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1. Introduction

Almost half a decade elapsed since the first application of the spring-block system as an interdisciplinary modeling
tool. In their classic paper Burridge and Knopoff [1] showed that a simple chain of blocks interconnected by springs and
sliding on a frictional substrate is appropriate for understanding the famous Gutenberg-Richter scaling law [2] regarding
the distribution of earthquakes by their magnitude. Due to the simplicity of the spring-block model collective phenomena
from widely different fields have been explored by using this simple and intuitive approach. As a result, a whole family
of models has been developed by modifying either the tension of the spring forces or the interconnection topology, and
resulting in successful applications in widely different fields. For a brief review on spring-block models and their applications
we recommend the recent work of Mate et al. [3] and the references within.

Here, we show that this simple model can be applied also for understanding some elements of accident free, one-lane
traffic. Being aware that many models exist for describing this apparently simple but in reality complex phenomenon, our
aim is not to give an even more sophisticated model leading to a more realistic description. This is always possible by refining
the existing models and by introducing new parameters. Instead, we plan to show that the classical spring-block chain with
asymmetric interactions can capture many important aspects of this everyday-life phenomenon and by this our aim is to
prove once again the modeling power of this simple system.

The rapid growth of vehicle numbers during the last century caused an increased complexity in our road traffic and
transportation systems. Unfortunately, in such conditions, traffic congestion becomes an everyday problem for drivers. The
variety of complex non-linear phenomena present in such agglomerated traffic systems has attracted the attention of a
large number of researchers (for a review please consult the recent work of Nagatani [4], or the interdisciplinary review
by Helbing [5]). Accordingly, since the early 1930s many empirical data on different highways have been collected [6-8].
In the meantime traffic data collection systems have substantially evolved as well [9,10]. On the theoretical side, many
different models have been developed [11,5,12,13]. From the conceptual point of view the models are usually classified as
microscopic and macroscopic models. With respect to the mathematical representation these models are categorized as
car-following and cellular automata models. Moreover, there are some non-traditional models that have both microscopic
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and macroscopic aspects as well. These models form the category of mesoscopic models. One recent example of a
stochastic mesoscopic model could be the probabilistic traffic flow theory [14] that includes the nonlinear effects of small
perturbations. It was also shown [15] that finite reaction times are essential factors of driver behavior that affects the
performance and stability of traffic. Despite many existing studies in the field, the phenomenon of spontaneous traffic jam
formation is not completely understood.

The simplest, but already quite complex form of the traffic is the accident-free and single-lane motion of a chain of cars.
The motion of the queue in this simple form of traffic is primarily governed by the leading car and the statistics of driving
attitudes. From empirical observations we know that this kind of traffic can be either “free” with a continuous flow structure
or congested with a stop-and-go motion of cars. The congested traffic usually appears if the leading car is moving slowly
and the differences between the driving attitudes of drivers are substantial. In such situations the car row will evolve non-
continuously in avalanches of widely different sizes, and a sequence of jams of different magnitudes will appear and prop-
agate backward through the system. This form of traffic is also known as a shockwave traffic jam or ‘phantom traffic jam’.
A systematic analysis of empirical traffic states of a 30 km long section of the German freeway A5 near Frankfurt [16,17] re-
ported arich variety of congested traffic states, interpreted as the spatial coexistence of altogether six different traffic states.

“Why do traffic jams appear on highways?” — is the natural question asked by the authors of the first experimental article
that investigates the spontaneous shockwave traffic jam formation [18,19]. By a planned experiment performed on a circuit
they show that the emergence of a traffic jam may occur even in the absence of a bottleneck. If one looks at their experiments
(i.e. their video recording posted on youtube [20]) it is immediately observable that at the initial stage, vehicles are running
continuously each with the same velocity, but roughly 10 min later a first shockwave traffic jam emerges spontaneously
and propagates in the system. Shortly after this experiment these emergent shockwaves have been identified as nonlinear
traveling wave solutions called ‘jamiton solutions’ of the purely deterministic hyperbolic continuum traffic equations [21].

