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a Pázmány Péter Catholic University, Department of Information Technology, HU-1083 Budapest, Hungary
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Abstract

The computational paradigm represented by Cellular Neural/nonlinear Networks (CNN) and the CNN Universal Machine (CNN-UM) as a
Cellular Wave Computer, gives new perspectives also for computational statistical physics. Thousands of locally interconnected cells working in
parallel, analog signals giving the possibility of generating truly random numbers, continuity in time and the optical sensors included on the chip
are just a few important advantages of such computers. Although CNN computers are mainly used and designed for image processing, here we
argue that they are also suitable for solving complex problems in computational statistical physics. This study presents two examples of stochastic
simulations on CNN: the site-percolation problem and the two-dimensional Ising model. Promising results are obtained using an ACE16K chip
with 128 × 128 cells. In the second part of the work we discuss the possibility of using the CNN architecture in studying problems related to
spin-glasses. A CNN with locally variant parameters is used for developing an optimization algorithm on spin-glass type models. Speed of the
algorithms and further trends in developing the CNN chips are discussed.
c© 2008 Elsevier B.V. All rights reserved.
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1. Introduction

Progress in computation is always driven and deeply
influenced by the available technology. For example the circuit
implementation of the building blocks (e.g. the circuits for
memory) played a significant role when John Von Neumann
invented the digital stored programmable computer [1]. For
a long period after this breakthrough, computation was
approached by using discrete variables and the instructions
were defined via arithmetic and Boolean logic.

In the light of the presently emerging quantitative
neuroscience, it became possible to understand the signal
representation and processing in some parts of our nervous
system. Parallel with this, a new and revolutionary way of
computing is emerging. Today the technology has developed so
much that it is possible to imitate some basic principles of our
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nervous system. Several thousands of microprocessors (cells,
neurons) can be placed on a single chip locally interacting with
each other, similar to a layer of neurons. The new cellular visual
microprocessor Q-Eye [2], for example, has 25000 processors,
each one hosting 4 optical sensors. One suggested prototype
architecture for an unconventional computation is the Cellular
Wave Computer [3,4], a special case of it being the Cellular
Neural Network Universal Machine (CNN-UM) [5].

The history of CNN computing starts in 1988 when
the theory of cellular neural/nonlinear networks (CNN) was
presented [6]. Few years later a detailed plan for a computer
using cellular neural networks was developed. This is called
CNN Universal Machine (CNN-UM) [5] and is an analogic
(analog+logic) computer which has on its main processor
several thousands of interconnected computational units (cells),
working in parallel. Since then many experimental hardware
have been developed and tested. These chips can be easily
connected to digital computers and programmed with special
languages. Although the CNN computer is proved to be a
universal Turing machine [7] its structure and properties make
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it suitable only for some special complex problems and it is
complementing and not replacing the digital computers.

CNN chips are generally used and developed for fast image
processing applications. The reason for this is that the cells can
be used as sensors (visual or tactile) as well. CNN computers
can work thus as a fast and “smart” camera, on which the
capturing of the image is followed in real time by analysis [8].
Several applications related to physics and mathematics
were also considered: solving in an elegant manner partial
differential equations [9,10] or studying cellular automata
models [11,12]. These applications result straightforwardly
from the appropriate structure of the CNN chips.

The aim of this article is to show how the CNN-UM
can be effectively used for studying complex problems in
computational statistical physics: stochastic cellular automata,
Monte Carlo type simulations, optimization problems etc. We
will present results obtained on an experimental version of
CNN-UM: the ACE16K chip [13] which has 128 × 128 cells.
After discussing in a critical manner the obtained results and the
developing trend of CNN computers, we argue that CNN-UM
could represent a useful computational alternative in the near
future.

