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We address the slow generation of crack networks as a problem of pattern formation. Issues of pattern
selection and the associated statistical properties were considered by means of a detailed theoretical analysis
and simulations of a discrete spring-block model. Developed after observations in desiccation experiments, the
model describes the nucleation and propagation of cracks in a layer in contact with a frictional substrate.
Competition between stress concentration at crack tips and pinning effect by friction leads to a cellular pattern.
We characterized the events prior to cracking by a growth of correlation in the stress field, and those during
cracking by progressive damages manifested in the number of broken bonds and energy releases. Qualitatively
distinct regimes were shown to correspond to different stages of development. A host of scaling behaviors in
measurable quantities were derived and verified. In particular, consistent with experiments, fragment area was
found to be quadratic in the layer thickness and be smaller with increasing friction, which explains why
morphologically similar patterns may occur over a diverse length scales.
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I. INTRODUCTION

Nature offers a rich variety of fascinating patterns �1�.
Examples in snowflakes, surface features of living things,
waves, and vortices in fluid spring to mind. As manifesta-
tions of the underlying physical processes, those patterns
have inspired the studies of crystal growth �2�, reaction-
diffusive systems �3�, and instabilities in fluids �4�. Another
ubiquitous but relatively less explored example lies in the
fracture of solids �5�, as seen in cracked paintings, battered
roads and dried out fields. Focusing on the crack patterns in
a layer attached to a substrate, there are some early observa-
tions �1,6,7� but systematic studies are all fairly recent. There
have been several experimental studies on colloidal and
granular systems �8–14�. Theoretically, while it is quite in-
tuitive when and how things break �15�, a satisfactory math-
ematical account remains formidable �16� even for one crack
propagating in a homogeneous medium �17�. The additional
complexity arising from the interactions among many cracks
�18� makes evolving networks even less tractable. Among
others, two notable theoretical efforts were reported in Refs.
�19,20�.

There exists also a less mathematical approach based on
the analogy with phase transitions �21,22�. Geometrically,
crack patterns with similar characteristics occur over a wide
range of scales from �m to km. This suggests some universal
mechanism is at work. Universality implies the unimpor-
tance of microscopic details, so that the essential physics
may be captured at the mesoscopic level. This view is sup-
ported by the parallel between the nucleation and propaga-
tion of a crack �23� to that of the nucleation and growth of

droplets at first order phase transitions �24�. Thus, the prob-
lem consists of identifying the basic mechanism and the few
important length and time scales. Along this line, several
coarse-grained descriptions for crack networks have been
studied to various levels of success �25–30�. In Ref. �29�, we
developed a discrete spring-block model to investigate the
interplay between stick-slip and cracking. With a few control
parameters, we characterized the basic pattern selection pro-
cess. In this paper, we will report a thorough revisit of the
model. Theoretical derivations or arguments will be given to
strengthen the observations and numerical results reported in
�29�. Overall, we will present a coherent picture for the role
dissipation plays in the growth of correlation, the statistics of
energy releases, and the resulting morphology of the
network.

This paper is organized as follows. In the next section the
model is defined. In Sec. III, theoretical and numerical re-
sults are presented in light of the temporal evolution of the
crack network. To make this paper self-contained, some re-
sults in �29� will be recapitulated and extended in much
greater details. Section IV contains our conclusion. Finally,
the Appendix gives some mathematical details for the block
slips.

II. BUNDLE-BLOCK MODEL

We consider the process of crack formation in a layer in
contact with a frictional substrate. That may be caused by
slow physical �e.g., embrittlement, contraction� and chemical
�e.g., oxidation� changes in the properties of the layer, lead-
ing to various forms of failure �31�, such as decohesion,
buckling, spalling and in-plane cracking. In this paper, we
will consider only the simplest kind, namely, in-plane crack-
ing with the substrate undamaged in the process.

We identify the grain �which consists of a large number of
atoms� in the layer as the basic unit relevant to crack forma-
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tion, and represent it as a block. The blocks are intercon-
nected among nearest neighbors by bundles. Each bundle
consists of H bonds �coil springs�, and each bond has the
same spring constant k, relaxed spring length l, and tensile
breaking strength Fc. The elastic constant of an undamaged
bundle is thus kH. The force needed to overcome friction
�i.e., to slip a block�, denoted by Fs, may be regarded as the
breaking strength of the layer-substrate interface. In the case
of slow fracture, the motion of a grain is overdamped by
friction from the substrate. Thus, the system evolves in a
quasistatic manner in which the buildup rate of stress is
much slower than its relaxation rate. We take advantage of
this property by using a threshold dynamics to update the
configurations, as a cellular automaton, instead of solving the
coupled set of differential equations of motion as done in
molecular dynamics. The resulting model is simpler and
computationally more efficient than an atomistic approach.
Moreover, singularities and nonlinearities associated with
crack tips are generated dynamically via the relaxation pro-
cess so that no explicit truncation of the stress field is
needed.