The present work is inspired and motivated by the experiments of Sugiyama et al. Based on their work, the formation
of a traffic jam is understood as a collective phenomenon. The simple spring-block system offers usually an excellent and
intuitive modeling framework for understanding phenomena where avalanche-like dynamics is observed [22]. Adapting
such a model for this problem is quite straightforward. A spring-block chain with asymmetric interactions is considered,
where blocks will model the cars and the springs the distance keeping tendency of drivers. The limitations of the model
are clearly defined by the forced mechanical analogy: harmonic spring forces governing the acceleration and deceleration
of cars; mechanical friction forces modeling reaction times and disorder in driving styles; and applying dynamical laws
of classical mechanics for describing a complex time evolution. All this is done for the sake of keeping the spring-block
modeling paradigm.

Through large-scale computer simulations the conditions at which our spring-block model system'’s flow self-organizes
into a congested traffic flow phase are identified. Contrary to most of the studies in the field of highway traffic we focus
on a measure characteristic for one car (block) in the row: the distribution of time intervals during which the car is not
moving. These time intervals will be labeled hereafter as rest times or stop times. Based on the rest time distributions an
order parameter will be defined and the parameter space of the model is explored and analyzed. The present model is able
to reproduce only two traffic phases: a free flow and a congested flow phase. It is shown that the transition between the free
and congested traffic states is realized through a disorder-induced second order phase transition. Based on evident analogies
with the model elements, it is concluded that the imperfections in driving styles play an important role in the formation of
traffic jams.

The rest of the paper is organized as follows. First, the spring-block model of highway traffic is presented starting from
basic ideas that originates from earthquake modeling. The main ingredients, model dynamics and model parameters are
discussed as well. Then, in the “Results” section an order parameter is defined and the parameter space of the model
is mapped. Finally, in the “Discussion and conclusions” section the experiment of Sugiyama et al. is discussed from the
viewpoint of the spring-block model.

2. The spring-block model for highway traffic

The spring-block approach for the single-lane highway traffic was described in detail in our previous work [23]. However,
for the sake of completeness a brief review of the model will be included here.

2.1. From earthquakes to traffic modeling

The model used belongs to a model family with broad interdisciplinary applications called spring-block type models
introduced in 1967 by Burridge and Knopoff [1]. It consists of simple elements: blocks that can slide with friction on a
horizontal plane connected in a lattice-like topology by springs. Later, due to the spectacular development of computers
and computational techniques, this simple model proved to be very useful in describing many phenomena in different
areas of science. Most of the collective phenomena that occur on a mesoscopic scale in solid materials such as cracking or
fragmentation in drying granular materials [24,25], capillarity driven self-organization [26-28] or magnetization processes
and Barkhausen noise [22] can be modeled by spring-block type models. The studies mentioned above suggest that spring-
block models are useful for those complex phenomena where avalanche-like dynamics, collective behavior or pattern
formation is present.
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Fig. 1. The spring-block model for highway traffic. The used spring-block chain is shown on panel (A) while the force profile for spring-tension and friction
are shown on panels (B) and (C), respectively.

In the spring-block approach the idealized car queue that moves on a single highway lane is modeled as a chain of blocks
dragged by the first block that advances with a constant velocity v (as sketched in Fig. 1(A)). Blocks are labeled after their
ordinal number in the row so that the externally dragged block (the first in the queue) has label 1 and the last block in the
queue is labeled with N. The position of the blocks is denoted by x®, where i = 1, N.

The blocks are connected by springs of equilibrium length Iy and spring constant k having the classical force profile shown
in Fig. 1(B). The interactions resulting from the springs model the aim of drivers to keep a certain distance from the car ahead.
The linearity of the spring force is imposed for the sake of simplicity and in order to keep the analogy with the general spring-
block model. In order to be realistic, the springs used cannot be classical mechanical springs with forces acting on both their
ends, because in case of accident-free traffic the front car should not be influenced by the car from behind. Therefore, this
distance keeping interaction acts only on the car behind. In such a system, the action-reaction principle is violated and, in
this sense, it cannot be any longer considered as a realistic mechanical system.

Recently it has been argued that for modeling the drivers’ actions, one has to account for their reaction time and velocity
adaptation time [29]. In the computational models, one has to account with a numerical update time as well. The last two
of these characteristic times will be included in the dynamics of the spring-block model presented later. It has to be noted
that in this form, the spring-block model implements instantaneous acceleration responses that correspond to zero reaction
times.

