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R. Deák1,2, Z. Néda1,∗ and P. B. Barna3

1 Department of Theoretical and Computational Physics, Babeş-Bolyai University,
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Abstract. A lattice Kinetic Monte Carlo (KMC) approach is considered to study the
statistical properties of the diffusion of Pt atom clusters on a Pt(111) surface. The in-
teratomic potential experienced by the diffusing atoms is calculated by the embedded
atom method and the hopping barrier for the allowed atomic movements are calcu-
lated using the Nudged Elastic Band method. The diffusion coefficient is computed
for various cluster sizes and system temperatures. The obtained results are in agree-
ment with the ones obtained in previous experimental and theoretical works. A simple
scaling argument is proposed for the size dependence of the diffusion coefficient’s pre-
factor. A detailed statistical analysis of the event by event KMC dynamics reveals two
important and co-existing mechanisms for the diffusion of the cluster’s center of mass.
At low temperatures (below T =400K) the dominating mechanism responsible for the
displacement of the cluster’s center of mass is the periphery (or edge) diffusion of the
atoms. At high temperatures (above T = 800K) the dissociation and recombination of
the clusters becomes more and more important.

PACS: 05.10.-a, 68.35.Fx, 68.43.Jk
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1 Introduction

Understanding surface diffusion of single adatoms and small adatom clusters is an im-
portant step for realistic modeling of various phenomena related to thin film growth: is-
land nucleation, island coalescence and Ostwald ripening [1]. Over the years experimen-
tal techniques, like scanning tunneling microscopy (STM) [2,3] and Field Ion Microscopy
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(FIM) [4–7] was used to obtain precious insight into this phenomena. Experimental ob-
servations were completed by several theoretical methods like static calculations [8–10],
molecular dynamics (MD) [11,12] and Monte Carlo methods (MC) [13,14]. In the present
work a Kinetic Monte Carlo (KMC) approach is considered to study the diffusion coeffi-
cient of single Pt atoms and clusters on Pt(111) surface.

It is a well-known fact that MC simulations are less accurate approximation to real-
ity than the nowadays fashionable ab-initio Molecular Dynamics methods (for a review
see [15]). The advantage of the ab-initio methods is that they do not rely on phenomeno-
logical interaction potentials but calculate them from first-principles. Ab-inito MD sim-
ulations provide an accurate description of inter-atomic interactions, but naturally there
is price to pay for this. The price is the extremely long computational time. Therefore
ab-initio methods are restricted to relatively small systems and short simulation times.
The very short time-scale which is manageable on modern supercomputers (of the order
of nano-seconds) makes these methods inappropriate for studying the diffusion coeffi-
cient of the surface diffusion. In contrast to MD methods, in KMC simulations several
processes are taken into account in a phenomenological manner, many times without a
microscopic foundation. The interaction potentials governing the dynamics of the atoms
and consecutively the values of energy barriers for the particle moves are either heuris-
tic ones or approximated from Density Functional Theory (DFT) calculations [16]. MC
simulations offer, however, a great advantage (for a review see [17]): it is fast and one
can study thus larger systems and much longer time-scales. Due to these advantages
the method is more adaptable for moderate computational resources than MD methods.
With KMC methods a quite reasonable number of atoms can be studied on cheap PC type
computers. MD methods and MC methods are complementing thus each other. Parallel
with developing fast and realistic MD methods, making the KMC simulations more re-
alistic is also an important task. KMC simulations are nowadays targeting structures on
mesoscopic scale or complex phenomena that has characteristic time-scale of the order of
seconds or larger. Since the characteristic time-scale for the diffusion of adatom clusters
on a crystalline surface is much larger than the time-scales manageable by MD methods
we have chosen to consider an up to date KMC method.

The present paper is structured as follows. In Section 2 we describe briefly the main
elements of the KMC method and how the method is implemented for the specific prob-
lem considered in the present work. In Section 3 we discuss some theoretical arguments
regarding the diffusion coefficient and its variation as a function of temperature and clus-
ter size. KMC simulation results are presented and discussed in Section 4. Section 5 is
devoted to general conclusions.