The paper is organized as follows: in the next (second)
section we present a short description of the basic principles
and architectures of the CNN computers, giving also a short
review of the most important applications. In the third section
after discussing the basics (random number generation) for
doing stochastic simulations on the CNN-UM, two classical
problems of statistical physics are considered as examples:
the site-percolation problem and the two dimensional Ising
model. Both of them offer an opening to a broad class of
problems and, as such, the presented algorithms can be easily
generalized for other closely related models as well. Next we
discuss the relation between CNN and spin-glass type models.
We will show that using a locally variant CNN, fast and simple
optimization algorithms can be developed.

2. The CNN universal machine

Cellular wave computers [4,3] are universal machines on
flows, meaning that the type of data to be processed are
topographic flows of cell array signals. The instructions are
defined in space and time, typically as a spatial-temporal
wave acting on the flow of data. One special case of these
cellular wave computers is the CNN Universal Machine (CNN-
UM) [5] in which for this spatial-temporal dynamics a standard
cellular neural network (CNN) [6] is used. The physical
implementations of these computers are numerous and widely
different: mixed-mode CMOS, emulated digital CMOS, FPGA,
and also optical. In the following we will usually refer to mixed-
mode implementations.

The standard CNN [6] is composed of L × L cells placed
on a square lattice and interconnected through their 8 neighbors
(Fig. 1). Each cell is characterized by a state value, xi, j (t). This
usually describes a voltage in the circuit of the cell, but the
particular physical correspondent of this quantity might vary
with the different physical implementations of the chip. The cell
Fig. 1. The lattice structure of the standard CNN. Each cell is connected to its
8 neighbors.

has also an input value (voltage) ui, j , which is constant in time
and can be defined at the beginning of an operation. The third
characteristic quantity of the cell is the output value yi, j (t).
This is equivalent to the xi, j state value in a given range. More
specifically it is a piece-wise linear function, bounded between
−1 (called as white) and 1 (black):

y = f (x) ≡
1
2
(|x + 1| − |x − 1|). (1)

The wiring between neighbor cells assures that the state value
of each cell can be influenced by the input and output values
of its neighbors. In the original model as well as on CNN
chips developed, wiring exists with 8 neighbors (the 4 nearest
and the 4 next-nearest neighbors). The equation governing the
dynamics of the CNN cells results from the time-evolution of
the equivalent circuits and has the following form [6]:

dxi, j (t)

dt
= −xi, j (t) +

1∑
k=−1

1∑
l=−1

Ak,l yi+k, j+l(t)

+

1∑
k=−1

1∑
l=−1

Bk,lui+k, j+l + zi, j , (2)

where i, j denotes the coordinates of the cell and the neighbors
are identified with the help of k and l numbers (k, l =

{−1, 0, 1}). Self-interaction (k = 0, l = 0) is also possible.
The coupling between neighbors is controlled with matrices
A and B which are a 3 × 3 matrix identical for all cells
(A = {a−1,−1, a−1,0, a−1,1; a0,−1, a0,0, a0,1; a1,−1, a1,0, a1,1}

and B = {b−1,−1, b−1,0, b−1,1; b0,−1, b0,0, b0,1; b1,−1, b1,0,

b1,1}). We emphasize however that in Section 4, we will also
consider locally variant CNN, in which the coupling parameters
(A, B matrices) can be different for each cell. Parameters zi, j
are constant values and can also vary from cell to cell. The
set of parameters {A, B, z} is called a template. An operation
is performed by giving the initial states of the cells, the input
image (the input values of all cells) and by defining a template.
The states of all cells will vary in parallel and the result of
the operation will be the final steady state of the CNN. If the
state values (xi, j ) of all cells remain bounded in the [-1, 1]
region (i.e. yi, j = xi, j holds for each cell at any time t), then
each operation is equivalent with solving a differential equation
defined by the template itself [14,9,10]. When xi, j does not
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remain between 0 and 1 then the piece-wise linear function
described at the definition of the output value yi, j Eq. (1) takes
an important role. The final steady state will not be simply the
solution of the differential equation, and this can be used for
defining other useful operations as well [14].