Another important ingredient, which can be incorporated in the model, is the disorder generated by the unpredictable
reactions of drivers. In order to minimize the ingredients of the model and to keep the analogy with spring-block systems
the reaction times of drivers are introduced through friction forces that oppose the sliding of the blocks. These friction forces
are generated randomly and independently for each new position of the blocks. As a first approximation we consider for
this quantity a normal distribution with a fixed mean (F;) and standard deviation o. As a result of this both a spatial and
a temporal disorder are introduced. Spatial disorder models differences in the driving styles of the drivers while temporal
disorder approximates changes in the drivers’ reaction times. The mean value of the friction force may be connected to
the average reaction time of the drivers. Friction forces that are smaller than the average value correspond to a quicker
reaction than the average. Similarly, friction forces bigger than the average describe late reactions. A narrow distribution
around a mean is expected for fresh, rested drivers. As the driver gets tired, the driving imperfections are gradually increased
corresponding to a broad distribution in the friction forces.

In analogy with real mechanical systems, static and kinetic friction forces are considered. They are denoted by F; and
Fy, respectively. The friction force profile is presented in Fig. 1(C). The selection of the friction force value depends on the
previous displacement Ax of the block and the total force F,y acting on it. Similarly with classical dynamical systems,
the maximum possible value of the static force is considered to be greater than the kinetic one. For simplicity reasons in
our model their ratio is kept constant: f = F;/F;. By this assumption we include in the model the tendency of drivers to
react quicker to an event when the car is in motion. In such cases, there is no need to release the brakes and then step on
the accelerator pedal and slowly release the clutch as would be the case for a stopped car. This effect, when standing cars
accelerate with lower probability than the moving ones is known as the “slow-to-start rule”. This rule was first proposed
by Barlovic et al. [30] as a simple generalization of the Nagel and Schreckenberg (NaSch) probabilistic cellular automaton
models [31].

The simulation follows the typical steps of a simplified molecular dynamics simulation with a properly selected timestep
At and is summarized below.

o Simulation step #1: calculation of forces acting on each block. All blocks are visited and the spring force Fqping acting on
each block i is calculated by

Fring () = k[17(t — At) — Io] , (1)
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where 19 denotes the length of the spring connected to the front of the ith block. If the block is at rest (its previous

displacement Ax® (t — At) = 0) the spring force is compared to the static friction. If Fs(;)ﬂng (t) < Fs(i) (t) the static friction
equals the spring force and the total force acting on the block will be

EP —o. (2)

Accordingly, the block will remain at rest in this step. On the contrary, if F, @ (t) > Fs(i) (t) the block will start to move

spring
and the kinetic friction force is added to the spring force

O _ g
Ft - Fspring

—FY, (3)
The total force is similarly calculated, when the block is not at rest: (Ax? (t — At) = 0). A

e Simulation step #2: calculation of block displacements. All blocks are visited, and based on forces Ft(') calculated in
simulation step #1, their displacements Ax® are calculated and stored. The displacement of the first block is Ax(V = d,
which represents the constant drag step of the first block. For the rest of the blocks, i = 2, N, the displacement is
calculated by using the equation of classical mechanics

AxO(t) = AxO (¢ — At) + AFD (1) AL, v

where A = 1/2m, m being the mass of a block.

e Simulation step #3: application of restrictions. For the calculated displacements, the block step limit dp,x is applied which
means that all displacement values greater than d,,.x are set to be dx.

e Simulation step #4: updating block positions. All blocks are visited following their ordinal numbers and their new positions
are calculated by

x(i)(t) _ X(i)(t _ At) + Ax(i)(t). (5)

Here the only restriction is that a minimum distance d,,;, between blocks is always kept in order to ensure an accident-
free dynamics.

e Simulation step #5: data collection. Stop times for the selected block are detected and stored in the output file. Stop time
of a car is defined as the total time-length of consecutive simulation steps for which the displacement is zero. This is
recorded at the time-moment where the car begins to move again. Car positions can also be stored at this step but this
will result in a large amount of data. This feature is usually turned on for visualization purposes in case of small systems
only.