2 The KMC approach and computational details

2.1 The KMC method, a brief review

Kinetic (sometimes labeled as resident-time, or BKL-type) Monte Carlo methods [18] are
appropriate for simulating those dynamical phenomena where several processes with
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widely different time-scales are simultaneously present. For epitaxial thin-film growth
this is the case since: (i) atoms can be deposited on a crystalline surface with a given
rate; (ii) atoms can diffuse on the surface governed by different rates which depends on
the binding energy of the specific location of the atom; (iii) Decohesion of adatoms from
the surface with a given rate can occur. The main idea of the KMC simulation method
is that in each simulation step one process is probabilistically selected (with probability
proportional with its rate) and carried out. The time is updated then non-uniformly
and non-deterministically, depending on the rates of all possible processes at that given
moment [18]. For thin-film growth simulations usually, the deposition (adsorption) rate is
fixed and calculated from the deposition speed (deposition flux) given as the number of
new monolayers deposited in unit time (ML/s). The diffusion rate (rX→Y) of an atom is
governed by the thermodynamic temperature (T) of the system and the potential barrier
(∆EX→Y) that the atom has to overcome between the initial (X) and the final (Y) position:

rX→Y = f0exp
(

−
∆EX→Y

kBT

)

. (2.1)

In expression (2.1) kB is the Boltzmann factor and f0 is the attempt rate, which is
roughly the vibration frequency of atoms in the crystal ( f0 ∼ 1012Hz). Since the value
of the barrier is not straightforward to estimate (even if the pair-interaction potential
between the atoms is known), several simplifying methods are used [19–22]. The simplest
approach is to consider the potential barrier dependent only on the binding energy of the
atom in the initial (X) state [21, 23] or by applying the transition state theory [24]. A
better, but computationally more costly approach is to consider a realistic interatomic
potential and estimate the potential in several points between the initial and final state.
In such case the difference between the maximum and initial value along the minimum
energy path will yield the potential barrier. There are several techniques known in the
literature for finding the saddle point. The most well-known ones are the Nudged Elastic
Band (NEB) [25, 26] and the Dimer method [27]. In order to apply these methods, one
has to determine first the potential energy landscape in several points. The Embedded
Atom Method (EAM) [28–30] offers a good and reliable method for this. Nowadays, with
the advances in ab-initio methods, DFT calculations can be also successfully applied to
estimate the energy landscape [16, 22, 31].

The desorption rate can be obtained either by fixing a phenomenological potential bar-
rier Edec for this process or by calculating the more realistic potential barrier from first
principles, as the binding energy of the chosen atom at the given site. Simulations are
usually performed in a two-dimensional geometry [21, 23], the atoms being allowed to
occupy the sites of a pre-defined lattice. By this approach one reproduces an idealized
situation where a new layer is growing on a perfect crystalline substrate. The simplest
possibility is to consider a square lattice and the sites on the growing layer positioned
exactly on the top of the atoms forming the substrate [21, 23]. In such manner a non-
realistic three-dimensional cubic structure is simulated but approaches on more complex
geometries are also possible. One can use lattices with different symmetries and different
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stacking sequences for positioning the atoms in the growing layer [17, 22, 31]. Simula-
tions can be made more realistic by considering a second ”buffer” layer on the top of the
simulated one so that interchanges between these two layers become also possible. This
allows the formation of additional defects and vacancies [19, 20]. Nowadays computa-
tionally costly off-lattice kinetic Monte Carlo methods [32, 33] are also considered for the
case when several types of atoms are simultaneously present and therefore it is a lattice
constant or symmetry mismatch between the crystalline structures of the components.
In such an approach the allowed positions of the atoms are not exclusively the sites of
a crystalline lattice, like in lattice kinetic Monte Carlo methods, but are computed from
an energy minimization procedure and the dynamics of the system is realized with the
kinetic Monte Carlo algorithm.

2.2 The present approach

In the present work we investigate the diffusion of the Pt atoms and clusters on a Pt(111)
surface. This particular system was explicitly chosen because Pt is one of the most studied
materials in thin film growth, several experimental results and ab-initio calculations are
available, allowing to verify the simulation results in special cases.

For calculating the potentials experienced by the diffusing atoms the generalized
EAM potential is used. The hopping barrier is determined by the NEB method. A
single-atom diffusion mechanism is considered neglecting the concerted and simulta-
neous moves of several atoms from the cluster. These concerted moves would lead to
several complications in applying the NEB method and would increase strongly the nec-
essary computation time. However, as discussed for Cu clusters on Cu(111) surfaces
in [34], neglecting the collective motion of atoms might lead to unrealistically small dif-
fusion constant values (and thus unrealistically high diffusion barriers) in the case of
small stable cluster configurations like trimers and heptamers. Our results will defi-
nitely suffer of this deficiency, however in case of Pt clusters diffusion on Pt(111) surfaces
this effect is expected to be much smaller due to the stronger interatomic potentials and
much higher effective barriers values. For example, for Cu monomers on Cu(111) sur-
faces experiments [34] gives Em = 37±5meV, while for Pt monomers on Pt(111) surface
experiments [6] indicate Em = 260meV, a value which is one order of magnitude higher.
This huge difference is due to the stronger interatomic potential which decreases also the
probability of collective motion of the atoms.