The CNN-UM [5] is a programmable analogic cellular
wave computer. Beside the analog circuit described by Eq. (2)
each cell also contains a logic unit, local analog and logic
memories and a local communication and control unit. The
logic unit and logic memories are included to complement the
analog computation, this way very basic logic operations can be
performed without needing to define complicated templates. In
the local logic memories one can save a binary value (1 and 0
respectively), and in the local analog memories it is possible to
save real values between −1 and 1. Since the whole CNN array
is used mainly for image processing and acquisition, the binary
values are often referred to as black and white and the real
values bounded between −1 and 1 are mapped in a grayscale
scheme. Beside these local units, the CNN-UM has also a
global analog programming unit which controls the whole
system, making it a programmable computer. It can be easily
connected to PC type computers and programmed with special
languages, for example the analogic macro code (AMC).

Many applications ideal for the analogic architecture of
the CNN-UM were already developed and tested. Studies
dealing with partial differential equations (PDE) [9,10,15,16]
or cellular automata (CA) models [11,12] prove this. Solving
partial differential equations is relatively easy and offers the
advantage of continuity in time [9]. Deterministic cellular
automata [11] with simple nearest-neighbor rules are also
straightforward to implement in the CNN architecture.

For practical purposes the most promising applications
are for image processing, robotics or sensory computing
purposes [17], so the main practical drive in the mixed-mode
implementations was to build a visual microprocessor [4].
The cells of the computer are additionally equipped with
sensors (usually visual sensors, but in special applications
these can be tactile or of other type). By this way optical
sensing and computing are inherently topographically coupled
and implemented on the surface of a silicon chip. The first
self-contained camera–computer, containing a CNN-UM type
visual microprocessor (ACE16K), was built recently, as the Bi-
i camera–computer [8]. Its input flow speed achieves 20000
frames/s including sensing and processing.

On Table 1. we can see the size of some CNN chips realized
in the last decade. It is important to mention that besides
increasing the lattice size of the chips engineers are focusing
now on developing multi-layered, 3 dimensional chips as well.
This trend is opening again new and fascinating application
possibilities.

3. Stochastic simulations on the CNN universal machine

Working with analog values leads to the presence of noise
and one would naturally think of applications in which this
noise (usually thermal and Nyquist type noise) can be useful.
In computational statistical physics many of the interesting
Table 1
Evolution of the CNN-UM chip, different physical realizations

Name Year Size

– 1993 12 × 12
ACE440 1995 20 × 22
POS48 1997 48 × 48
ACE4k 1998 64 × 64
CACE1K 2001 32 × 32 × 2
ACE16K 2002 128 × 128
XENON 2004 128 × 96 × 2
Q-EYE 2006 176 × 144

From these chips only the ACE16K [13] and the Q-Eye [2] are commercially
available, mass production began with the Q-Eye at the end of 2006.

problems deal with stochastic processes or Monte Carlo type
simulations. Thus, generating random numbers is a key issue
for stochastic cellular automaton, random initial conditions
or other MC simulations on lattices (lattice spin problems,
population dynamics models, lattice gas models, percolation
etc...). Developing and proving the efficiency of stochastic
simulation techniques on the CNN-UM - using its stored (or
algorithmic) programmability - would thus be an important step
toward its success. For implementing this kind of simulations
on the CNN-UM one first needs a good and trustworthy
random-number generator. The natural noise of the chip can
not be used directly for generating random numbers since it
is highly correlated spatially and in time as well. There are,
however, other simple possibilities to generate uncorrelated
but still realistic (not pseudo-) random numbers in the CNN
architecture.

In [18] a realistic random number generator (RNG) which
uses also the natural noise of the CNN-UM chip was presented.
The method is based on a chaotic cellular automaton (CA)
which uses simple logic functions and is already accepted
as a good pseudo-random number generator (called PNP2D
[12,19]). It generates binary values (0 and 1) with the same
1/2 probability independently of the starting condition. This
pseudo-random number generator perturbed periodically by the
natural noise of the chip can lead to a realistic random number
generator.