Simulation steps #1-5 are repeated until enough data is collected for a proper statistical analysis.

According to the dynamics of the model there are some clear differences to previous car-following models [5]. The main
difference is that a real driver is self-driven while this is clearly not the case in the spring-block system.

In our previous study [23] it was investigated how the position of a single block in the queue is influencing its stop-time
distribution. From this study we learned that after a certain number of blocks (transient distance), their cumulative stop-
time distribution converges to the same function. Therefore, in order to ensure that the right asymptotic behavior is studied,
in the present study we simulate block chains longer than this transient distance, and the statistics for the last block in the
row is investigated.

2.2. Realistic model parameters

The motion of the queue is simulated in discrete time-steps of length At = 1. This fixes the unit for simulation time and
gives us the possibility to handle easily the stochasticity in the equations of motion.

The length unit in the simulation is defined by the length of a single block L = 1. This distance is not relevant for the
studied statistics, but it has an importance in determining realistically some other relevant distances. In order to simulate
the simplest dynamics without accidents, a minimum distance between blocks d.,j;, = 0.3 is imposed. This distance is
considered to be also the equilibrium length [y of the asymmetric springs. Taking into account that the length of a real car is
around 4 m, this minimum distance corresponds to a 1.2 m minimum following distance. In the present simulations a step
limit of dhax = 1 is also imposed for each car. This defines a speed limit for the blocks inside the row. It has to be noted
that this speed limit value does not correspond to a usual speed limit applied in case of normal highway conditions. Here
we have to take into account that in case of dense traffic conditions we are interested in a stronger speed-limiting factor
that is governed by the average distance between cars. In our model this average distance goes up typically until 10 m. At
such distances a speed limit of 36 km/h sounds to be a reasonable choice. By this selection, the real length of a simulation
time-step will be Atyq = 0.4 s.

The motion of the queue is governed by the drag step (the movement of the first block) which is kept constant in time.
In each unit of time the first block moves ahead in steps of length dy which fixes the velocity of the first car.

In our previous study [23] it was shown that except for high drag step values the average stop-time and the standard
deviation of stop-times scales with the drag step following a 1/d, functional dependence for any other model parameter
values. In Fig. 2 this scaling is repeated for different disorder levels o. In interpreting this scaling feature one has to keep in
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Fig. 2. Scaling of characteristic stop-times with the drag-step. Stop-time averages (bottom) and standard deviations (top) as a function of the drag steps.
Results obtained from the statistics of 100 000 stop-times. Simulation results for different o disorder levels are presented. The quantities in this figure are
presented in simulation units.

Source: The simulation data is sourced from Ref. [23].

mind that in these simulations the time-step is kept constant. Thus, in order to reach the continuum limit, the drag step has
to be reduced down to a value where this scaling is valid. Moreover, for small drag step values dy < 1 the scaling shows that
the statistics of the systems’ behavior is the same for any small drag velocities. In other words, in our later investigations
this parameter value should be fixed to a small value (i.e. dy = 0.05 which means real velocities around 1.8 km/h) and then
the results and conclusion will be valid for any drag velocities that are much smaller than the speed limit of the blocks. More
evidence in this sense will be presented later, in the “Results” section of the article.

The motion of each block is governed by the total force acting on it. The force unit in the model has been selected by
considering that all springs have the spring constant k = 1 and a unit elastic force acts on a block, when its distance to the
block in front is diy + 1, expressed in simulation length units. With this force unit the mean value (F;) and their standard
deviation o may be freely selected.

The constant A from Eq. (4) is chosen to be A = 1 which fixes the mass of blocks to m = 0.5 expressed in simulation
units.

Therefore, in the following study the effect of the remaining three freely adjustable model parameters on the system
dynamics will be investigated. These are the ratio f of the static and kinetic friction forces, the mean value of static friction
force (F;) and the disorder level o.

3. Results

In real traffic conditions the data is usually collected by detectors located at fixed places. Accordingly, the number of
passing cars in a given time interval (vehicle flow) is the most studied quantity. There are also other related and measured
quantities like time headway, time clearance and time occupancy [5]. These quantities are, however, relevant for the whole
system and they are not focusing on a single car in the row.