One feature of our model distinctive from conventional
spring-block models is the use of bundles instead of ordinary
springs. This is a trick to introduce the effect of the thickness
of the sample without the overburden of three-dimensional
computations. Thus, the parameter H should be regarded as
an effective thickness parameter but not the thickness itself.
It is a fair approximation if the evolution of the cracks is
predominately in-plane. Physically, it applies to the case
when the extent of elastic deformation is comparable to the
thickness, and that the thickness is not considerably greater
than the characteristic size of the ensuing pattern. Obviously,
fracture dominated by varying material properties along the
depth �such as in thick starch slurry �14�� calls for a full,
three-dimensional treatment.

In the context of a drying experiment �see below�, cracks
are often caused by progressive changes in material proper-
ties, such as by the increase of hardness �i.e., k� and weak-
ening of the breaking strengths �i.e., Fc within the layer, Fs to
the substrate�. Such changes lead to instabilities in the forms
of block slips and bond breakages, depending on the ratio
between the force and threshold. Since the ratio is propor-
tional to k /Fs or k /Fc, we can model both hardening and
weakening by keeping k constant and decreasing the thresh-
olds in time. In general, the rates of change of the two thresh-
olds are independent. For the case when both thresholds de-
crease at the same rate via the same physical change of
material properties �such as hardening induced by the nar-
rowing and breaking of liquid bridges between grains due to
the evaporation of solvent in desiccation �13,14��, their ratio
��Fc /Fs becomes a constant. In this paper, we will consider
only that particular case �32�. One of the simplest conceiv-
able way to induce fracture is then to prestrain the array and
decrease slowly both Fs and Fc at the same rate. Even though
this specification may not have an exact correspondence with
experiments, it is physically related to the case of fracture by
residual stresses. Other ways of driving are possible, but this
is particularly simple to allow for some analytic understand-
ing.

The blocks are labeled by �i , j� as shown in Fig. 1, where
i runs from 1 to W, and j from 1 to 2L. The configuration of

the system at any given time is defined by 3WL bundles �33�
and the position vectors R� i,j of WL blocks. Each bundle has a
certain number �between 0 and H� of unbroken bonds, and
the position vectors are given by

R� i,j = �Xi,j,Yi,j� = �Xi,j
0 + xi,j,Yi,j

0 + yi,j� . �1�

Here R� i,j
0 ��Xi,j

0 ,Yi,j
0 � is the node of a triangular lattice of

spacing a, and r�i,j ��xi,j ,yi,j� denotes the random displace-
ment, typically a few percents of a. The tensile prestrain is
given by s= �a− l� /a�0. Generally, due to r� the net force F�
exerted on a block by its neighbors is nonzero. In a stable
configuration that force is balanced by friction.

With Hookean bonds, the force exerting on a given block
at Ri,j

� by a neighboring block at R�� is given by ��R� i,j −R�� �
− l�kH. However, this nonlinear dependence on the coordi-
nates results in slow updating. Since the system cracks by
tensile stress and that the prestrain s�1, to a good approxi-
mation we may expand F� to first order in r� /a. It is then
straight forward to show that the force components on the
block �i , j� are given by

Fi,j
x = k�

n=1

6

Hn�asCn + �xn − xi,j��sSn
2 + Cn

2�

+ �yn − yi,j��1 − s�SnCn� , �2�

Fi,j
y = k�

n=1

6

Hn�asSn + �yn − yi,j��sCn
2 + Sn

2�

+ �xn − xi,j��1 − s�CnSn� , �3�

where the index n labels the six nearest neighbors of the
block �i , j� and its connecting bundles. Hn takes on a value
between 0 and H, and the constants Cn=cos��2n−1�� /6�
and Sn=sin��2n−1�� /6� arises from the symmetry of the
triangular lattice. Note that these force components are
signed variables, whereas the threshold conditions are based
on absolute values.

Initially, the thresholds are set so high as to ensure global
stability. In discrete simulation time steps labeled by t, the
configuration evolves according to the following dynamical
rules:

a

K1

K2K3

K4

K5

K6Y

X

(1,1) (3,1)

(2,2)

(1,3)

(4,2)

FIG. 1. The labeling of the blocks �i , j� and bonds Ki on a
triangular lattice. a denotes the lattice spacing.
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�1� The thresholds are lowered systematically until either
the global maximum force or tension is reached from above.
A marginally unstable block or bundle is located.

