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A two dimensional spring-block type model is used to model capillarity driven self-organization of nano-
bristles. The model reveals the role of capillarity and electrostatic forces in the pattern formation mech-
anism. By taking into account the relevant interactions several type of experimentally observed patterns
are qualitatively well reproduced. The model offers the possibility to generate on computer novel nano-

bristle based structures, offering hints for designing further experiments. In order to allow for experimen-
tal validation of the model through future experiments, the cell-size distribution of the simulated cellular
pattern is also studied and an exponential form is predicted.

© 2011 Elsevier B.V. All rights reserved.

Reproducible nanoscale patterns and structures are of wide
interest nowadays for engineering components in modern small-
scale electronic, optical and magnetic devices [1]. The so-called
bottom up approach for the fabrication of these nanostructures
uses nanoparticles as elementary building blocks. Under some spe-
cific conditions the nanoparticles self-organize into the desired
structures [2]. A well-known and widely explored possibility to in-
duce this self-organization is to use the capillarity forces which ap-
pear during the drying of a liquid suspension of nanoparticles [3,4].
For instance, regular and irregular two-dimensional polystyrene
nanosphere arrays on silica substrates are generated by such meth-
ods [5]. These patterns are used then as a convenient mask in the
NanoSphere Litography (NSL) method.

Carbon nanotubes (CNT) are attractive materials for nanotech-
nology because of their interesting physico-chemical properties
and molecular symmetries. In order to make them appropriate
for certain applications, proper initial CNT configurations have to
be built, and specific conditions have to be found which enable
their controlled self-organization [6-8]. This is a very ambitious
and challenging task, which can be made easier by elaborating
working computer models for the self-organization of CNTs on
substrates. Therefore, not only experimental, but also computa-
tional studies can advance the field of nanoengineering.

In the work of Chakrapani et al. [9] an experimental procedure
is presented in which capillary self-organization of nanobristles (or
so called ‘CNT forrests’) leads to puzzling cellular patterns. As
pointed out by the authors, crack formation results from the reas-
sembling of highly ordered, elastic CNTs. The obtained remarkable
cellular patterns are extraordinarily stable.
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The experimental procedure [9] may be shortly summarized as
follows. Multi-walled nanotube arrays are grown on rigid silica
surface by chemical vapor deposition (CVD) based on the decom-
position of ferrocene and xylene. The resulting nanotubes have a
wall thickness of ca. 10 nm and a diameter of ca. 30 nm. The aver-
age distance between two nanotubes is ca. 50 nm. The obtained
nanotube bristle is oxidized in an oxygen plasma at room temper-
ature and 133 Pa pressure for 10 min and immersed in a wetting
fluid. After the liquid evaporates, characteristic cellular type pat-
terns are formed as the ends of nanotubes self-organize in compact
walls.

Figure 1 shows scanning electron microscope images of some
typical structures. From the figures we deduce that a wide variety
of structures are engineered in such manner. Both statistically
symmetric polygonal cells and rather elongated ones can be ob-
tained by changing the experimental conditions.

These micrometer scale structures have many advantageous
features. They can be elastically deformed, transferred to other
substrates or used for producing free-standing macroscopic fabrics.
Thus, they might find potential applications as shock absorbent
reinforcement in nanofiltration devices, elastic membranes and
fabrics, and containers for storage or growth of biological cells.

Despite of its applications and the existence of well elaborated
production protocols, the exact mechanisms responsible for self-
organization of CNTs into vertically aligned cellular structures is
not clearly understood. Recently, it has been argued that although
we lack some basic information regarding the self-organization of
CNTs within a bristle, this process can be approximated with the
self-organization of arrays of CNT micropillars of micron-scale
diameters [10] each consisting of thousands of CNTs. This observa-
tion enables the construction of a computationally tractable model
which operates instead of stand-alone CNTs with micropillars.
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Figure 1. Scanning electron microscope images of the structures obtained in drying
nanobristles.

