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Abstract: A brief review on the applicability of spring-block type models for describing various complex 
systems is given. Pattern formation in drying granular materials, capillarity driven self-organization of 
nano-particles and magnetization phenomena of ferromagnetic materials are examples in such sense. We 
learn from these that the spring-block stick-slip model family is especially useful for those phenomena 
where avalanche-like jumps or self-organized criticality is present. As a novel application, in the present 
study, a simple one-dimensional spring-block chain with asymmetric interactions is used to model the 
motion of a queue of cars. Within the model the spring-block chain is dragged with constant velocity 
through the first block. As a result of this, the blocks in the chain will move in avalanches of widely 
different magnitudes. For a given parameter range and certain blocks in the system self-organized 
criticality and disorder-driven dynamical phase transitions are observed.    
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                             1. INTRODUCTION 

A simple model of physics with a wide applicability in 
natural sciences is the spring-block or stick-slip type model. 
The model was first used by R. Burridge and L. Knopoff  in 
1967 (Burridge et al., 1967) to explain the empirical law of 
Guttenberg and Richter (Guttenberg et al., 1956) for the size 
distribution of the earthquakes. The model consists of simple 
units: blocks interconnected by springs which are allowed to 
slide with friction on a plane. The sliding tectonic plates 
involved in the earthquake were modeled by two surfaces 
such that their relative movement is governed through the 
avalanche-like motion of the interconnected blocks (Figure 
1). The upper plane (to which the blocks are connected by 
springs) is dragged with a constant velocity. As a result of 
this the blocks will slide in avalanches following the motion 
of the upper surface. The avalanches generated through the 
sliding blocks model the earthquakes. The energy dissipation 
through the avalanches exhibits a power-law distribution. 
This is in good agreement with the empirical law of 
Guttenberg and Richter.  

 

Fig. 1. Main elements of the one-dimensional Burridge-
Knopoff model. 

The model was generalized in two dimensions by Olami, 
Feder and Christensen (Olami et al., 1992). Afterwards, due 
to the spectacular evolution of computers and computer 

simulation methods, the spring-block model proved to be 
useful in describing various other physical phenomena as 
well. Nowadays, it is a well established fact that the model is 
extremely useful for studying various mesoscopic phenomena 
in condensed matter physics. The model is especially suited 
for those situations where avalanche-like dynamics or pattern 
formation is present. Known examples in this respect are the 
PLC (Portevin-Le Chatelier) phenomena (Lebyodkin et al., 
1995), fragmentation and fracture of various materials under 
different conditions (Andersen et al., 1994a, 1994b), or 
structures formed by the capillary self-organization of nano-
particle systems (Chen et al., 2005). Here, we first review 
some of our recent applications of the spring-block system. 
After this we present a novel application in modelling 
highway traffic.   

2. A BRIEF REVIEW OF RECENT APPLICATIONS OF 
THE SPRING-BLOCK MODEL. 

a. Pattern formation in drying granular materials.  

Fascinating polygonal patterns obtained in dried granular 
materials (dried mud for example) are familiar to everyone 
(Figure 2, bottom row). It is less known however, that such 
patterns hide an interesting scaling law, which connects the 
average fragment area with the layer thickness. One 
successful application of the spring-block type models is the 
elegant description of these patterns. In this approach the 
grains of the material are modeled by blocks sliding on the 
considered two-dimensional substrate, while the capillarity 
effect of the fluid is modeled by springs interconnecting the 
blocks (Leung et al., 2000). Initially, the system is subjected 
to a stochastic stress and relaxation dynamics is imposed on 
the system. During this dynamics: (i) each block will slide to 
a new equilibrium position when the total force acting on it is 
greater than the friction force and (ii) each spring is allowed 
to break whenever the tension in it exceeds a breaking 
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threshold. Several layers of springs are considered in order to 
incorporate the thickness of the material in the model. Due to 
the competing effects of the spring tensions and frictional 
forces, blocks will slide in avalanches leading finally to the 
breakage of the springs and thus to fragmentation of the 
system. An important scaling relates the average area of 
fragments with the thickness of the granular layer: the 
average fragment area scales with the square of the layer 
thickness. Simple experiments and results of the spring-block 
model both confirm this general law (Leung et al., 2000). By 
using the spring-block model one could gain also precious 
information about the role of the main controllable physical 
parameters in the final pattern structure. The model 
reproduced nicely the dependence of the fragment structure 
as a function of the layer’s thickness (Figure. 2, upper row). 