�2� If F��F� ��Fs, the block slips to its new mechanically
equilibrium position where F=0.

�3� If the tension of the bonds in a bundle exceeds Fc, one
of the bonds of that bundle is broken, i.e., H→H−1 there,
provided no more than one bond in that bundle is broken
within the given simulation step.

�4�. Iterate steps no. 2 and no. 3 for all affected blocks and
bundles.

After a sequence of slippings and/or breakings �34�, the
system settles into a new metastable state. This completes
one simulation step, and the next step follows �t→ t+1�. By
limiting to one broken bond per bundle per step in no. 3, we
attempt to model the progressive damage of bundles; other-
wise unphysical vertically oriented “tunnel” may be sponta-
neously generated.

Although other dynamical rules are conceivable, the de-
tails of implementation is expected to be of secondary im-
portance compared to the basic ingredients consisting of the
stick-slip action and threshold dynamics. Not knowing the
actual time dependence of system parameters in desiccation
experiments, we inevitably have a certain degree of arbitrari-
ness in the rules. In making our choices, we are guided by
the balance of physical relevance, robustness in producing
nontrivial patterns, as well as algorithmic simplicity. For in-
stance, having two independent thresholds is equivalent to
allowing � to vary in time, which would lead to considerable
complications in the analysis.

Note that rule no. 2 implies zero kinetic friction. If we
introduce nonzero kinetic friction Fk with 0�Fk�Fs, a slip-
ping block will be arrested before it reaches the zero-force
position. We show in the Appendix that such a more general
case only leads to a simple modification in the slipping dis-
tances, so that the general behaviors of the model are un-
changed.

III. RESULTS AND DISCUSSIONS

We used square samples with linear size W=L�300.
Without loss of generality, we henceforth choose our units
such that a=1=k. The forces and energies in the following
equations are understood to have been rescaled properly.
This leaves us a set of four control parameters �s ,� ,H ,L	.
Since the strain in reality is quite small, we took 0�s�0.2.
We considered free boundary conditions �FBC�, although pe-
riodic boundary conditions �PBC� had also been used for
comparison �35�.

Qualitatively, the time evolution can be divided into three
phases:

�I� Prefracture phase: there are slippings only, bonds are
too strong to be broken;

�II� Fracture phase: There are slippings and bond break-
ings, the system is progressively damaged and broken up
into fragments which then contract slowly;

�III� Saturation phase: bond-breaking event saturates,
fragmentation stops, slippings dominate again as the inter-
block spacing approaches the relaxed spring length l asymp-
totically.

Some typical configurations in phase II are shown in Fig.
2. We now discuss their characteristics following the tempo-
ral order of evolution.

A. Decrease of thresholds

We will examine the decrease of the thresholds first, for it
is the driving force behind the evolution. In a stable configu-
ration, each block is associated with a force F, where 0
�F�Fs. Due to the dynamical rule no. 1 of Sec. I, the decay
rate of Fs is inversely proportional to the density of state in
the F variable close to Fs. In a mean-field approximation,
this density is Fs /L2. Hence Fs�t�−Fs�t+1�	Fs�t� /L2, lead-
ing to Fs�t�	e−t/
 �see Fig. 3�a�� with a decay constant 


Lz and a mean-field exponent zMF=2. Numerically, we find
z=1.78�0.03 �see Fig. 3�b��, reflecting the nonuniform dis-
tribution of the F values in the interval between 0 and Fs.
This may be interpreted as a depletion effect of the popula-
tion of F near Fs relative to a uniform distribution, by the
avalanches of slippings.

Concerning the effect of thickness H, consider two iden-
tically prepared systems �with the same initial random posi-
tions of blocks� except having different H. Before cracking,
the system evolves only by slippings. The slip distance for a
block exerted by a force F�Fs is given by �r=F /H�3+3s�
�see Appendix�. Since F	H �H being the elastic constant of
undamaged bundles�, �r is independent of H. This means the
two systems have identical history �i.e., identical configura-
tions at any given t� prior to cracking. Since slippings are

t=60000 t=80000

t=20000 t=40000

FIG. 2. Evolution at different simulation step t for L=100, s
=0.1, �=0.5, H=9, under FBC, showing the progressive change
from straight to diffusive cracks.
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determined by F /Fs, we must have Fs	H. Thus the system
with larger H has slower decay in Fs,

Fs�t;H,L� = c0He−t/
, �4�


 = c1Lz, �5�

where c0 and c1 are constants, independent of H and L. Fig-
ure 3�c� confirms our derivation.