For single atom moves all the relevant degrees of freedom for diffusion are taken into
account, so we believe that the considered approach is a realistic one. As substrate a
triangular lattice ((111) plane of the FCC structure) is used and atoms are considered as
spheres. The topology of the substrate atoms is sketch with filled circles in Fig. 1. In
such manner, there are two triangular sub-lattices (empty circles and crosses in Fig. 1) on
which the adatoms can be deposited and diffuse, forming monolayer lattices of FCC and
HCP crystalline phases. Due to geometric restrictions atoms in the growing layer cannot
occupy neighboring sites belonging to different sub-lattices. Considering a bulk FCC
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Figure 1: Geometry of the considered lattice. Filled circles represents the sites of the substrate, empty circles
and crosses represents the FCC and HCP lattice sites, respectively.

Figure 2: Phase-boundaries that can be formed on the triangular FCC surface.

substrate, stacking fault develops at the interface of the substrate and a growing HCP
monolayer island (Fig. 2). By this manner phase boundaries can also appear between
growing islands of FCC and HCP types.

The edge of the cubes in the Pt FCC structure is 3.92×10−10m [35] which yields
2.77×10−10m as lattice constant for the considered triangular lattice substrate. From
experiments it is also known that the energy barrier for a free Pt atom jumping on the
sites of the (111) plane of the FCC lattice (sometimes called activation energy or migra-
tion energy (Em)) is around 0.25-0.26eV [6, 11, 22]. The attempt frequency is taken as
k0 = 5×1012Hz, the order of magnitude that is generally assumed for the vibration fre-
quency of atoms.

In agreement with earlier studies [19, 20] we assume two possible mechanisms for
cluster diffusion (shown in Fig. 3):

a) Diffusion of atoms on the cluster edge (periphery diffusion).

b) Dissociation of the cluster in two parts, which can diffuse by their own, and recom-
bine in a cluster with the original size.

In order to avoid the interaction and mixing between clusters, systems containing
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Figure 3: Two mechanisms for cluster diffusion: a) edge diffusion of atoms around the cluster and b) dissociation
of the cluster into two diffusing clusters that recombine into a cluster with the original size.

initially just one cluster are considered. During simulation this cluster might fragment in
parts, and the simulation is stopped whenever the biggest component becomes smaller
than 90% of the original size. Clusters with sizes N = 1,2,3,4,5,6,7,9,13,19,25,30 and 37
atoms are studied. As starting configurations a densely packed structure (as close as
possible to disc-shape form) is considered. During simulation no addition deposition of
atoms are considered (F =0Ml/s) and various temperatures ranging from 300K to 900K
are fixed. The simulated lattice size is 256×256 and periodic boundary conditions are
imposed. Three consecutive and fixed layers of substrate atoms are considered.

2.3 The energy barrier calculation method

The NEB method [25, 26] is used for finding the Minimum Energy Path (MEP) of the
diffusing atoms. NEB is an efficient method to determine the saddle points (and con-
secutively the energy barrier) between a given initial and final state of a transition. The
method uses a number of replicas (images) of the diffusing atom, displaced along a con-
tinuous path between the initial and final state of a diffusion step. These replicas are
coupled with fictitious springs to ensure continuity of the path, therefore each of them
feels forces due to external potential and the coupled springs. The basic idea of NEB is
that the elastic forces are projected along the path and the external forces are projected
orthogonally to the path. The relaxing force of the i-th image is:

~Frel
i =−∇V(~Ri)⊥+

(

~F
spring
i

)

|‖

=−∇V(~Ri)+
[

∇V(~Ri)·τ̂i

]

τ̂i+
[

k(~Ri+1+~Ri−1−2~Ri)·τ̂i

]

τ̂i, (2.2)

where ~Ri is the coordinate vector of the i-th image, V(~Ri) is the interaction potential

felt by the hopping system and ~F
spring
i is the spring force acting on the image. k is the

spring constant and τ̂i=~τi/|τi| is the normalized tangent vector along the MEP and at the
location of the i-th image.