In the algorithm proposed by us, the chaotic CA is perturbed
in each time step with a noisy binary picture (array). This
picture is obtained by performing a cut on a grayscale picture.
The initial grayscale picture is obtained by fixing a value a
for the state of each cell. Due to the analog nature of the
CNN-UM chip one will always get a few randomly located
cells with state values greater than a + z (z � 1). Selecting
these cells (i.e. making the cut) will result in a random binary
picture with few black pixels (black will be the selected cells
and white the other ones). These noisy binary images might
be strongly correlated and will fluctuate in time. The time-
like fluctuations are caused by real stochastic processes in the
transistor circuits of the chip and can not be thus controlled.
Because the used noisy images contain only very few black
pixels the perturbation — which consists of a simple exclusive-
or operation — will just slightly sidetrack the chaotic CA from
the original deterministic path and all the good properties (1/2
density of black pixels and small correlations) of the pseudo-
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random number generator will be preserved. A method for
generating pictures with any p probability of the black pixels
was also developed. For more details see [18]. This RNG and
the described algorithms were tested and are properly working
on an ACE16K chip which is an experimental version of the
CNN-UM with 128 × 128 cells. It is found that the RNG with
p = 0.5 is already almost 5 times faster on the ACE16K than
on modern PC type digital computers (see [18]).

Once a properly working RNG is available, Monte Carlo
type simulations on two-dimensional lattice-type models are
possible. Generating random initial conditions for cellular
automata models is straightforward and many simple stochastic
lattice models can be relatively easily solved. Here we consider
two well-known problems of statistical physics: the site-
percolation problem and the two dimensional Ising model.

3.1. The site-percolation problem on the CNN-UM

Percolation type problems are very common in many areas
of sciences like physics, biology, sociology and chemistry
(for a review see e.g. [20]). Different variants of the problem
(site percolation, bond percolation, directed percolation,
continuum percolation etc.) are used for modeling various
natural phenomena [21]. As an example, the well-known
site percolation problem is widely used for studying the
conductivity or mechanical properties of composite materials,
the magnetization of dilute magnets at low temperatures, fluid
passing through porous materials, forest fires or propagation of
diseases in plantations etc. The site-percolation model exhibits
a second order geometrical phase transition and it is important
also as a model system for studying critical behavior [22].

Implementing the site-percolation problem on the CNN-UM
the array of cells will represent the square lattice on which
percolation is studied. In the following the state of the lattice
will be referred to as a binary picture, black pixels pointing
for activated and white pixels for non-activated sites. In the
classical site-percolation problem one is interested whether it
is possible or not to go from one side of the picture to the
opposite side through activated and neighboring pixels. If there
is a path that satisfies this condition, it is considered that the
black (activated) pixels percolate through the lattice.

Finding the complicated connected path through neighbor-
ing black pixels takes only a single operation on the CNN chip.
We are using a template (the parameters in Eq. (2)), called
figure reconstruction with parameters:

A =

0.5 0.5 0.5
0.5 4 0.5
0.5 0.5 0.5

 , B =

0 0 0
0 4 0
0 0 0

 , z = 3.

On CNN chips the wiring allows us to consider 8
neighbors for each cell, but solving site-percolation with
4 nearest neighbors is also possible. The template for this
case would be: A = {0, 0.5, 0, 0.5, 4, 0.5, 0, 0.5, 0},B =

{0, 0, 0, 0, 4, 0, 0, 0, 0},z = 1.
The input picture of the template is the actual random binary

image and the initial state will contain only the first row of the
image. The template values are chosen in a way that pixels
Fig. 2. Simulated site-percolation probability as a function of the density of
black pixels. Circles are results obtained on the CNN-UM chip, squares are
simulation results on a normal PC type digital computer.

which have an input value equal to 1 (are black) and have at
least one neighbor with state value 1 will become black. In this
manner a flow starts from the first row making black all the
pixels which were black on the input picture and are connected
through neighbors to the first row. If on the final output there
remain black pixels in the last row, then percolation exists. This
simple template is a function in the image processing library
of the Bi-i v2 [23]. In general the influence of the A, B, z
parameters can be checked by analyzing the corresponding
differential equation system. A small programming experience
with the most common templates can help us defining the
proper template for a new operation. It is immediate to realize
that by using a locally variant CNN in which these A and
B matrices can vary from cell to cell also bond-percolation
and directed percolation problems would be solvable with the
same simple algorithm. In these cases the A matrices should be
separately and consistently defined for each cell, having non-
zero elements only in the directions of the predefined bonds.