B. Growth of correlation before cracking

In phase I, the systematic release of elastic energy by
slippings causes the system to contract and correlation to
grow. Due to missing neighbors along free edges, slipping
naturally starts there and invades into the bulk. The width 

of the resulting strain-relieved peripheral region character-
izes the extent of invasion. We now show that the growth of

 is governed by the decay of the threshold. Evidently, the
strain is small near the free boundaries, and it rises to the
prestrain value s deep in the bulk �see Fig. 4�. For simplicity,
consider for the moment a one-dimensional version: the
force exerted on the ith block by its two neighbors is given
by Fi= �a− l+xi+1−xi�H− �a− l+xi−xi−1�H= �si−si−1�aH. As-
suming smooth i dependence in xi, we have F�Hds /du,
where u is the distance from the edge. In the strain-relieved
region, metastability imposes that Hds /du�Fs �this does not
apply beyond the invaded region where only F�Fs can be
assured�. The rise of s�u� from the edge is thus proportional
to Fsu /H. This relation can obviously be extended to higher
dimensions,


�t� �

0sH

2Fs�t�
, �6�

where the constant 
0 is of order unity �factor 2 introduced
for clarity in subsequent formulas�. Thus, by Eq. �4�, 
 grows
exponentially in t. For a sufficiently small system of size L
�explained below�, 
 will saturate to L /2 when Fs reaches
Fs

sat=
0Hs /L at time

tsat = 
 ln� c0H

Fs
sat 
 = 
 ln� c0L


0s

 . �7�
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FIG. 3. �Color online� �a� Linear-log plot of the threshold vs simulation step, showing exponential decays Fs
e−t/
. s=0.1, �=�, and
H=2 except stated otherwise, from left to right: L=40, 60, 80, 100, 100 �H=4�, 100 �H=8�, 160. �b� Decay constant extracted from �a� vs
system size. Least-square fit gives an exponent z=1.78�0.03. �c� Scaling plot of the data in �a� for the threshold, with respect to thickness
H, simulation step t and system size L.
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FIG. 4. Averaged strain field profiles showing progressive strain
relief as simulation step t increases from 2300, 9200, 16 100,
22 500, 24 000, 28 000 to 36 000 for L=100, s=0.1, H=2, �=�.
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Now we deduce the growth of slip size. In stick-slip mod-
els, the slip size S�t�, defined as the mean of the total number
of block slips per simulation step, is often used to character-
ize the degree of correlation in the dynamical variable. It
exhibits a power-law growth in time, followed by saturation
�see Fig. 5�. We may understand this behavior by energy
balance as follows. The total energy relieved over the strain-
relieved region, of the order U=2
Ls2H, is dissipated by
friction during slippings over that region. Since the slip dis-
tance is �r=�F /H �see Appendix�, where �=1 /3�1+s� �36�,
each slip dissipates an amount of energy �Fs

2 /2H. The total
dissipation is then E=�0

t dt�S�t���Fs�t��2 /2H. Equating E to
U and differentiating with respect to t, noting that Fs�t�

He−t/
, we readily obtain the result

S�t� = S0� H

Fs�t�

3

, t � tsat, �8�

where the prefactor is S0=2
0s3L /�
.
These results have interesting finite-size effects. For t

� tsat, the invasion is unaware of the finite system size �apart
from that through Fs�t��, hence 
0 is independent of L and so
S0
L1−z. For t� tsat, as 
 saturates so does S�t� to a constant

Ssat � S�tsat� = S0� L

s
0

3


 L�. �9�

The divergence of Ssat as L→� means that the system be-
comes critical with a nontrivial critical exponent ��0 that is
related to the “dynamic exponent” via a scaling relation

� = 4 − z . �10�

From zMF=2, we get �MF=2. Simulations give �
=2.20�0.03 instead �see Fig. 6�, in agreement with the in-
dependent estimate of z. From Eq. �8�, it is evident that dy-
namic scaling

S�t;H,L� = L��� H

LFs�t�

 �11�

is obeyed, with the scaling function ��x�1�
x3 and ��x
�1�=const, as exhibited in Fig. 7. This is the signature of a
system approaching a self-organized critical �SOC� state �37�
characterized by a power-law distribution of slip sizes.