In the present work a simple mechanical spring-block type
model defined at mesoscopic micropillar level is considered for
understanding the capillarity driven self-organization of
nanobristles.

The model is based on the mechanical spring-block stick-slip
model family. This model family appeared in 1967, when Burridge
and Knopoff [11] constructed a simple mechanical model for
explaining the Guttenberg-Richter law for the distribution of
earthquakes after their magnitude. The basic elements of the mod-
el are blocks and springs that interconnect in a lattice-like topol-
ogy. The blocks can slide with friction on a planar surface. The
original model introduced by Burridge and Knopoff (BK) is one-
dimensional. It can be studied numerically and it exhibits self-or-
ganized criticality [12]. The BK model gained new perspectives
with the strong development of computers and computer simula-
tion methods. Variants of the BK model proved to be useful in
describing complex phenomena where avalanche-like processes
are present, pattern formation phenomena and mesoscopic pro-
cesses in solid-state physics or material sciences [13,14].

Recently, by using this model, we have successfully explained
the patterns obtained in capillary self-organization of nanospheres
[5,16]. Motivated by this success, hereby we propose to map the
capillarity driven self-organization of nanotube bristles to a
spring-block system, and to understand the pattern selection pro-
cess by means of computer simulations.

Figure 2. Main elements of the spring-block model. Panel (a) shows a schematic 3D
representation of the nanobristle for the initial and a later state. Panel (b) illustrates
the dynamics of the equivalent 2D model.

First, let us consider the three-dimensional (3D) model, which is
very similar to the real nanotube arrangement. As sketched in Fig-
ure 23, the micropillars composed by thousands of nanotubes hav-
ing fixed bottom ends are modeled by flexible strands. Their
interactions are represented by non-classical springs that connect
the neighboring pillars. As motivated below, the evaporation of
the liquid is simulated by the stepwise increase of tension in the
springs. This will result in the agglomeration of micropillar ends
creating the final structure in the studied system.

As shown in Figure 2b, this 3D model can be easily mapped into
a two-dimensional (2D) one by projecting the micropillars’ top
ends on the surface. In the projection plane the micropillars bot-
tom ends are represented as dots, and their positions are fixed
on a predefined lattice. The movable top ends are modeled by
the disk shaped blocks which can slide with friction on the 2D sim-
ulation surface. For visual purposes only, each disk is connected by
an extensible string with its bottom end showing the micropillars’
trunk. In our simplest approach there is no restriction imposed to
the length of these extensible strings which means that nanotubes
with infinite length are used. This corresponds to the real case
when the nanotubes length is much grater than the linear size of
the cells in the final patterns. The disks (top of micropillars) are
connected with their nearest neighbors through special springs
that model the resulting forces acting between the micropillars.

These special springs are one key ingredient of our computa-
tional model. They represent the resultant interaction force acting
between two micropillars immersed in suspension. The tension
force in the spring has a complex variation with the spring-length,
i.e. the inter-pillar distance. It's form is sketched with a red line in
the top panel of Figure 3. This force is the resultant of the capillary
force, and the dipolar electrostatic repulsion between the
micropillars.
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Figure 3. Forces acting between micropillars immersed into liquid (top panel).
Forces are shown both at a given time step (solid line), and at a later one (dashed
line). The bottom panel shows the length dependence of the net force used for
modeling the resultant of the real interactions. It also contains the hard-core
repulsion force between disks. Again, the shape of the force curve is shown at an
earlier (solid line) and at a later stage (dashed line). The slope of the net force
determines the spring-constants.
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The capillarity force acting between two micro-scale rods wet-
ted by a liquid was measured experimentally and deduced analyt-
ically, too [17-19]. For the analytic form of these forces one might
use the formula given in the recent work of Chandra and Yang [20]

_ myR*cos?(0)

Fc: )
R

(1)

where x is the distance between the centers of the nanotubes, R is
the radius of the nanotubes, y is the liquid-gas surface tension
and 0 is the contact angle. For x > R one gets that this force decays
inversely proportionally with the center-to-center distance x.