In our previous study [23] we turned the question around and we focused on what a driver stuck in the middle of a free
or a congested traffic is experiencing. This can be quantified by the stop-time distribution g(z) of the selected car in the
row. This stop-time distribution describes the distribution of time intervals during which a given car is not moving. In other
words, this distribution function g(t) determines the probability density that the rest time of the car is 7. It also gives a
hint on how predictable the traffic is for the driver. For instance, if the stop-time distribution has a narrow peak, drivers can
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Fig. 3. Characteristic stop-time distributions. Normalized stop-time distributions for the last block in the chain for different disorder levels in the friction
force o. Results are obtained from a statistics of 100 000 stop-times.

predict how much time they are blocked in a given position. On the contrary, for a power-law type long tail distribution the
waiting times are widely different and thus unpredictable.

Concerning the dynamics of the studied spring-block system interesting and non-trivial results have been reported in
Ref. [23] by studying the average stop-time values and their standard deviation. Also, interesting results were obtained while
studying the influence of the disorder level on the friction force values. It was observed that for a fixed mean static friction
force value (F;) at a certain disorder level (¢ ~ 0.7) there is a maximum in the average stop-time value [23]. This result
suggested for example that in our simple traffic system there is a “worst” disorder level in driving attitudes (modeled by
friction forces) for which the average stop-time of a block in the row is maximum.

3.1. Disorder induced phase transition

The disorder level in the system will be quantified in the following by dividing the stop-times standard deviation A(t)
with the corresponding stop-time average (7). In such a manner, one single dimensionless parameter is obtained

A(T)
r =
(1)

which is appropriate as an order parameter. This order parameter will characterize the relative disorder in waiting times
experienced by a driver. The simulations performed in the present work will focus on computing this order parameter as a
function of the relevant f, (F;) and o parameters of the model.

As an example, in the following a case study will be performed for fixed (F;) = 4and f = 0.8 parameter values. Stop-time
distribution functions g(t) are constructed from 100 000 simulated stop-times and they are plotted in Fig. 3 for different
disorder levels o. As is immediately observable, near the disorder level o = 0.6 (second panel on Fig. 3) there are two peaks
with the same magnitude in the stop-time distribution function. At lower disorder levels (first panel of Fig. 3) the first peak
disappears and the stop-time distribution of long stop-times will be close to a normal distribution. This may be explained
by assuming that in this region the motion of blocks is independent of each other and it is mainly influenced by friction
forces generated randomly from a normal distribution. At higher disorder levels however (third and fourth panel of Fig. 3)
the second part of the distribution function becomes less important. Moreover, the distribution is dominated by the first
part which tends to a power-law type distribution suggesting correlated stops induced by collective motion of blocks and
avalanche-like propagation of jams. Due to the continuous nature of the dynamics (molecular dynamics simulations and not
cellular automata approach) quantifying the spatially propagating avalanches is complicated. Thus, the spatial propagation
of these avalanches is not studied and the discussion is limited to the viewpoint of one block. The power-law trend in the
observed stop-time distribution function suggests however a self-organized criticality as has already been reported in the

. (6)
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Fig. 4. Finite size effects. The order parameter r (thick lines) and its first derivative j—; (thin lines) as a function of the disorder level in the system o are
shown on panel A. Results for different system sizes N, are plotted. On panel B the maximum of the first order derivative pn,y is plotted as a function of
the system size. The parameter values for the simulations are the same as in Fig. 3 and all the quantities are expressed in simulation units.

two dimensional version of the spring-block model by Olami et al. [32]. The effects of disorder on these kinds of models
have been studied by Janosi and Kertesz [33]. They have found that in a sandpile-type model disorder destroys criticality.
Contrary with this result, in the present model criticality emerges as the disorder is increased. Here, it has to be noted that
the power-law scaling of the stop-time distribution function stands only for one and a half orders of magnitude. Accordingly,
we cannot be sure about the power-law nature of the distribution. However, for the purpose of the present work only the
radical change in the stop-time distribution function is important, which is obvious in Fig. 3.