.  

Fig. 2. Visual comparison of real structures obtained through 
fragmentation of corn-starch (bottom row of pictures) and 
structures obtained by simulation of the spring-block type 
model (upper row of pictures) for proportionally selected 
layer thickness.  

By using a spring-block model similar with the one used for 
the fragmentation of granular materials, and  introducing  an 
additional drying front (stress front) moving towards the 
centre of the two-dimensional system, the formation of 
curious spiral and other continuously bending fracture 
structures could be also explained (Leung et al., 2001, Neda 
et al., 2002). These highly non-trivial structures were 
experimentally observed by our group when studying the 
fragmentation of wet precipitates (Figure 3).   

 

Fig. 3. Spiral cracks detected experimentally in drying 
precipitates (left) and reproduced by simulations with a  
simple spring-block type model (right). 

b. Capillarity driven self-assembly of nanostructures  

Self-organization is a timely and widely applied method for 
engineering structures on nanoscale. Self organization can be 
achieved by several methods, one among them is to use the 
capillarity forces that appear during the evaporation of the 
liquid layer. The self-organized structures can be than 
chemically treated or thin metallic films can be deposited on 
them, such that the final nanostructure becomes stable and 
suitable for various practical applications. Nanosphere 
Lithography is one of such methods. Here polysterene 
nanospheres are used as elementary building blocks. In order 
to obtain various structures with better and better properties, 
it is important however to further control the capillarity-
driven self-organization process of the nanospheres. It is also 
crucial to understand the mechanisms that can modify or 
influence the final structures. Beside these, new methods are 
needed to be developed for reducing the amount of defects in 
the obtained structures. Our recent studies (Jarai-Szabo et. al., 
2005, 2006, 2007) proved that the spring-block type model 
can be easily modified such that this practically important 
pattern formation processes are described in a realistic 
manner. In this approach the nanospheres are modeled with 
blocks, the capillarity forces between the spheres are modeled 
by classical springs, and the pinning with the substrate is 
modeled through static friction forces.  Due to the fact that 
the nanospheres carry electric charges, an additional 
repulsive force is introduced in the model, which prevents the 
sliding of blocks on each other. In order to reproduce 
different crystallization symmetries observed experimentally 
(triangular and square lattices), we did not use a predefined 
lattice structure for interconnecting the blocks. The springs 
connect the blocks according to a random lattice defined by 
the initial random position of the nanospheres. The spring-
block system used in this case follows again relaxation 
dynamics, similar with the one used in the simulation of 
drying granular materials. The main difference is, that due to 
the complex topology of the springs, one cannot implement 
the problem on a simple cellular automaton (as it was done 
for the fragmentation case) and molecular dynamics 
simulations are needed. Simulations are much slower in such 
case and huge computational power is needed. Simulation 
results reproduced nicely the experimentally observed 
structures. The excellent agreement between reality and 
simulations is illustrated on Figure. 4. 

 

Fig. 4. Capillarity-driven self-assembled nanosphere 
structures. The upper row shows experimentally obtained 
structures for different nanosphere densities, lower row 
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shows simulation results obtained with the spring-block 
model. 