The repulsive electrostatic force is mainly due to the charge
polarization of the nanotubes induced by the hydroxyl radicals that
are attached to it as the result of the oxidization process. This dipo-
lar interaction is transmitted through the wetting liquid’s mole-
cules (water in our case), which contains polar molecules as well.
One can assume, that for x > R the strength of this electrostatic
repulsion decays as a power-law with the interpillar separation
distance d = x — 2R (the dipoles are located on the surface of the
nanotube), it is linearly proportional with the dielectric constant
(or relative permittivity, €,) of the medium between the nanotubes
and depends also on the average dipolar moment u per unit length
of the nanotubes:

2
F, = Const - ¥ dfr 2)
As a first approximation one can consider o ~ 3, an exponent which
is characteristic for the dipole-dipole interactions. Note that such
dipolar repulsive forces between nanotubes immersed in water do
appear also without oxidization of the nanotubes [21], but they
are important only on smaller length-scales from 0.2 to 1 nm.

The third type of surface forces, attractive van der Waals forces,
are important also on this smaller length-scale [21,22], and for int-
erpillar separation distances of tens of nanometers they are one or-
der of magnitude weaker than the capillarity and dipolar
electrostatic forces. Thus, we neglect them in our model. The elas-
ticity of the pillars is also not considered due to the large length-
diameter ratio of the micropillars. In the studied case, the surface
tension is dominant, and thus the bending elasticity looses its rel-
evancy [23,24].

Our model approximates the resultant of the electrostatic
repulsion and capillarity attraction forces which reduces to zero
for long distances and it has a maximum F, at distance d, of
micropillars. The special spring-force used in simulations is shown
in the bottom panel of Figure 3. For small elongations d < dy, this
spring acts as a classical spring with

Fi(d) = k(x — 2R) = k - d, (3)

where k is the spring constant and 2R is its equilibrium length. For
elongations longer than d,, the spring force decays as

Fr(d) = k'/x, (4)

where the constant k' is selected in such way that the force-elonga-
tion curve is continuous at d,,.

Similarly with our previous models of drying granular materials
[15] or self-organizing nanosphere systems [16], the effects created
by the evaporation of the liquid is introduced through these
springs. As the liquid evaporates, the water level drops between
the nanotubes, leading to a decrease of the effective relative per-
mittivity (€,) of the medium. As a result, dipolar electric interaction
becomes weaker leading to a stronger attractive resultant force.
This effect is modeled by a step-by-step increase of the spring con-
stant k. Accordingly, with increasing k the d,, value has to be also
proportionally lowered.

The second key ingredient of our spring-block model (necessary
to get realistic structures) is the capillary force resulting from the
non-vertical orientation of the micropillars. Once the micropillar
becomes inclined, the meniscus radius of the liquid surface in con-
tact with the micropillar becomes grater on the side where there is
a larger angle between the micropillar and the horizontal surface of
the liquid. This leads to an unstable state because a resulting net
force F ~ 1/ cos & pointing vertically downwards will act at the
crossing point between the liquid surface and the micropillar
[23], tending to incline even more the tube. Here we denoted by
@ the angle between the vertical and the tangent to the micropillar
at the liquid level. In our spring-block approach this force which is
monotonically increasing with the inclination angle is approxi-
mated by a simple linear repulsion force

Fa(s) = kas (5)

acting between the disk and its fixed bottom end (s denotes their
distance in the simulation plane and k, is the repulsion constant).

There is an additional almost hard-core-type repulsion F; which
forbids disks to interpenetrate. This is taken into account by the
repulsive part of a Lennard-Jones type force which acts only when
the distance between two disks becomes smaller than 2R (bottom
panel of Figure 3).

Additionally to the presented forces, damping forces are consid-
ered to stabilize the dynamics. A friction (pinning) between disks
and surface is introduced. It can equilibrate a net force less than
F,. Whenever the total force acting on a disk exceeds F,, the disk
slips with an over-damped motion.