For finite L and sufficiently large � so that no bond can be
broken at all �explained below�, the correlation covers the
entire system after time tsat. The SOC state reached in this
limit of large � has been studied at length elsewhere �38�, so
we will not elaborate any further. On the other hand, for
large enough L and small enough �, fracture eventually sets
in before criticality is fully attained. The system then goes
through phase II and III as described above until it reaches a
stationary fragmented state. Then, each fragment attains the
very same critical state but with an individual cutoff limited
by its own fragment size.

Before we move on, several remarks are in order:
�1� On the average, each site slips L�−2 times per event

after saturation. Since ��2, the computation becomes very

1 10 100
1/Fs

1

10

100

1000

10000

S

FIG. 5. �Color online� Power-law growth of the slip size vs the
inverse threshold, 1 /Fs, which increases in time. s=0.1, H=5, �
=�, FBC, and system size L=40, 60, 100, 200, and 300 from left to
right, with increasing level of saturation at long times.
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FIG. 6. Finite-size effect of the saturated slip size. The slope
gives the exponent � in �9�. s=0.1, H=5, �=�, FBC.
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FIG. 7. �Color online� Dynamic finite-size scaling of mean slip
size toward criticality. s=0.1, �=�, �=2.2�0.03. The straight line
has a slope equal to 3.
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demanding for large system sizes. Such repeated topplings
are manifestations of system-wide correlation in the force
variable that controls the slippings.

�2� Since the connection between the dynamics �z� and
criticality ��� is derived from a general energy argument, we
speculate that relations similar to Eq. �10� should exist for
other forms of driving and boundary conditions.

�3� Since subsequent fracture events depend on the maxi-
mally strained bonds, it is useful to find out how the global
maximum strain smax in the system behaves. Using Eq. �6�,
we find �see Fig. 8�,

smax � �s t � tsat

LFs


0H
t � tsat.� �12�

�4� Note that the parameter Fc, or �, is irrelevant to the
evolution of the system in phase I, but it governs the subse-
quent cracking process.

C. Onset of cracking

If Fc does not drop fast enough to get below s before time
tsat, i.e., if �Fs

sat=
0�Hs /L�s or 
0�H�L, Eq. �12� shows
that smax will remain smaller than �Fs for all t� tsat, and the
system will not crack. It cracks only if Fc catches up with s
at some time t�� tsat as determined by

Fs
� � Fs�t�� �

s

�
. �13�

Using Eq. �4�, we obtain the time of onset

t� � 
 ln� c0�H

s

 = tsat − 
 ln� L


0�H

 . �14�

Since Eq. �14� applies only to the case of L�
0�H, we get
t�� tsat, i.e., that cracking always happens before the satura-
tion of correlation if it does happen. The scaling behavior of
t� is confirmed in Fig. 9.

Equation �14� shows that a system with a larger H takes a
longer time to crack by the factor ln H. This gives rise to
more slippings and longer correlation at the onset,

S� � S�t�� = S0��H

s

3

, �15�


� � 
�t�� =
1

2

0�H . �16�

Naturally, larger fragments are anticipated for thicker layers
�see Sec. III G�, independently of system sizes.

The absence of a solution to the equation �Fs�t�=smax�t�
for L�
0�H may be interpreted in two ways: �i� for fixed �
and H, there exists a critical system size

Lc��,H� � 
0�H , �17�

below which the system never cracks. For L�Lc, Lc is noth-
ing but 2
�, the correlation length at the onset. Alternatively,
�ii� for fixed system size L, a thick layer does not crack if
�H�L /
0. These agree with the basic experimental observa-
tions that a sufficiently small or thick layer does not crack
but merely contracts.

The combination of �H in Eq. �14� implies that having a
less frictional substrate has the same effect as having a
greater thickness. Therefore, two identically prepared sys-
tems with different � and H but the same product not only
have the same history up to fracture, but they also fracture at
the same time. Although thereafter the two systems behave
differently due to explicit H dependence in the cracking cri-
terion, it remains a useful characterization, as can be seen in
Fig. 10. Thus, despite the intervening fragmentation process,
the correlations at the onset have a strong persistence in the
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FIG. 8. Temporal variation of the maximum strain: smax=s for
t� tsat and decays linearly in H /LFs afterward. s=0.1, H=2, �=�,
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FIG. 9. �Color online� Linear-log plot of the simulation step at
onset vs scaling variable �H, confirming Eq. �14�. Legends indicate
whether H or � is kept fixed for the same symbol.

FIG. 10. Statistically similar final configurations at various com-
binations of � and H with equal �H: from left to right, �� ,H�
= �0.25,10� , �0.5,5� , �1.25,2�.
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final fragmented state. Experimentally, this complementarity
of the substrate and thickness is difficult to verify because �
is not easy to measure, but the predicted trend indeed agrees
qualitatively with observations �39�.