The initial coordinates of the images are calculated using a simple linear interpolation
between the initial and final point, after that the band is optimized to reach the MEP
using the steepest descent method. The energy barrier of the transition is the difference
between two consecutive potential energy minimum and maximum along the oriented
MEP. This energy difference is referenced from now on as the height of the saddle point.
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When multiple saddle points are detected, the barrier is given as the sum of the saddle
points height. Multiple saddle points are in cases when the MEP contain an intermediate
lattice site, for example: in case of an FCC-FCC jump intermediate minimum could be a
neighboring HCP site. In the present simulations the adjustable spring-constant param-
eter was chosen as k=0.65eV/Å and 19 replicas were considered along the band.

2.4 Interatomic potential

The generalized EAM [29, 30] was used to calculate the interatomic potentials. This po-
tential has been already used with success to simulate both bulk and surface properties
of multilayer films [30]. EAM offers a realistic many-body approach, where the potential
energy of an atom i is a sum of two terms:

Ui =∑
j 6=i

φ(rij)+F(ρi). (2.3)

The first term represents the simple pair-interaction energy between the i-th and all the
other j-th atoms, the second term is the many-body term resulting from the interaction of
the embed i atom with the local-electron density provided by the other atoms. The pair
potentials are calculated [29] by the following equation

φ(rij)=
A·exp

[

−α
( rij

re
−1

)]

1+
( rij

re
−κ

)20
−

B·exp
[

−β
( rij

re
−1

)]

1+
( rij

re
−λ

)20
, (2.4)

where re is the equilibrium distance between nearest neighboring atoms. A, B, α, β, κ and
λ are adjustable parameters of the potential.

The embedding energy term can be determined as follows [30]:

F(ρi)=







































3

∑
x=0

Fnx

( ρi

ρn
−1

)x
, if ρi <ρn, ρn =0.85ρe,

3

∑
x=0

Fx

( ρi

ρn
−1

)x
, if ρn≤ρi <ρ0, ρ0 =1.15ρe,

Fe

[

1−ln
( ρi

ρe

)η]

·
( ρ

ρe

)η
, if ρ0≤ρi.

(2.5)

The value of ρi is given by

ρi =∑
j 6=i

f j(rij), (2.6)

where f j(rij) is the electron density created by atom j at the coordinate of atom i, and can
be written as:

f j(rij)=
fe ·exp

[

−β
( rij

re
−1

)]

1+
( rij

re
−λ

)20
. (2.7)
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Table 1: EAM parameters for Pt. Values are given here with three decimal precision. For the more exact values
please consult [30].

re (Å) 2.772 Fn0 (eV) -4.010
fe (eV/Å) 2.337 Fn1 (eV) -0.755
ρe (eV/Å) 34.109 Fn2 (eV) 1.767
α 7.080 Fn3 (eV) -1.578
β 3.776 F0 (eV) -4.17
A (eV) 0.450 F1 (eV) 0
B (eV) 0.594 F2 (eV) 3.475
κ 0.413 F3 (eV) 2.288
λ 0.827 Fe (eV) -4.174
η 1.393

The other parameters involved in the calculation of the EAM potential for Pt (see for
example [30]) are listed in Table 1.

3 The diffusion coefficient

Our aim is to compute the value of the diffusion coefficient for various cluster sizes and
temperatures. In general, the diffusion coefficient (D) is derived by following as a func-
tion of time the mean-square displacement of the cluster’s Center of Mass (CM). The
mathematical definition of D is

D=
〈(∆~r(t))2〉

2d·t
, (3.1)

where (∆~r(t))2 is the square of the displacement of the CM in time t and d is the di-
mensionality of the lattice. The best method to compute D is by plotting 〈(∆~r(t))2〉 as a
function of t and determining the slope of the obtained linear dependence. This was also
the method used in the present study. The diffusion coefficient exhibits the well-known
Arrhenius-like behavior as a function of temperature [36]:

D= D0exp
(

−
Em

kBT

)

. (3.2)

In (3.2), D0 is the pre-factor of the diffusion coefficient, Em is a phenomenological acti-
vation energy (or sometime called migration energy) of the diffusing particle or cluster,
kB is the Boltzmann constant and T is the thermodynamic temperature of the system. D0

and Em can be calculated by studying the diffusion coefficient at different temperatures.
One might assume that for clusters of different sizes both D0 and Em is dependent as a
function of the cluster size, i.e., D0 = D0(N) and Em =Em(N).

Previously, Voter and Doll [12] considered an MD simulations for studying the dif-
fusion coefficient’s, dependence as a function of the cluster size. For clusters containing
more than 10 atoms they proposed a power-law dependence.
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Several other theoretical studies reported similar behavior, with largely different scal-
ing exponents that depends on the considered material, temperature and model [13, 37–
39]. Many of the previous studies have also a critical view on the scaling behavior, em-
phasizing that the results are rather ambiguous due to the restricted cluster sizes and due
to the oversimplified model.