Let us visualize the above results using the order parameter r calculated from the same statistical data. Results as a
function of the disorder level o are plotted with continuous lines in Fig. 4(A). For investigating finite-size effects systems
with different sizes are also considered. The graphs suggests that the order parameter has small values around r & 0.5 for
low disorder levels (o € [0.1, 0.7]) and for higher disorder levels the order parameter is quickly reaching values greater
than 1. Therefore, as a function of the disorder level in the system two different phases may be identified: the free flow
phase and the self-organized congested flow (or jam) phase. The transition between these modes is realized through a
disorder induced athermal phase transition. As the system size is increased steeper transition regimes are observable, in
agreement with what one would expect for a second order phase transition. Plotting the derivative of the order parameter
g—; for different system sizes (dashed lines on Fig. 4(A)) confirms the above conjecture. As plotted on Fig. 4(B) the maximum
of the first order derivative ppax around o & 0.8 is increasing monotonically with the system size, indicating that the first
derivative of the order parameter diverges in case of infinite systems. This is a clear sign of a second order phase transition.

The motion of blocks in each phase of these two phases may be visualized by means of position-time diagrams. These
are plotted in Fig. 5. On these graphs the position of each block is plotted along the horizontal axis at each simulation time-
step considering the last 50 blocks of a row of 1000 units. In the bottom panel characteristic simulation results for systems
with low disorder level (here with ¢ = 0.2) are presented. One will observe here that except for small perturbations, the
spatiotemporal pattern of an almost continuous flow is outlined with short stop times that are not visible at the scale of the
graph. On the contrary, in case of high disorder levels (here ¢ = 2.0 is chosen), the spatio-temporal pattern (top panel of
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Fig.5. Time diagrams for the traffic of the cars. Position of the last 50 cars (in a queue of 1000 cars) plotted as a function of time for two different o values.
The diagrams of block motions in the bottom panel indicate a continuous flow (¢ = 0.2). The diagrams in the top panel indicate a congested flow phase
(o0 = 2). The inset panel shows the backwards propagating traffic waves by zooming into the 5000-7500 simulation time portion of the upper diagram.

Fig. 5) is stepwise with clearly visible stop-times on different time-scales and short headway periods between them. During
this headway a self-organized shockwave-like motion of blocks may be detected. In order to visualize the waves a small part
of the graph may be magnified. This magnified view is shown on the inset graph of Fig. 5. In agreement with observations
and other traffic models the traffic waves of the spring-block model are backward propagating with propagation velocity
vs = 18 km/h which is close to the typical real traffic wave propagation velocity of 15-20 km/h [5].

Therefore, our simulation results suggest that the dynamics of the studied spring-block system viewed from the
reference-frame of one block exhibits non-trivial, critical behavior. A disorder induced, athermal second order phase
transition is observed, separating the independent block motions from a highly correlated avalanche-like collective motion.

3.2. Exploring the parameter space

Finally, using the order parameter defined and analyzed in the previous section the relevant parameter space of the
spring-block traffic model is mapped. In six different color maps, on Fig. 6 the order parameter is represented as a function
of the two main parameters of the model: the mean value of static friction force varied between (F;) € [0, 16] and the
disorder level (varied between o € [0.1, 3.0]). Each created map is for a different kinetic/static friction force ratio taken in
the interval f € [0.5, 1.0]. The value of this f parameter is indicated near each figure. Each map contains 2430 data points
and each point is calculated from a statistics of 100 000 simulated stop-times. The color coding has been calibrated in such a
way that dark tones (blue in the colored version) represent order parameter values in the range r € [0, 0.7], and light grey
tones (white to red and orange in the colored version) represent order parameter values in the range r € [0.7, 3.5].

In agreement with the previous case study performed for a single (F;) value, on each parameter map the free flow and
jam phases are clearly separated. For not too small (F) values the location of the phase separation point o, (determined
from the inflection points of the r — o curves) is well approximated by a linear dependence (see Fig. 7(A)):

ocit ((Fs)) = a(F)(Fs) + B. (7)
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Fig. 6. Map of the parameter space. The color maps code the value of the order parameter, r, as a function of the (F;) and o parameters expressed in
simulation units. Different panels correspond to different f ratios. (For interpretation of the references to colour in this figure legend, the reader is referred
to the web version of this article.)

The slope « is decreasing as the f value increases up to 1.0 according to a quadratic trend (Fig. 7(B)). The relation (7) allows
us to determine the disorder level o for any combination of the f and (F;) parameter values.