D. Morphology of crack networks

The difference in correlations also has an effect on the
morphology of cracks. For very small �H, the substrate is
very frictional or the layer very thin. Pinning is so strong that
cracking events are highly localized. In a virtually uncorre-
lated stress environment, random nucleation of cracks soon
appear �as t� is small� but they do not propagate. Fragmen-
tation is largely due to the percolation of independent micro-
cracks. For �H�1, most bonds are ultimately broken and
the system turns trivially into “powder” �i.e., isolated blocks
in our context�.

Going up in �H, the smaller friction or larger thickness
allows stronger correlations up to fracture, as given in Eq.
�16�. Stress relaxation around crack tips becomes more ef-
fective, leading to more pronounced stress concentration and
longer straight-crack segments. The resulting fragmentation
process is hierarchical �see Fig. 2�: after the primary straight
cracks divide the system into a cellular network, secondary
cracks break the large fragments into smaller ones, and so on
�40,41�. Cracks of later generations are more “diffusive” in
appearance because they tend to wiggle and branch due to
diminishing stresses �42� and more pronounced screening
from newly created free boundaries. The typical length of
straight cracks between two joints is determined by the com-
petition between stress concentration at crack tips that favors
propagation, and pinning effect by the substrate that favors
turning and branching. Since a larger � or H enhances the
former and suppress the latter, longer straight cracks are ex-
pected for larger �H. These features are shown in Fig. 11. At
long times, fragmentation is complete, resulting in stationary
fragments with areas that fit a log-normal distribution �cf.
�28��, and a mean area A
H2 �see below�.

Experimentally, morphology may be characterized by the
distribution P��� of crack angle � at a joint. A shift of the
peak position from ��90° to 60° as thickness decreases has
been observed in amorphous media �39�. Although the use-
fulness of P��� in our model is limited by lattice anisotro-
pies, we observed a shift from three peaks at �=�, � /3, and
2� /3 to one peak at �=� /3 as �H was decreased. This
corresponds to the shift from cracks terminating on encoun-
tering pre-existing ones to the case of a symmetric branch-
ing. A visual comparison with experimental configurations
�Fig. 11� produced by slow desiccation of a starch-water
mixture �11,43� reveals striking similarities. Such a qualita-
tive change is also evident in the following variables.

E. Number of broken bonds

Starting from t= t�, the total number of broken bonds B�t�
�i.e., area of cracked surfaces in experiments� increases
monotonically. Figure 12 displays B�t� for different combi-
nations of � and H. Two regimes, a linear one at early time
and a subsequent exponential saturation, can be identified
from those plots �44�. Matching with the configurations, we
found that the linear behavior was associated with the propa-

H=5 H=13 H=26

FIG. 11. Stationary patterns at different thickness H. Upper row:
by simulation, L=100, s=0.1, �=0.25 �increasing � at fixed H has
the same effect�. Bottom row: from desiccation experiment of
starch-water mixture with thickness matching that of simulation.
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FIG. 12. �Color online� Typical plots of the number of broken
bonds: L=100, s=0.1, FBC, �a� for fixed �=0.5, different H; and
�b� for fixed H=10, different �=0.12, 0.15, 0.2, 0.3, 0.4, 0.7, and 1
from top to bottom. Note the crossover from linear growth to ex-
ponential saturation especially at large H in �a�.
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gation of primary straight cracks, the exponential behavior
associated with late-stage diffusive cracks, and the crossover
associated with a global rupture.

Since our rule limits at most one bond breaking per
bundle per time step �see Sec. II�, and that consecutive bond
breakings within one time step are very rare, the growth rate
of B�t� is smaller than one. Due to relaxations for the elastic
deformation around crack tips by slippings, during which
time advances without bond breaking, the maximum rate is
not attained. For larger H, the cracks are sparse, there are
more relaxation events between bond breakings, and the
growth rate is smaller as shown in Fig. 12�a�. The detailed
dependence on H is thus a complicated function of the fre-
quency of relaxation events which in turn depends on the
crack morphology. Empirically, the growth rate of B in the
linear regime is found to scales as �t− t�� / ln H, as shown in
Fig. 13. We do not yet have a simple argument for that ln H
behavior. After the linear growth, fragmentation by straight
cracks extensively modifies the stress field. The linear
growth is over and the ln H scaling breaks down; crack
growth becomes more random and diffusive. Being more
random, the growth rate dB�t� /dt is basically controlled by
the number of existing unbroken bonds constant−B�t�, giv-
ing rise to an exponential approach to saturation.