Here, we propose a simple theoretical argument for the size dependence of the D0

pre-factor when periphery diffusion is the dominant mechanism for the cluster diffusion
(Fig. 3(a)). Let us assume a cluster of atoms of size N. Assuming that this cluster is usually
a compact disk-like structure (configuration close to the minimum energy configuration),
its perimeter is proportional with N1/2. The number of atoms capable for periphery
diffusion, Ndi f f is thus:

Ndi f f ∼N
1
2 . (3.3)

For the problem considered in the present study, our KMC simulations proved that the
periphery motion of atoms is indeed the leading mechanism for cluster diffusion. This
periphery diffusion is a rapid one, atoms performing several thousands of cycles in unit
time. Due to the edge diffusion of one periphery atom, the average displacement, 〈r1〉 of
the CM of the cluster of size N in unit time is proportional with the radius, RN , of the
cluster (average displacement length of one atom) and inversely proportional with the
total mass of the cluster (N):

〈r1〉∼
RN

N
∼N− 1

2 . (3.4)

The pre-factor of the diffusion coefficient, due to the motion of one single periphery atom,
D01, is thus:

D01∼〈r1〉
2∼N−1. (3.5)

The pre-factor D0 is a result of the edge diffusion of all periphery atoms. One might
expect:

D0∼Ndi f f ·D01∼N
1
2 ·N−1 ∼N− 1

2 . (3.6)

One of the aims of the present paper is to prove this simple conjecture.

4 Results and discussion

Lattice KMC simulations for different temperatures and different cluster sizes were per-
formed to investigate the temperature and size dependence of the diffusion of Pt clusters
on Pt(111) surfaces. For each cluster size and temperature several runs (of the order of
10) were performed and the obtained results were averaged. The length of one run (num-
ber of atomic jumps) was largely different for different cluster sizes. While for monomers
20000 jumps were enough to reach a reasonable distance of the CM relative to the starting
position, for larger clusters (for example N =37) around 800,000 individual jumps were
necessary. Computational time increased thus very much for large clusters. Calculation
of the potentials were parallelized on 6 processors. Simulations were done on a cluster of
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88 Xeon Processors, linked by a Myrinet network. Simulation results are discussed in the
following.

4.1 Arrhenius behavior

Simulations performed at various temperatures prove the validity of the Arrhenius rela-
tion (Eq. (3.2)). Results for ln(D) as a function of 1/kBT are plotted on Fig. 4. Different
curves are for different cluster sizes, as illustrated in the legend. The Arrhenius relation
holds for all cluster sizes, although for closed shell clusters (for example N =7), the dif-
fusion constant values are lower than expected from the general trend after the cluster
sizes.

10 15 20 25 30 35 40
1/kT

-60

-50

-40

-30

-20

-10

0

ln
(D

)

Pt
1

Pt
3

Pt
5

Pt
13

Pt
30

Pt
 7

Figure 4: Arrhenius behavior of the diffusion coefficient for several cluster sizes. Note the smaller than expected
diffusion constant values for the N =7 closed shell clusters.

For single Pt atom diffusion the results indicate D0 =4.3×10−3cm2/s and Em =0.2eV
which is in reasonable agreement with the established results form the literature. The
values of D0 and Em measured from experiments are 2(×1.4±1)×10−3cm2/s and 0.26±
0.03eV, respectively [6]. Results of MD simulations using the EAM suggested D0 =2.41×
10−3cm2/s and Em = 0.19eV [11]. MD studies using Lenard Jones potential yield D0 =
6.3×10−4cm2/s and Em =0.19eV [10].

The above results indicates that the average migration energy, Em, calculated from
the Arrhenius relation (Eq. (3.2)) is somewhat smaller than the experimental one. The
obtained result is however in agreement with the barrier values expected theoretically
using the EAM and NEB. In our KMC simulations, the atoms can diffuse on both stacking
(FCC and HCP ones). The diffusion barriers for the jumps of one freely moving atom on
same or different stacking are summarized in Table 2.

The average diffusion energy should be thus somewhere between 0.294eV and 0.146eV.
Since the HCP-FCC and FCC-HCP jumps are more frequent the obtained Em value should
be closer to the lower bond. The obtained result is in agreement with these requirements.
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Table 2: Computed diffusion barriers for a freely moving atom.

FCC−FCC 0.293eV
HCP−HCP 0.294eV
FCC−HCP 0.148eV
HCP−FCC 0.146eV

Let us turn our attention now to the diffusion of the clusters (N>1). As Fig. 4 indicates
the Arrhenius behavior is valid in all cases. The migration energy values calculated for
clusters of various sizes are summarized in Fig. 5.