The dynamics leading to pattern formation consists of the fol-
lowing relaxation steps. First, the system is initialized. Disks are
placed on a triangular lattice with lattice constant a and their cor-
responding bottom ends are fixed at the same positions. Next, the
interconnecting spring-network is build by connecting each disk to
its closest neighbors on the lattice. Then, the disks are slightly dis-
lodged in a random direction with a small random shift not grater
than the half of the empty space between disks. Thereby, the initial
imperfectness of the nanobristle is modeled. The spring constant k
is selected in such way that in the initial system the spring forces
are not exceeding the pinning force F, that acts on each disk. An
initially pre-stressed spring-block network is thus constructed.
During each simulation step the spring constant is increased by a
small amount ok representing the increase of tension due to the
evaporation of water and the system relaxes to an equilibrium con-
figuration. In this configuration the total net force acting on each
disk is lower in magnitude than the pinning threshold F,.

Similarly with the modelling of drying nanosphere suspensions
[16], the relaxation dynamics is realized through an over-damped
molecular dynamics simulation using a fixed time-step. The equi-
librium state in a viscous medium can be found by moving the
disks in each simulation step in the direction of the net force acting
on them, and with a displacement which is proportional to the
magnitude of the resultant force

dr = %F(r)dt, (6)

where v denotes a viscosity. Since the simulation steps will be cho-
sen small enough, this simplified dynamics is able to replace the
Newtonian solution without loss of significant information. We re-
mind here that we are not interested in the dynamics, but in the fi-
nal equilibrium configuration. A relaxation step is finished when no
disk slipping event occurs for the given spring constant value. It
usually takes a very long time to achieve a perfect relaxation, there-
fore we introduce a tolerance (10~° to 107%), and assume that the
relaxation is completed when the largest displacement per unit
time is smaller than this value. After relaxation is done, we proceed
to the next simulation step and increase all spring constants by Jk.
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This dynamics is repeated until a final, stable configuration of the
disks is reached.

When implementing the above relaxation dynamics, several
types of boundary conditions can be considered. However, as it
was shown in [16] the boundary conditions (free, fixed or periodic)
will influence the final stable structure only in the vicinity of
boundaries. In the bulk, the obtained structures are rather inde-
pendent of this choice. Accordingly, in the present simulations
fixed boundary conditions are used and snapshots from the bulk
are taken for later investigations.

The above presented model has many parameters. In the fol-
lowing we will specify the domains in which they varied during
our simulations. On one hand, we identified those parameters that
do not influence considerably the resulting patterns. On the other
hand, we determined which ones were found to have an impact
on the outcome of pattern formation. We use relative (non-dimen-
sional) units. The radius of the nanotubes is taken as unit length.
Force unit is fixed by the value of the initial tension in the springs.
Simulation steps will define the unit for time, and the unit for vis-
cosity results from Eq. (6).

The disks are considered to have radii R =1, defining the unit
length in the system. After fixing the diameter of the circular sim-
ulation area D = 400-600, the disks are placed on the triangular lat-
tice having a lattice constant a =2.2-5.0. The density (or space
filling) of micropillars is implicitly defined by this lattice constant.

The disk sliding dynamics is governed by the viscosity v =250
used in Eq. (6) and the pinning threshold F, = 0.001. It was verified
by simulations on small sized 200 x 200 systems that the model
will always work for viscosity values selected between reasonable
limits v = 100-1000 and for these viscosity values the final patterns
are rather similar (see top row of Figure 4). Choosing a too small
viscosity will result in unrealistic oscillations of disks, while a too
high value will make disk slips too small and thereby increase con-

v =1000

v =250 v =100

F,=0.0005; N;=10 F,=0.001; N;=11 F,=0.005; N,=14

£=6.510"8 e=1310"7 £=6510"
Figure 4. Simulations performed with different viscosity (top), pinning threshold
(middle) and Lennard-Jones ¢ parameter (bottom) values. The parameter values of
the red framed panels will be used in large-scale simulations. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version

of this article.)

siderably the simulation time. Simulations results on small sys-
tems reveal the influence of the other parameters as well. The
effect of the pinning threshold on the final patterns are presented
in the middle line of Figure 4. Based on these results it was con-
cluded that the pinning threshold affects only the number of sim-
ulation steps Ny needed to start the pattern formation process. This
may be understood if one takes into account that during simulation
spring constants are increased and cell nucleation will start when
the net forces acting on tubes is comparable with the pinning
threshold.