F. Statistics of energy releases

Besides the number of broken bonds, energy release is
also customarily monitored as for example by acoustic emis-
sion measurement. In our model, we calculated the total elas-
tic energy U�t� from the instantaneous positions of the
blocks. The energy change associated with a broken bond is
simply �2 /2 where � denotes the tension before breaking. In
a slip, if all connecting bundles have the same coupling H,
the energy dissipated by friction can be shown to be
�F2 /2H, where F is the force on the block before slipping,
and �=1 /3�1+s� �see Appendix�. If some bundles are dam-
aged �i.e., with some broken bonds�, no general expression
can be written down. But since broken or damaged bundles
are relatively few �B�t=���L2�, to a good approximation

the energy release during an event of C bond breakages and
S block slips can be expressed as �=�c+�s, where

�c = �
n=1

C
�n

2

2
�

C�2Fs
2

2
, �18�

�s � �
m=1

S
�Fm

2

2H
�

S�Fs
2

2H
. �19�

Note that C is just dB /dt.
Figure 14 shows the cumulative change E�t��U�0�

−U�t�, where U�0� is the initial total elastic energy. Again we
find a distinctive linear growth and an exponential saturation.
They appear clearly in the energy release per event ��t� as a
plateau and an exponential, as shown in Fig. 15�a�. This
figure also displays the independence of the linear growth
rate of E�t� with respect to L before the primary cracks reach
the boundaries, but the extent of that regime increases as L2.
The exponential decay rate also scales as L2, hence good data
collapse can be obtained by plotting ��t� vs t /L2 as in Fig.
15�b�. On the other hand, for fixed L, both the linear growth
rate and the decay rate are independent of H but the extent of
the linear regime scales as ln H. These results are exhibited
in Fig. 16.

One can get some feeling for the role that friction plays
by examining the fraction of energy release due to cracking
alone, �c /�. Typically, although �c /� can be quite large, clus-
tering around 0.3–0.5 for the propagating-crack regime �see
Fig. 17�, the cumulative amount is much less �see Fig. 14�
because the majority events consist of slippings only. Energy
dissipated by friction, absent in a free-standing layer such as
that considered by Griffith �23��, is unavailable to propagate
cracks. In other words, running cracks are stabilized and ar-
rested by the substrate.

Typical distributions of energy release P��� are shown in
Fig. 18. In view of the criticality in the precracking phase,
we would expect to see a power law in P��s�. That turns out
not to be the case. The reason for the difference is that, in our
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FIG. 13. �Color online� Scaling plot of the data in Fig. 12�a�,
showing the stretching of t by ln H. L=100, s=0.1, �=0.5, various
H, FBC.
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FIG. 14. Cumulative energy release due to slipping and cracking
combined �upper curve� and due to cracking alone �lower curve�.
L=100, s=0.1, �=0.5, H=9, corresponding to the evolution in Fig.
2. The kink near t=34 000 signals the rupture of the system.
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model, the stress decreases in time rather than being sus-
tained. Hence it depicts an approach to equilibrium rather
than a nonequilibrium steady state. This leads to energy re-
lease that diminishes in time. Such a difference, however,
can be reconciled by a rescaling. The rescaled energy
�s /Fs

2	S then duly exhibits the same power law as that for
the slip size distribution. Roughly speaking, by dividing out
Fs�t� we remove the “approach-to-equilibrium” aspect of the
dynamics so that the underlying power law in the stick-slip
mechanism is revealed �45�.

G. Scaling of the fragment size

Since fragment sizes can readily be determined in experi-
ment, it is useful to examine the stationary fragment-size
statistics as a test of the model. In particular, we are inter-
ested in the influences of the thickness and substrate prop-
erty, and the mechanism by which the final scale is selected.
As discussed above, the correlation of the stress field in-
creases with �H and has a direct influence on the resulting
fragment sizes. Given that a system of size L�Lc cracks, the
remaining question is when fragmentation will stop. We do
not have a rigorous answer as the dynamics of interacting

cracks is highly nonlinear and complex. Intuitively, we ex-
pect fragmentation to stop when the typical fragment size
decreases to a scale 
Lc. It is a reasonable expectation in
view of Eq. �17�, i.e., that beyond that point the threshold
simply does not decrease fast enough to catch the fall of the
maximum stress so that no more bond will be broken. This
argument predicts the scaling of the average fragment area