0 10 20 30 40
N (nr. of atoms)

0.2

0.4

0.6

0.8

1

1.2

E
m

 (
eV

)

Pt
7

Pt
19

Pt
37

Figure 5: Simulation energy for the migration energy, Em, for clusters of various sizes, N. Please note the local
maximum for close-shell clusters.

These values can be compared with the values determined from FIM experiments [6]
and those calculated by the Effective Medium Theory (EMT) for clusters with sizes up to
N = 7 atoms [8]. Results are plotted on Fig. 6(a). From this figure one concludes a fair
agreement of our KMC simulation results with the experimental data. The EMT results
have a similar trend, but seemingly their agreement with experimental results is less
impressive. The values of the D0 pre-factors are also in good agreement with the FIM
experimental results (Fig. 6(b)). A strong difference is obtained for clusters composed
by N = 7 atoms. In this case experiments suggests D0 = 5.1(×3.8±1)×10−1cm2/s, while
our simulations yield D0 = 1.6×10−2cm2/s. The N = 7 atom clusters are the smallest
closed shell clusters on the FCC lattice. As it was emphasized already in Section 2.2
for small close-shell clusters the concerted motion of atoms become important. In the
computational approach considered here these were neglected, so it can be assumed that
the difference between experimental results and simulations is a result of our single-atom
diffusion approximation. Further closed shell structures are the ones containing N = 19
and N = 37 atoms. From Fig. 5 we learn that Em has local maximums in these cases as
well. Fig. 5 suggests also the saturating trend of the migration energy as the cluster size
increases.
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Figure 6: Simulation results for the values of the Em migration energy (a) and for the D0 pre-factor of the
diffusion coefficient (b) as a function of the cluster size, N.

4.2 Size dependence

Let us turn now the attention on the size dependence of the diffusion coefficient. As
discussed in Section 4, one would expect that both D0 and Em depends as a function of
the cluster size: D0 = D0(N) and Em = Em(N). Fig. 5 illustrates the trend of the Em(N)
dependence, suggesting a saturating trend for larger clusters. Many earlier numerical
studies [12,13,37,38] suggested without any analytical foundation a power-law behavior
of D(N) for clusters containing more than 10 atoms. The suggested scaling exponents
are widely different and depends both on model and temperature range.

Plotting the diffusion coefficient versus the cluster size on a log-log plot one would
expect thus straight lines. For the relatively small clusters considered in our KMC simu-
lations (N ≤37) this conjecture holds relatively well. On Fig. 7(a) we present the log(D)
versus log(N) plot for several temperatures. If one would force a power-law fit D=C·Nγ

on these curves the results would yield γ scaling exponents that vary strongly with the
temperature (Fig. 7(b)). However, due to the very restricted cluster sizes we were able
to study with the available computational resources (N≤37), the power-law claim is not
rigorously sustainable.

In Section 3 we presented a simple argument (Eqs. (3.3)-(3.6)) for the scaling property
of the D0 pre-factor: D0∼N−1/2. The D0 values determined from our KMC simulations
supports this conjecture. Plotting log(D0) as a function of log(N) for simulations done at
various temperatures leads to almost overlapping curves (Fig. 8). The general trends on
this log-log plot suggest scaling with an exponent very close to the predicted -0.5 value.
On Fig. 8 it is also observable that for the N =7 closed shell configuration a huge peak is
present: the pre-factor increases with almost two orders of magnitudes. As we discussed
before, the migration energy has also a clear and understandable maximum for N = 7
(Fig. 5). This maximum in Em would decrease the value of the diffusion coefficient. The
peak in the pre-factor is however much more puzzling, and will balance in part the effect
of Em. Several previous experimental and simulation studies [4–7, 9] noticed this peak in
D0, both for the Pt7 and Ir7 clusters. Presently there is no final and conclusive explanation
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Figure 7: Double logarithmic plot of the cluster size dependence of the diffusion coefficient (log(D) vs. log(N)).
Results for various temperatures and a D=C·Nγ power-law fit for the data-points. (b) illustrates the dependence
of the γ scaling exponent as a function of temperature.
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Figure 8: Size dependence of the D0 pre-factor of the diffusion coefficient.

for its occurrence. Our feeling is that this peak is also an artifact due to the single-atom
diffusion approximation considered in our KMC simulations.