The springs used in simulations are characterized by two
parameters, namely the initial spring constant k = 0.01-0.05 and
the equilibrium distance of springs 2R. By these parameters the
non-dimensional unit for the forces in our model system is defined.
In order to simulate a quasi-static drying process the spring con-
stant increasing step has to be a small one 5k = 0.001. The central
capillary repulsion constant k, = 0.0003 is set to be small enough
such as in the initial system, where the micropillars are almost ver-
tical, not to affect the cell formation dynamics. Later, when the
walls are forming (and the micropillars are no longer vertically
aligned), this force becomes grater and it helps the wall formation
and stabilization process.

The used Lennard-Jones force has its standard parameters set to
6=1.79and ¢ = 1.3 x 1077 expressed in simulation units. The va-
lue of ¢ is selected in such way that the minimum of the L] poten-
tial is placed at x = 2R. We have performed simulations on systems
with small sizes for different ¢ values. The results are summarized
in the bottom row of Figure 4. Based on the visual analysis of the
final patterns and the pattern formation dynamics it was con-
cluded that there is no qualitative change of the patterns nor in
their formation process in the parameter region
£§=6.5 x 10 -3 x 107’. Above this range, some unrealistic
oscillations of the nanotubes that are in contact will appear and
will dominate the dynamics. This causes that at the beginning of
the pattern formation dynamics fewer cells are nucleated and few-
er stable walls are formed. Therefore, in the final patterns qualita-
tively similar but larger cells are obtained. Accordingly, the &
parameter has to be selected from the range, where no unrealistic
oscillations are present.

All results presented in the following are obtained with the
above chosen parameter values, unless it is otherwise specified
in figure captions.

The presented algorithm can be easily implemented and sys-
tems up to 300000 micropillars can be simulated in reasonable
computational time. As shown on the time-sequence in Figure 5,
the cellular patterns are formed after nucleation of voids in the
spring-block network (time step N=9). A preliminary void is en-
larged by the tensioned springs (time step N =13) until the top
of micropillars arrange in a final and stable cellular structure (time
step N = 16). The obtained dynamics resembles the pattern forma-
tion mechanism known from experimental in-situ observations
[9].

Furthermore, the effect of nanotube density on final patterns is
computationally investigated. Simulations with the same parame-
ter set are preformed for systems initialized with different lattice
constants a. By this, the space filling of the micropillar system

2n
P==r )
is varied. Here, it has to be noted that the micropillar density and
implicitly the micropillar lattice constant are linearly connected to
the real nanotube density p, and the nanotube lattice constant a,,
respectively. If a micropillar is composed by N nanotubes, then by
simple geometrical calculations it can be shown that
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N=15

Figure 5. Time evolution of the simulation for parameters D =400, a=2.2 and
k=0.01. The simulation time step N is noted below the snapshots.

= Lezandafa\/@ (8)
p_pani\/gN —Yn T )

where R, denotes the radius of a nanotube.