Beyond the excellent reproduction of the experimentally 
obtained nanosphere structures we have also studied the 
influence of the relevant and experimentally controllable 
parameters. It was shown (Jarai-Szabo et al., 2007) that the 
degree of order in the final structure can be significantly 
increased and many defects can be eliminated by introducing 
an additional random force. Experimental results where the 
system was sonicated during drying, have confirmed the 
feasibility of this method (Jarai-Szabo et al., 2007).  Based on 
the results of the simple spring-block type model an elegant 
method for the fabrication of nanostructures with a high 
degree of ordering was suggested. 

c. Magnetization phenomena and Barkhausen noise  

The simple spring-block type model is appropriate also for 
modeling complex nonlinear magnetization phenomena and 
explaining the statistical properties of Barkhausen noise. A 
one-dimensional version of the model was implemented, 
where blocks represented the Bloch-walls separating 
oppositely oriented magnetic domains (+/- in our case) and 
springs modeled the demagnetizing energy of magnetic 
domains (Kovacs et al., 2005)  (see Figure. 5). As it is proved 
in the work of Kovacs et al. in 2005, this model describes 
magnetic systems on a mesoscopic scale. All the relevant 
interactions that govern the dynamics of Bloch-walls are 
taken into account: exchange interaction responsible for 
spontaneous magnetic ordering, interaction between the 
external magnetic field and magnetic momentums, 
demagnetization, and pinning forces that block the free 
movement of the walls (it appears due to defects and 
impurities in the material). The interaction between the 
external magnetic field and magnetic momentums are taken 
into account through constant forces that act on the blocks 
and have opposite orientation for walls separating +/- and -/+ 
domains. The demagnetizing energy is modeled by the 
energy in the springs and it is proportional with the length of 
each domain. Finally, pinning forces that stops the free 
movement of domain walls are modeled by randomly 
distributed pinning centers with random pinning forces 
following a normal distribution. Walls can occupy only these 
pinning centers. The magnetization of the system is the 
algebraic sum of the lengths of + and – oriented domains. 
The system built up in such manner follows a relaxation 
dynamics again. 

 

Fig. 5. Main constituents of the spring-block model aimed to 
reproduce magnetization phenomena of ferromagnets. 

Increasing and decreasing the external magnetic field 
corresponds to changing the force acting on the walls. 
Whenever the resultant of the external and elastic forces 
acting on a domain wall exceeds the pinning force, the wall 
jumps to the next available pinning center which is in the 
direction of the resultant force. By driving the system through 
many consecutive magnetization-demagnetization cycles 
realistic hysteresis loops were obtained (Figure 6a). On the 
hysteresis loops one can detect many discrete jumps which 
correspond to the discontinuous variation of the sample's 
magnetization and generate the so-called Barkhausen noise. 
As it was shown in the work done by Kovacs and Neda in 
2007 the statistics obtained for the Barkhausen noise is 
realistic.     

 

Fig. 6. Hysteresis loop (a) and critical magnetization jump 
statistics (b) obtained in the simple one-dimensional spring-
block model for magnetization 

Using this simple one dimensional model for the 
magnetization processes a special athermal (fluctuationless) 
phase transition was found. In this phase transition critical 
behavior appears at a certain critical amount of disorder in 
the system, and the critical behavior is manifested by power-
law distributions of the relevant physical quantities 
(avalanche sizes for example). Due to the fact that the 
transition appears as a function of the disorder amount, this 
phase transition was named as disorder-driven phase 
transition (Kovacs et al., 2007).. 

3. HIGHWAY TRAFFIC AS A SPRING-BLOCK SYSTEM 

Traffic of cars is a truly complex phenomenon where several 
different forms of collective behavior are detectable (for a 
review see Kerner, 2004 and Mahnke et al, 2005). One of the 
simplest forms of traffic is on the highway. An extra 
simplifying assumption for this problem is when one 
considers a queue of cars on only one traffic lane, and forbids 
the cars to leave this lane. The motion of the queue is in such 
case primarily governed by the leading car. This ideal and 
simple situation becomes however quite complex if the 
leading car is moving slowly and the differences between the 
driving attitudes of the drivers are substantial. In such 
situation the queue will evolve non-continuously, and jams of 
various sizes will continuously appear and propagate. 
Unfortunately such situations are quite common in our 
everyday life, so understanding it and modeling it is 
important. Within this study we plan to tackle the problem by 
considering a spring-block chain model with asymmetric 
interactions. To our knowledge real experimental data 
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describing the dynamics of cars in such idealized situation is 
not available. This makes modeling more difficult, since 
there is no feedback from real world which would decide if a 
model is good or bad. This situation is completely different 
from all previous spring-block modeling attempts described 
in section 2, where ultimately the predictions of the model 
were always compared with the experiments. Nevertheless, if 
a realistic model is developed, the model could offer valuable 
hints, for what one should measure and look for in the real 
phenomena. Targeted experiments can be then planned, and 
both the assumptions of the model and the predicted 
collective behavior can be verified. The present work intends 
to motivate such experimental works. 

