–HCP jumps.
The results indicate a considerable difference for the
10 20 30 40
1/kT

0

0

0

0

D along B edge
D along A edge

re 6 Arrheniusbehavior for thediffusionofsingleatomsalong
nd B-type edges.

12 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
single-atom diffusion coefficient on the two types of edges.
They are also contradicting the early explanations [1] based
solely on the differences in the diffusion coefficient values.
Our results show that the atoms can diffuse more easily on
the A-type edges; however, the stable island shape is the
B-type triangle for all temperatures.

Due to the fact that in our kMC approach the atoms can
diffuse on both stackings, there are many topologically
non-equivalent diffusion steps allowed. Going into more
detail and studying separately these diffusion steps on both
types of edges will help in a better understanding of the
differences obtained for the diffusion coefficients. As an
example, one can take the FCC–FCC type jumps along both
edges and study the MEP of the individual diffusion
steps on A- and B-type edges. We have chosen to discuss
the FCC–FCC jumps, due to the fact that in all previously
reported calculations only these diffusion jumps are
considered and therefore this gives us a good ground for
comparison.

For an FCC–FCC jump of an atom on the A-type edge
the MEP contains an intermediate HCP site, and gives an
energy barrier EA2!2

¼ 0:372 eV. In contrast with this for
an FCC–FCC jump on the B-type edge the MEP does not
contain an intermediate site; therefore, the energy barrier is
different: EB2!2

¼ 0:589 eV. The topological differences
for these FCC–FCC steps are clearly visible in Fig. 1. The
anisotropy of edge diffusion for Al on Al(111) was also
attributed to the topological (geometrical) differences of
the A and B edges [34]. An explanation for the FCC–FCC
jumps using HCP sites as intermediate sites for A-type edges
was made by Brune [5], studying dendritic islands with
triangular envelope.

With the presented NEB method it is possible to
calculate the energy barriers for edge to corner and corner
to edge jumps, denoted in the following as EA1!2

, EA2!1
, and

EB1!2
, EA2!1

, respectively. These results (second column of
Table 2) follow the expected E1!2 < E2!2 < E2!1 trend for
both A and B edges, as was previously discussed by Wu et al.
(GGA) summarizes the results of Feibelman [3]. Column 2 (NEB
19) presents our results with an unrestricted NEB and 19 replicas.
Column 3 (NEB 19z) presents the results obtained with a NEB
restricted perpendicularly on the surface and with 19 replicas.
Column 4 (NEB 4) presents the results obtained by an unrestricted
NEB with four replicas, and column 5 (NEB 4z) shows the results
obtained with a NEB restricted perpendicularly on the surface and
using four replicas.

GGA NEB
19

NEB
19z

NEB
4

NEB
4z

EA1!2
(eV) 0.44 0.143 0.370 0.161 0.323

EA2!2
(eV) 0.71 0.372 0.589 0.373 0.469

EA2!1
(eV) 0.84 0.541 0.768 0.557 0.720

EB1!2
(eV) 0.38 0.370 0.370 0.335 0.323

EB2!2
(eV) 0.77 0.589 0.589 0.484 0.467

EB2!1
(eV) 0.76 0.767 0.768 0.729 0.721

www.pss-b.com
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Figure 7 NEB node energies for bands containing 19 and
four nodes, for both unrestricted and perpendicularly restricted
(z-direction) relaxations of A2!2 FCC–FCC jumps.

Figure 8 Kink sites on A- and B-type edges.

Table 3 Calculation results.

kink-formation
energy

kink-breaking
energy

on A edge 0.281 eV 0.624 eV
on B edge 0.469 eV 0.830 eV
[4] who used Feibelman’s generalized gradient approxi-
mation (GGA) calculations [3]. The results of GGA
calculations are listed in the first column of Table 2. Our
calculations with 19 NEB nodes show that for all three cases
(1! 2, 2! 2, and 2! 1), the energies on the A-type edge
are smaller than the corresponding energies for the B-type
edge (second column of Table 2). We recall here that all
the calculated energy values are for FCC–FCC jumps;
therefore, the energies of 2! 2 jumps will differ slightly
from the effective energies calculated from the diffusion
along the edges.

From the results presented in Table 2, one can conclude
that atoms on A-type edges can diffuse more easily than
atoms on B-type edges and this holds not only along the
edges, but also for jumps to and from the corners.