4.3 Jump-size statistics

Up to now we described the surface diffusion of the clusters by means of an ensemble
averaged phenomenological quantity: the diffusion coefficient. However, computer sim-
ulations allow much more! The surface diffusion of the clusters can be approached on an
event by event level, analyzing the individual displacements in the clusters CM as well.
After each KMC event, one can compute this absolute displacement and their statistics
could yield additional information on the diffusion process. Our studies will focus on
an open shell cluster: Pt13. In the following we will use simply the term ”jump” for the
displacement of the CM in one KMC step. The size of these jumps will be measured in
lattice constant units.



R. Deák, Z. Néda and P. B. Barna / Commun. Comput. Phys., 10 (2011), pp. 920-939 933

750 770 790
0

0.1

0.2

779.9 780 780.1 780.2
0

0.1

0.2

time (10
-9

s)

Ju
m

p 
si

ze
 (

la
tti

ce
 c

on
st

an
t)

(a.)

(b.)

Figure 9: Jumps of the clusters CM as a function of time. (b) is a magnification of a part of (a).

On Fig. 9(a) and Fig. 9(b) results for a simulation performed at T = 900K are given
plotting the size of the jumps as a function of time. Fig. 9(b) is a magnification of a small
part of Fig. 9(a), illustrating the quantized nature of these jumps and the fact that in the
KMC simulation time evolves in non-uniform steps.

Jumps of sizes 0 occurs when a freely moving atom (an atom which escaped from
the cluster) makes a diffusion step. The CM of the cluster remains immobile in this time
period. Jumps smaller than 0.12 lattice constants, are characteristic for edge diffusion.
This threshold value can be obtained by simple geometrical considerations, following
what happens with the position of the CM when an atom on the edge of a cluster with
N =13 moves to a neighboring empty site.

In our model two different types of edge diffusion mechanism are competing Fig. 3.
The first one is when an atom from the clusters edge moves between an FCC and HCP
site. The second one is when the moving atom remains on the FCC or HCP sub-lattice. In
the first case we observe jump sizes smaller than 0.07 lattice-constant, while in the second
case we get jump sizes between 0.07 and 0.12 lattice constant.

Whenever an atom leaves a cluster or re-attaches to the cluster, the displacement of
the clusters CM changes more drastically than in the case of the diffusion of atoms on the
edge of the cluster. The jump sizes are bigger than 0.12 lattice constant in such cases.

It is instructive now to follow the jump size statistics of non-zero jumps at different
temperatures. Simulations at 300K, 500K, 700K and 900K were performed. The jump size
statistics are presented as simple histograms on Figs. 10(a)-(d). For all studied tempera-
tures the majority of the CM’s jumps are around 0.05 lattice constant. In order to visualize
the frequency of much less abundant jumps we use a logarithmic scale. These histograms
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Figure 10: Jump-size statistics (histograms) for different temperatures. Please note the logarithmic vertical
scale.

illustrate nicely the effect of temperature on the relative frequency of the main diffusion
mechanisms in the model. At lower temperature (T = 300K) the edge diffusion mecha-
nism is the leading one, since the jump sizes are mostly below 0.12 lattice constants. As
one would naturally expect, for higher temperatures (T = 700K and T = 900K) the clus-
ter fragmentation probability becomes higher, leading to jumps bigger than 0.12 lattice
constants.

Analyzing the statistics of the jump sizes we got the same conclusion as from the
analysis of the diffusion coefficient as a function of the cluster size. At high temperatures,
the dissociation-recombination (or evaporation-condensation) mechanism becomes more
and more important.

4.4 Cluster eccentricity

From the event by event analysis of the cluster configuration, one can study also the
temperature dependence of the average cluster shape. This is quantified by the clusters
average eccentricity (ε), characterizing the asymmetric nature of the average cluster con-
figuration.
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The eccentricity of a cluster configuration is calculated from the coordinates of the
component atoms. Our main mathematical tool is the 2×2 eccentricity matrix, E, (4.1a)
with elements:

E=

(

Exx Exy

Eyx Eyy

)

, (4.1a)

Exx =∑
i

(XMC−Xi)(XMC−Xi), Exy =∑
i

(XMC−Xi)(YMC−Yi), (4.1b)

Eyx =∑
i

(YMC−Yi)(XMC−Xi) , Eyy =∑
i

(YMC−Yi)(YMC−Yi), (4.1c)

XCM and YCM denotes the X, respectively Y coordinates of the clusters CM, Xi and Yi are
the coordinates of ith atom of the cluster. The eccentricity, ε, of a configuration is a scalar,
computed from the eigenvalues, λ1 and λ2, of matrix E:

ε=

∣

∣λ1−λ2

∣

∣

max
{

λ1,λ2

} . (4.2)

The eccentricity defined in (4.2) takes values between 0 and 1. For a disc shaped cluster
ε=0 and for a linear cluster ε=1.