The spring-block approach to this idealized highway traffic 
problem is straightforward.  A spring-block chain is 
considered (Figure 7), where the blocks model the cars in the 
row, and the spring models distance keeping interactions 
between the cars. This distance keeping interaction is the 
desire of the drivers to keep an optimal distance from the car 
ahead. It is not desirable that this distance becomes too small, 
and also it is not optimal to let a too big distance. Of, course, 
the springs cannot be realistic mechanical springs, since the 
spring-tension has a unidirectional effect: solely on the car in 
the back. It cannot have any action on the car in the front, 
since this is never pulled back or pushed ahead by the car 
from behind unless there is a collision.  In this sense our 
spring-block system is not a typical mechanical system, 
where the action-reaction principle is violated.  

 

 

Fig. 7 The spring-block chain considered for modeling 
idealized highway traffic on one lane. 

The crucial effect which will generate disorder in the 
dynamics of the cars in the row is the inertia of the drivers. 
This is introduced via friction forces between the sliding 
blocks and the plane beneath. Friction forces are in fact key 
ingredients of any spring-block model. In analogy with real 
mechanical systems we consider here two different types of 
friction forces: static and dynamic ones. The static friction 
force is denoted by Fs and the dynamical one is denoted by 
Fd.  As usual, ds FF > , and here, their ratio is taken 

constant: fFF sd =/ . We have chosen for all our 
simulations f=0.6. Of, course this f parameter is also an 
important free parameter of the model, and its influence on 
the dynamics of the system should be thoroughly 
investigated. This aspect is planned however for a future 
study and in the present work we limit our study for a fixed f 
value.  Apart of distance keeping interactions and inertia of 
the drivers the disorder (difference between drivers and cars) 
is also a key ingredient which has to be taken into account 
within the model. Disorder is of two different types: spatial 
and time-like. Spatial disorder means differences in the driver 
personalities, and time-like disorder means the fluctuations of 

the driving attitude in time. These disorders can be 
introduced in several ways. It can be introduced either in the 
spring constants, or in the friction forces. We have chosen the 
lately, and treated the spatial and time-like disorder in a 
unified manner. At each new location (coordinate) of the car 
(block) we have generated randomly a static friction force 
value from a normal distribution with a fixed mean ( mF  ) 
and standard deviation (σ ). Of course, only non-negative  

sF  values are accepted. Accordingly, the dynamic friction 
value of the car is updated too. This means that both in time 
and space the dynamic and static friction value of the cars 
will fluctuate.      

4. PARAMETERS AND DYNAMICS OF THE MODEL 

The force unit in the model has been chosen by considering 
all springs with spring-constant equal one: 1=k . The length 
unit is imposed by the equilibrium length of the springs, 
which are chosen as: 10 =l . With the force unit imposed by 

the value of k, we fix 2=mF , and consider σ  as the main 
parameter governing the disorder in the system. Simulations 
are done in discrete steps. Each step corresponds to a unit 
time, fixing the time unit. The drag speed (the velocity of the 
first car) is constant in time. The first block moves ahead in 
steps of length d0. This step length defines the 0dv =  drag 
velocity. The blocks are labeled after their ordinal number, so 
that the dragged block has label: 1, the next one label 2, and 
so on. Step of the block “j” in the row at time moment t, 
depends on the distance from the block “j-1” ahead of it 
( )()(1 txtx jj −− ) , and its previous step )1( −td j .  