The energy barriers calculated by Feibelman [3] differ
(sometimes considerably) from those calculated by us. In
almost all cases our calculations underestimate the GGA
results. This is somehow expected for a semi-empirical
approach next to an ab initio calculation, which ought to be
much more precise. The differences might also come from
the fact that the gEAM potentials are more appropriate for
bulk atoms than surface ones. This can be also seen in our
results for the free diffusion of a Pt atom on a Pt(111) surface,
where an error of order 20% is obtained for the energy barrier
value calculated with gEAM and NEB relative to the value
obtained in experiments. The larger deviations observable
for jumps onA-type edges might also be a consequence of the
differences between the performed NEB calculations.

In our kMC method we have used 19 replicas (NEB
nodes) of the system, while in the GGA calculations only
four replicas were used. In order to investigate whether the
large differences in Table 2 are due to the implementation of
the NEB method, we have made some further studies.

First, we relaxed the NEB using the gEAM potential with
19 replicas of the system, but restricted the band only in a
perpendicular direction to the surface. Under such restric-
tions the energies are already closer to the GGA calculations
(third column of Table 2). In this restricted case the MEP
for FCC–FCC jumps on A-type edges will not contain
intermediate HCP sites, because the band will not flare out in
sideways directions and as a result of this the energy barriers
are the same for jumps along A- and B-type edges. We
suspect thus that in the work of Feibelman [3] such
restrictions were also imposed.

Secondly, if the calculations are taken with only four
NEB nodes, the energy barriers calculated from a spline fit
can be quite far from the real values. This is illustrated in
Fig. 7 forA2!2 FCC–FCC jumps. For the sake of comparison
we also show that by using 19 nodes, the energy plot of
the nodes is much more smooth. The local minimum for the
unrestrictedly relaxed band indicates the presence of the
intermediate HCP site. One can also observe that the results
obtained by us with only four NEB nodes are now much
closer to the GGA results. Taking into account the difference
in how the NEB method was implemented in the present
study and in the study of Feibelman [3], we suspect that the
www.pss-b.com
larger deviations in the obtained energy barriers are not due
to the interatomic potential values used, but due to the NEB
calculations.

The kink-formation and kink-breaking phenomenon
(Fig. 8) is another elementary process in step advancement
and therefore can be an important process in triangle-shape
formation. The energy barriers calculated for kink-formation
and kink-breaking events are listed in Table 3.

Summarizing now the above-discussed results, one can
list the following statements that could help in explaining the
creation of the B-type triangular islands:
(1) T
he diffusion of atoms on A-type edges is easier than on
B-type edges.
(2) T
he kink formation is easier on A-type edges than on
B-type ones.
� 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
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nA-type edges the kink-breaking energy is high enough
relative to the kink-formation energy in order to allow the
step advancement on these edges.
(4) T
he EA1!2
< EB1!2

relation is favorable for A-step
advancement,because theprobability foracorneratomto
choose the A edge is higher than the probability for
choosing the B-type edge.
Items 1 and 4 alone do not suggest the growth of B-type
triangles. These effects would favor a more rapid growth of
the B-type edges and ultimately the formation of A-type
triangles. The facts summarized under items 3 and 4
are however responsible for the quicker advancement of
the A-type edges leading to the formation of B-type
triangular compact islands. Seemingly these later effects
are the stronger ones, and will favor the growth of B-type
triangles.

4 Conclusions The aim of the present work was to
reconsider the formation of B-type triangular-shaped Pt
adatom islands on a Pt(111) surface by using a kMC
simulation method, which has proven its applicability in a
recent study concerning the adatom island diffusion [19].
Computer simulations and calculations were done using the
gEAM potential, taking into account all possible FCC–FCC,
FCC–HCP, HCP–FCC, and HCP–HCP jumps on the Pt(111)
surface. The energy barriers for the jumps were calculated
with the NEB method using 19 replicas of the system.

By studying individually and collectively the diffusion
of Pt atoms along the island edges, a more complete picture
about the formation of triangular islands and their stability
in time was drawn. The obtained results indicate a higher
diffusion speed of atoms alongA-type island edges. Also, the
jump rates from edge to corner and corner to edge are higher
for A-type edges compared to B-type ones. These results
alone do not explain the better stability of the B-type
islands, but, on the contrary, taking into account the earlier
explanations [1, 2, 4, 7, 16], these results suggest a more
stable A-type triangular island.

Studying the energies necessary for kink formation and
kink breaking reveals however that the atoms will assemble
with a higher probability onA-type edges, leading to a higher
advancement speed of the A-type steps. The higher jump
probability from the corner sites toA-type edges leads also to
a quicker advancement of A-type edges and ultimately to the
formation of B-type triangular-shaped islands. We hope that
the present study will help in a better understanding of
the formation of triangular-shaped Pt islands on a Pt(111)
surface.
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