In Figure 6 three different type of simulated structures are pre-
sented. For high space filling p = 0.688 corresponding to lattice
constant a = 2.4 (top left panel) polygonal cellular structures are
obtained similar to those on the left hand side of Figure 1. As one
can observe on the magnified cell image, at the center there is a
clean area formed by radially outgoing micropillars. For intermedi-
ate space filling p = 0.404 which corresponds to a lattice constant
a=3.0 (top right panel) the micropillars self-organize into elon-
gated cellular structures. The obtained structures are in qualitative
agreement with the experimental structures presented in the right
hand side SEM images of Figure 1. When interpreting the image,
one has to take into account that the length scale of this snapshot
is 1.25 times smaller than the length scale of the previously dis-
cussed one (top left panel). Accordingly, the typical size of the sim-
ulated elongated structures is 3-5 times grater than the typical
size of the polygonal structures. For low space filling p = 0.145 cor-
responding to a lattice constant a=5.0 (bottom left panel) the
micropillars form bundled clusters resembling novel experimental

N =16

Figure 6. Final structures obtained for various micropillar densities. Simulation
results obtain with parameters D = 600 and k = 0.05. The lattice constant is a = 2.4
for the top left panel, a = 3.0 for the top right panel and a = 5.0 for the bottom left
panel. The obtained structures are magnified on the bottom right panel.

patterns of sequential assembly of self-similar nanotube clusters
[24].

In order to allow also a quantitative experimental confirmation
of the model the cell-size distribution of the simulated pattern is
also calculated. The presented results are obtained for the same
parameter set as those in Figure 6 except that in this case huge
2000 x 2000 sized systems are considered. From multiple simula-
tion results 2500 cells are extracted and their size-distribution f(S)
is constructed, where S denotes the area of a cell. Instead of f(S) it is
more convenient to use the more general g(y) distribution function
for the y = 5/(S) normalized cell sizes. As it is immediately obser-
vable from the log-normal representation in Figure 7 the simulated
distribution function may be well approximated by an exponential
curve.

Finally, our simulations explored also the possibility of design-
ing highly ordered micropatterns in nanobristles. We recon-
structed a recent design procedure that is based on the
experimental observation that low-density regions or vacancies

0 T T 1T — 17 — 1 1T 1

o Simulated distribution of 2500 cells
102381y

PETERTIT

— g(y)=10.2381 ¢

PR |

PR |

PR |

t—_r .
0 0.1 0.2 0.3 0.4 0.5 0.6

y=S/<S>

Figure 7. Cell size distribution.
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Figure 8. Highly ordered experimentally designed patterns [25] (top) in compar-
ison with simulation results (bottom) for the parameter set D = 600, a=2.6 and
k=0.01.

in the bristle play an important role in the cellular pattern nucle-
ation process [25]. As shown in top panels of Figure 8, different
kinds of highly ordered micropatterned structures have been cre-
ated by etching regular vacancies with laser pulses. Capillary
self-organization in such systems yields the structures presented
on the top panels of Figure 8.

Simulations on micropillar forests with vacancies of radius r=5
created on rectangular and triangular lattices have been per-
formed. The results are shown on bottom panels of Figure 8. In
agreement with experimental findings, our spring-block simula-
tion results suggest that various micropatterns may be designed
by proper preparation of the initial nanobristle taking into account
that the wall of a polygon shaped cell forms approximately at the
vertical bisector of two adjacent vacancies.

In conclusion, a simple mechanical, spring-block type model
has been proposed here to model capillarity driven self-organiza-
tion of nanobristles. The 3D problem was mapped to a 2D model
that works at the mesoscopic micropillar level incorporating real
interactions known from earlier experimental studies. Our com-
puter simulations evidenced the role of capillary and electrostatic
forces in the formation of self-organized nanostructures. The
dynamics leading to pattern formation has been also revealed. By
using the same model parameters with different nanotube densi-
ties three qualitatively different types of patterns were reproduced.
Large-scale simulations revealed an exponential distribution of cell
sizes for the polygonal type final patterns. The obtained exponen-

tial distribution is interesting from two aspects. First, it gives a pos-
sibility to experimentally test our model, and secondly it suggests
that the dynamics in the system leads to a maximum entropy dis-
tribution. Considering a fixed area and fixed number of cells (fixed
average cell size), the exponential distribution of cell sizes is the
entropy maximizing distribution [26]. As a further challenge for
experimentalists and test for the elaborated model, the possibility
of designing highly ordered nanostructures has also been explored.
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