form the chain with distance 0l  between the neighboring 
blocks: 

       0)0( ljx j ⋅−= ;  0)0( =jd  

move the first block with step 01 )( dtd = , 

)()1()( 111 tdtxtx +−= . 

go over each block in the chain, after their ordinal number 
(label), j 

Calculate the spring force acting on block “j”: 

01 ))()1(()( ltxtxtT jjj −−−= −   

If block “j” has been moving in the previous step 
0)1( ≠−td j  generate randomly a new friction force 

)(tFsj  and correspondingly: )()( tFftF sjdj ⋅= .  
Updating the position of the block is done as: 

)()()1()1()( tFtTtdtxtx djjjjj −+−+−=  

)1()()( −−= txtxtd jjj  

(this equation corresponds to the laws of classical dynamics 
with 1=∆t ).  
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The above update of the coordinates, )(tx j , should respect 
however the following restrictions: 

The blocks (cars) can move only ahead: 
0)1()()( >−−= txtxtd jjj , otherwise we leave the 

coordinate unchanged:                       ( )1()( −= txtx jj and 

0)( =td j ) 

The distance between two blocks cannot be smaller than a 

mind value, so if: 
min1

min1

)()(

)()(

dtxtx

dtxtx

jj

jj

−=⇒

⇒<−

−

−
,                         

and min)( dtd j = . This condition imposes the natural trend 
of drivers to keep a minimum distance from the car ahead. In 
our simulations we considered 3.0min =d        

Finally, there is a speed limit for the cars. The movement of 
the blocks at each time step has a maximal limiting value: 

maxd . If 
max

max

)1()(

)1()(

dtxtx

dtxtx

jj

jj

+−=⇒

⇒>−−
                         and 

max)( dtd j = . This maximal speed was chosen in our 

simulations as 1max =d .                        

If  0)1( =−td j  (the block was not moving), than 

consider: )1()( −= tFtF sjsj . We than calculate the total 

force )()()( tFtTtF sjjj −=  acting on the block. If 

0)( >tFj  we use the same equations for the dynamics of 

block “j” as in item 5 with 0)1( =−td j . Otherwise 

( 0)( ≤tFj )    the block remains in its previous position:  

)1()( −= txtx jj  and 0)( =td j . 

Update the position of each block, },...2,1{ Nj ∈ , 
respecting the rules formulated in items 4.-7. Collect the 
relevant data for the dynamics of the system. These relevant 
parameters will be described in the next section of the study. 

Update the time: 1+→ tt  and repeat the dynamics from 
item 2. 

The above dynamics (1.-8.) can be easily implemented as a 
graphical simulation, so that the dynamics is easy to follow 
visually. A simple JAVA applet for such a simulation can be 
downloaded (Néda and  Járai-Szabó, 2009).  Some typical car 
positions relative to the first car are illustrated in Figure 8.                                      

The model as described above will have three free 
parameters: 0d , the speed of the first car, theσ  disorder 
level in the static friction (reaction time) and the length of the 
car chain, N . All the other free model parameters have been 
fixed as: 2=mF , 3.0min =d   and 1max =d . 

 

Fig. 8.  Snapshot of the chain dynamics. Vertical bars on the 
horizontal line denote the position of the blocks. The top 
image is for a chain with N=50 blocks and the bottom one is 
for N=100 blocks.    

5. QUANTITIES OF INTEREST FOR THE DYNAMICS 
OF THE ENSEMBLE 

Quantities relevant from the viewpoint of one single car and 
quantities relevant for the whole chain will be both of interest 
to us. The quantities we will focus on are the ones that could 
be measured experimentally and could have practical 
implications as well.  