A��,H� 
 Lc
2 	 ��H�2, �20�

in complete agreement with measurements �Fig. 19�. Experi-
mentally the fragment area was also found to scale with the
thickness square �39,46�. Our argument above implies the
memory of the correlations at t� persists in the fragmented
state at t=�, reminiscent of similar generation of quenched
disorder in systems governed by metastability and frustration
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FIG. 15. �Color online� �a� Energy release per simulation step vs
simulation step for different system size L=40, 60, 100, 160, 200,
and 300 from left to right. s=0.1, �=0.5, H=5 and FBC. �b� Scal-
ing plot of the same data to show decay rate 	L2.
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FIG. 16. �Color online� Effect of thickness in energy release per
step. H=3, 5, 6, 8, 10, 12, and 17 from left to right, and s=0.1, �
=0.5 and FBC. The transient behavior at early times corresponds to
the buildup of correlations prior to cracking.
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FIG. 17. The fraction of the energy released by cracking at each
event. L=100, s=0.1, �=0.5, H=9, and FBC, as in Fig. 2. �c /�
=0 for events without cracking. It clusters around 0.3–0.5 for the
straight-crack regime and drops to 0.1 for the diffusive crack
regime.

CRITICALITY AND PATTERN FORMATION IN FRACTURE… PHYSICAL REVIEW E 82, 046118 �2010�

046118-9



�47�—two features also central to the mechanism of surface
fracture here.

IV. CONCLUSION AND OUTLOOK

Motivated by desiccation experiments, we carried out a
thorough study of a bundle-block model for the aspects of
pattern formation and selection of cracks in in-plane fracture
induced by a quasistatic driving. In developing the model,
our priority was physical relevance and consistency with ex-
periments, as well as simplicity with a small set of control
parameters. Fairly comprehensive theoretical understanding
can be achieved. In this work, we focused on elucidating the
effects of substrate, sample thickness and system size on
measurable quantities. Those effects were found to be
complementary in the sense that it is the product of the pa-
rameters that characterizes the statistics of the dynamics and
patterns. By exploiting metastability and energy balance, we
have shown analytically and numerically how self-
organization in the stress field dictates the properties of the
fractured state, especially the final fragment size. Our results
answer, at least qualitatively, why thin layers crack finely and
thick ones are hard to crack, and why geometrical similari-
ties exist over wide range of scales. Judging from agreement
with experimental observations, the model appears to capture
many salient features of real systems. Despite the specific
implementation, there is the general idea that stick-slip gen-
erates correlations in the strain field, which in turn dictate
crack growth and determine fragment sizes. We expect the
idea to apply to similar situations governed by stick-slip
mechanisms.
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APPENDIX: SLIP DISTANCE

First consider the case of zero kinetic friction. Suppose
the block �i , j� slips by �r�= ��x ,�y�. From Eq. �3�, the force
is changed,

Fx → 0 = Fx − �x�
i=1

6

�sSi
2 + Ci

2�Hi − �y�
i=1

6

�1 − s�CiSiHi;

�A1�

Fy → 0 = Fy − �x�
i=1

6

�1 − s�SiCiHi − �y�
i=1

6

�sCi
2 + Si

2�Hi.

�A2�

This gives the slip distance linear in the forces,

�x =
CFx − BFy

AC − B2 ; �y =
− BFx + AFy

AC − B2 , �A3�

where A=�i=1
6 Hi�sSi

2+Ci
2�, B=�i=1

6 Hi�1−s�CiSi, and C
=�i=1

6 Hi�sCi
2+Si

2�. If all bonds are intact, as is the case in
phase I of the evolution discussed in Sec. III, B vanishes by
symmetry and we get

�x =
�Fx

H
; �y =

�Fy

H
; �A4�

hence �r����x�2+ ��y�2=�F /H, where �=1 /3�1+s� for
the triangular lattice �36�. The energy dissipated by friction is
given by �0

�rF�r�dr=�F2 /2H.
Next, we consider the more general case of nonzero ki-

netic friction. There is then an additional threshold Fk, where
0�Fk�Fs. A slipping block is arrested when the net force
from its neighbors drops below Fk. The consequence of a slip
is modified simply: Fx→FkFx /F and Fy→FkFy /F. We ob-
tain the same results as above except that Fx and Fy are now
replaced by Fx�1−Fk /F� and Fy�1−Fk /F�, respectively. The
evolution of the model is the same except that the slipping
distances are smaller by the factor 1−Fk /F, which is essen-
tially 1−Fk /Fs, and so is the energy dissipation.
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FIG. 18. Normalized distributions of energy release per simula-
tion step for crackings and slippings combined �P����, and for
cracking alone �P��c��, from one run, corresponding to the evolu-
tion in Fig. 2.
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