During our KMC simulations the time-averaged eccentricity of the Pt clusters contain-
ing 7, 9, 13, 19, 30 and 37 atoms were studied in a temperature range between T =300K
and T =900K. Results are plotted in Fig. 11. As one would naturally expect, the average
eccentricity is always monotonically increasing with temperature. The increased thermal
fluctuations will distort the minimum energy disc-like configurations in increasing man-
ner. Fig. 11 indicates also that the considered clusters can be classified into two groups
after their ε(T) trend. The first group contains clusters with eccentricities varying almost
linearly as a function of temperature (N =9,13, and 30). The second group contains clus-
ters with eccentricity values much smaller at low temperatures and with a non-linear
(saturation-like) variation of the eccentricities as a function of temperature (N=7, 19 and
37). This second group contains the clusters with closed shell structures.

The eccentricity of the smaller closed shell clusters are higher than the eccentricity of
the bigger closed shell configurations. The reasoning is simple: the movement of an atom
(a basic event in simulation) will influence in a larger manner the value of the eccentricity
for smaller clusters than for the bigger ones. As an example let us consider the case of the
Pt7 and Pt19 closed shell clusters. In their basic compact configurations the eccentricities
are ε = 0 for both of them. Starting from this configuration if an edge atom makes an
FCC-HCP diffusion jump the cluster remains the closest possible to disk shape. A simple
calculation shows that the new eccentricity values will become ε(Pt7)=0.32 and ε(Pt19)=
0.09. For the FCC-FCC jump of an edge atom, the eccentricity will change to ε(Pt7)=0.49
and ε(Pt19)=0.13. In both cases the eccentricity of the N =7 cluster is larger.

For closed shell structures one can distinguish three distinct temperature regimes. For
temperatures below T =400K the edge atoms make short distance jumps, like FCC-HCP.
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Figure 11: Average eccentricity of the Pt7, Pt13, Pt19, Pt25, Pt30 and Pt37 clusters as a function of the system
temperature.

In most cases in the next KMC event the atom will jump back, the cluster recombining
into the disc shape. The average eccentricity is thus small and increases slowly. For
medium temperatures, between T =400K and T =800K, the distortion increases rapidly
with the temperature due to the increasing edge diffusion and dissociation-recombination
mechanisms. For temperatures higher than T=800K there is a saturating trend in the av-
erage eccentricity. Atoms will leave the clusters with a higher probability and their free
diffusion on the surface will have no further effect on the cluster eccentricity.

5 Conclusions

Earlier studies [12–14] proved already the applicability of the KMC method for studying
several thin-film growth related phenomena: island nucleation and growth, island coa-
lescence, stacking faults related phase boundary motion, co-deposition of several types
of atoms, segregation patterns and interesting structures formed during epitaxial growth.
In the present study we have used the KMC approach with a realistic interaction poten-
tial and barrier heights to study the statistics of the diffusion of Pt clusters on a Pt(111)
surface. The results obtained for the value of the diffusion coefficient of clusters up to
N =37 atoms, their temperature and size dependence of the diffusion coefficient, are all
in reasonable agreement with previous experimental and theoretical studies in this sys-
tem. Our simulation data confirmed the validity of the Arrhenius equation regarding
the temperature dependence and the simple D0∼N−1/2 scaling assumption for the pre-
factor. The results also indicate that the single-atom diffusion approximation might not
be reasonable for describing the diffusion of small close-shell clusters. In such cases the
concerted move of the atoms has to be taken into account.

Visualization of the dynamics, and interpretation of the statistical data, revealed two
different mechanisms for the diffusion in the considered model: (i) diffusion of atoms
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around and on the periphery of the cluster; (ii) dissociation of the cluster in two or more
smaller parts, which can diffuse on the surface and recombine in the original cluster. The
jump-size statistics of the cluster’s CM and the eccentricity of the cluster’s shape, both as
a function of temperature and cluster size, offered additional and valuable insides in the
diffusion process. A clear picture emerges for the dominant diffusion mechanism. At low
temperatures (below T =400K) the periphery diffusion is the leading mechanism, while
at high temperatures (above T = 800K) the contribution of dissociation-recombination
mechanism becomes more and more important.

The KMC method implemented with the EAM potential and the NEB method for de-
termining the energy barrier for diffusion proved to be a fair approximation for studying
diffusion of Pt clusters on Pt(111) surfaces.
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