From the viewpoint of one car in the chain we are interested 
in its stop-time distribution. This stop-time distribution 

)(sg j , describes the distribution of time intervals, s  , the 
car with ordinal number “j” is not moving.. Since the time 
step is discrete in our simulation ( 1=∆t ), the time-
distribution is defined only for discrete, integer variables 

,.....}2,1{∈s .  In other words, the )(sg  function gives us 
the probability that the rest time of the car is s . The 
normalized stop-time distribution has the property: 

∑
∞

=

=
1

1)(
s

sg . Alternatively one can define the cumulative 

distribution function )(sP>  which gives us the probability 

that the rest-time is bigger than s . Naturally: 1)0( =>P .  

A quantity characterizing at a given time moment the whole 
chain is the distribution of the jam-size )(kq . We define the 
jam-size, k, as the number of consecutive cars in the chain 
that are not moving. Since the number of cars is also a 
discrete variable, we deal again with a discrete distribution.  
For each time-moment one can define such a distribution. 
Assuming that the chain reaches a steady-state dynamics, this 
distribution should become invariant in time. In order to get a 
good statistics even for reasonable length chains of cars we 
consider thus a time average over several snapshots. 
Normalization of this distribution function is again 

straightforward: ∑
=

=
N

k

kq
1

1)( . A time-averaged cumulative 

distribution of the jam sizes )(kP>  can be also defined. This 
will give us the probability to have jams of sizes bigger than 
k . Naturally:  1)0( =>P . 

Finally, another global quantity of interest is the end-to-end 
chain length. As time evolves this end-to-end distance, 

)()()( 1 txtxth N−= , will change, and one can define a 

distribution that characterizes the fluctuation of )(th . Since 



8                                     CONTROL ENGINEERING AND APPLIED INFORMATICS 
 

h  is a continuous variable, we can define now a probability 
density, )(hw , which gives us the probability that the end-
to-end distance is between h  and hh ∆+ , for a unit 

h∆ value: hhhhPhw ∆∆+= ),()( .  

Results for the above defined distribution function are 
presented and discussed in the next section. 

6. RESULTS OF THE SPRING-BLOCK MODEL FOR 
HIGHWAY TRAFFIC 

The relevant distribution functions defined in the previous 
section were thoroughly investigated using a user-friendly 
and interactive JAVA code (Néda and Járai-Szabó, 2009). 
This code plots graphically the position of the cars in the row 
as illustrated in Figure 8 and determined the evolution of all 
the relevant distribution functions. Results obtained for 
various model parameters and system sizes are discussed 
below.   

Let us first investigate the  )(sP>  cumulative stop-time 
distribution for various cars in a row fixing the drag velocity 

3.00 == dv  and the disorder in the static friction: 2=σ . 
The stop-time distribution varies as a function of the car 
position, n, as illustrated in Figure 9.  

 

Fig. 9 Cumulative stop-time distribution functions for various 
cars, n, in the row on normal-log scale ( 3.00 == dv  and  

2=σ ). 

From these results we learn that for a given car the 
cumulative distribution function becomes a logarithmic one, 
suggesting a xC /  power-law type )(sg   distribution 
function in the limit of large s values. Since this distribution 
cannot be normalized in the limit of 0→s  or ∞→s  it 
will lead to  0→C  for an infinite long dynamics, 
suggesting a kind of critical states where we all stop-times 
are significantly possible.  

One can look on this distribution from another perspective, 
fixing the position of the car in the row ( 300=n ) and 
studying the influence of the drag speed v . Results in this 

sense are presented on both log-normal and normal-log scales 
on Figure 10.  

 

Fig.10. Cumulative stop-time distribution functions for car 
300=n  in the row. Results for various drag velocities, v . 

The top figure plots this distribution on log-normal scale, the 
bottom figure plots it on normal-log scale.    

The plots in Figure 10 suggest a result similar with our 
previous conclusion. We find now that for a given car in the 
row there is a critical (worst) drag velocity for which the 
distribution function will become a xC /  type power-law. 
Figure 10 shows that for very small or high drag velocities 
the cumulative distribution function is exponential. There is 
thus a critical drag velocity for a car in the row, where the 
stop-times are largely fluctuating. The given car is in a 
critical state, and one can consider this phenomenon as a kind 
of self-organized criticality.  