4. Discussion and conclusions

Let us review now the experiment of Sugiyama et al. [18] from the viewpoint of the new modeling results. In their
published video [20] vehicles are following each other on a circular track with the same imposed average velocity. After
10 min of circling, jams begin to emerge and propagate in the system. It is obvious, that after the long, boring and monotonic
course, the drivers’ attention reduces and the imperfections in their driving styles are increasing. In our spring-block
approach this is equivalent to an increased average static friction value, (F;). Assuming that all static friction values are
changing proportionally the change in the average friction force value leads to a rescaling of the normal distribution’s
standard deviation ¢’ = o % In order to have a more appropriate view on the behavior of the spring-block chain under
such assumptions the order parameter map is reconstructed by using the relative standard deviation o, = (% which is
constant for a proportional rescaling. On Fig. 8 we present results in such a sense for the f = 0.8 value. In contrast with
Fig. 6, instead of the absolute standard deviation o, the relative standard deviation o, is considered on the vertical axes. In
this representation, the increase in the erratic components of the driving styles is equivalent with a horizontal displacement
of the system’s characteristic point to the right (i.e. from point A to B). As indicated on Fig. 8, by such displacements it is
possible to have a transition from the free flow phase (blue region) to the jammed phase (red region). Accordingly, our
model system confirms that the reduced attention of the drivers may induce the emergence of phantom traffic jams. The
other way to have a transition from the free flow phase to the jammed flow phase (i.e. from point A to C) is through an
increased disorder in driving imperfections which may be induced by some unexpected traffic conditions.

It is important also to comment on the influence of the drag velocities or drag steps, dp, on the observed statistics. Based
on the simple scaling relation for the average value of the stop-times and their standard deviation as a function of the
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Fig. 7. Location of the phase boundaries. Figure (A) presents the critical disorder level as a function of the (F;) static friction value. Figure (B) plots the
slope « of the o — (F;) lines as a function of the kinetic to static friction force ratio, f. The quantities on both panels are expressed in simulation units.

35

8
3
2.5
2
1.5
1

0.5

Fig. 8. Effect of driving imperfections and differences in driving attitudes. The color code indicates the order parameter value as a function of the o; = Z5
relative standard deviation and (F;) values expressed in simulation units. Increased driving imperfections or disorder in driving attitudes drives the system
from a continuous flow phase to a congested traffic phase. Phantom traffic jams are thus a result of either increased disorder in driving attitudes or increased
imperfections in driving style of drivers. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this

article.)

drag step (Fig. 2), we already emphasized that for small drag step values dy < 1 the system’s behavior is re-scalable. This
presumption may be confirmed by performing a series of simulations where the relative standard deviation o, and the
kinetic/static friction force ratio f is kept constant. Fig. 9 shows results in such a sense. Here the order parameter and its
first derivative is plotted as a function of (F;) for different drag step values, dy. From the obtained curves it is immediately
observable that in the small drag step limit the critical point separating the two phases is not influenced by the chosen drag
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Fig. 9. Effect of drag velocity on the obtained phase transition. The order parameter (continuous lines) and its first derivative (dashed lines) are plotted
as a function of the static friction for different dy drag-step values. All quantities are expressed in simulation units. The results confirm that the obtained
phases are the same independently of the chosen drag-step values.

step value. The phases that appear for different drag velocities are thus not influenced by the chosen drag velocity, assuming
that this value is small. The obtained results are thus easily generalizable for all small drag velocity values.

In conclusion, a simple one-dimensional asymmetric spring-block chain inspired from the early earthquake models has
been adapted to model the idealized single-lane highway traffic. The model has three free parameters, and a thorough
mapping of the parameter space indicates two clearly distinguishable phases and a rich collective behavior. A disorder
induced second order phase transition has been observed, separating the free flow phase from the congested flow phase
which is dominated by a highly correlated avalanche-like collective motion. Through these computer simulation studies
it was confirmed that the emergence of phantom traffic jams characterized by continuous formation and propagation of
jamitons [14,17] may be induced by an overall reduction of drivers’ attention. Another effect that can lead to the appearance
of phantom traffic jams is the increased differences in imperfect driving attitudes.
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