It is also instructive to study the stop-time distribution for a 
given car in the row as a function of the disorder level 
quantified by σ . We consider thus the same car in the row 
( 300=n  ), fix the value of 3.00 == dv , and consider 
several different disorder levels in the system. Simulation 
results are similar with the ones presented in Figures 9 and 
and 10. Results for three different disorder levels are plotted 
on Figure 11. 
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Fig. 11. Cumulative stop-time distribution functions for car 
300=n  in the row. Results for various disorder levels: σ  . 

Note the horizontal logarithmic axes.  

From Figure 11 it results that for a given disorder level, the 
car will have a cumulative stop-time distribution of 
logarithmic nature ( 7.1=σ ). This means XCsg /)( ≈ , 
and the stop-time will exhibit a fat-tail power-law 
distribution.  Since this critical state appears for a given 
disorder level, we can consider it as a disorder-induced phase 
transition, similar with the one obtained in our spring-block 
model for magnetization (Kovács and Néda, 2007).  Studying 
thus the stop-time distributions for a given car in the row as a 
function of the velocity of the first car and the disorder in the 
system, we found two interesting collective behaviors: self-
organized criticality and a disorder induced critical state. 

The jam-size distribution follows a different trend. Contrary 
to the stop-time distribution this is a distribution that 
characterizes the whole chain and not only one car. Fixing the 
value of disorder ( 2=σ ) we studied the influence of the 
v drag velocity. Results for the cumulative distribution 
function are plotted on Figure 12.  

Results plotted on Figure 12 suggest that the jam-size 
distribution is exponential if the drag velocity approaches the 

10 == dv limiting value. It is easy to verify that for smaller 
velocities there is no power-law or logarithmic trend. The 
shape of the )( jP> curves shows a monotonic trend towards 
this exponential form. Seemingly the jam-size distribution 
does not give any hint for a critical behavior of the system as 
a whole. 

Very similar results are obtained for the end-to-end distance’s 
statistics of the chain. The )(hw  probability density function 
will exhibit an exponential form in the low drag velocity limit 
(Figure 13). There are however no drag velocities or disorder 
levels which would ensure a power-law type distribution 
function. 

Simulation results revealed thus interesting nontrivial 
behavior for the dynamics of one car in the row. No hints for 
critical collective behavior of the chain as a whole were 
obtained up to now. The stop-time distribution of cars seems 

to be thus the relevant information, which becomes critical 
for a given position in the row, drag velocity and disorder 
amount.  

 

 

Fig. 12 Cumulative distribution functions of the jam-size 
values, for various drag velocities, v . Please note the log-
normal scales.    

 

Fig. 13 Probability density of the end-to-end distance 
distribution for various drag velocities of the chain. Please 
note the log-normal scale. 

7. CONCLUSIONS 

The primarily aim of the present paper was to attract the 
attention of the scientific community on the vast and 
interdisciplinary applicability of the simple spring-block type 
model. As it is illustrated through the discussed examples the 
spring-block system is nowadays successfully used for 
modeling complex phenomena in nature. It is particularly 
useful for those phenomena where avalanche-like processes 
or self-organized critically is expected. As a novel 
application, it was used here for modeling idealized highway 
traffic. The spring-block chain dragged with a constant speed, 
predicts interesting and rich dynamics for single lane 
highway traffic.  For low velocities of the leading car and 
high enough disorder level in the driver attitudes, the cars 
will evolve non-continuously, alternating advancing and 
halting regimes. For each car in the row there is a worst 
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velocity of the leading car when it’s stop-time distribution 
becomes fat-tail.  Alternatively, for a fixed velocity of the 
leading car there is a critical disorder level in the driver 
attitudes, for which the stop-time distribution of the 
considered car will become critical. Signatures of self-
organized criticality and disorder-driven criticality are thus 
predicted for this idealized system. Experiments which would 
confirm or infirm the prediction of this model should be 
considered in the future.   
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