Applying this template on many random images and by
changing also the p activation probabilities it is possible
to study the phase-transition in the classical site-percolation
problem. After a good statistics it is possible to determine how
the probability of percolation ρ depends as a function of the
density of activated pixels, and consequently where the critical
density pc is. The CNN code written for this application can be
downloaded from [24].

Results for the ρ(p) curve obtained on the ACE16K chip
are plotted with circles in Fig. 2. On the same graph it is
also sketched with square symbols the MC simulation results
obtained on a digital Pentium 4, 2.8 GHz computer, using a
recursion-type algorithm for detecting percolation. The lattice
size in both cases is 128 × 128 and the results are averaged for
10000 different random images for each activation probability
values. The two curves show a pretty good agreement. The
percolation threshold resulting from the simulated ρ(p) curves
are in good agreement with the accepted pc critical value for
this case (site-percolation on a square lattice with 8 neighbors):
pc = 0.407 [25].

Comparing the speed of the Monte Carlo type simulations
performed on digital computers and on the ACE16K chip
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the following observations can be summarized: (i) with the
presently available chip size (L = 128) and the experimental
version of the CNN-UM the simulation is almost 10 times
slower than on a digital computer with a 2.8 GHz Pentium 4
processor, (ii) on the CNN-UM the time needed for detecting
percolation grows linearly with the linear size of the respective
image, while on digital computers it scales with the square of
the linear size of the lattice. Increasing thus the size of the chip
will definitely favor the CNN-UM architecture for such Monte
Carlo type simulations.

In the site-percolation problem binary images are used, the
state of the system being saved in local logic memories. The
ACE16K chip was developed mainly for image processing
on analog images and the number of local logic memories
is thus small. This inconvenience effects considerably the
implementation of the algorithm since many extra data transfer
has to be done. We have to mention also that some of the
CNN instructions are not efficient on the present chip. The new
chips (presently under fabrication) are capable of performing
these operations much more efficiently, increasing further the
computational speed on the CNN-UM.

3.2. The Ising model on the CNN-UM

As a second specific problem in statistical physics we
now consider the well-known two-dimensional Ising model.
Implementing an MC study for this model on the CNN-UM is
however not trivial. As it will be argued later a straightforward
application of the usual Glauber [26] or Metropolis [27]
algorithms could lead to unexpected problems exactly due to
the completely parallel architecture of the dynamics.

In the Ising model, the spins can have two possible states
σ = ±1. On the CNN-UM these spin states can be mapped
as “black” or “white” states of the cells. Without an external
magnetic field the hamiltonian of the system is

H = −J
∑
〈i, j〉

σiσ j , (3)

〈i, j〉 representing nearest neighbors. There are many different
MC type methods for studying this basic lattice model. Most of
them like the Metropolis [27] or the Glauber [26] algorithm are
of serial nature, meaning that at each step we update one single
spin. Working however in parallel with all spins, could create
some unexpected problems since nearest neighbors are updated
simultaneously. Imagine for instance an initial state where the
spin-values are assigned following a chessboard pattern. This
state will have a zero total magnetization. Let us consider now
the zero-temperature ferromagnetic case and the Glauber or
Metropolis algorithm. Contrary to what is expected, this system
will not order in a pure “black” or “white” ferromagnetic phase
but it will continuously switch between the two complementary
chessboard patterns. For eliminating the parallel update of the
neighbors that causes such problems, and still taking advantage
of the parallel nature of the computer, we impose an extra
chessboard mask on the array. At each odd (even) step we
update simultaneously the spins corresponding to the black
(white) cells of the chessboard mask. For updating the chosen
spins the Metropolis algorithm is then used. It is simple to
realize that our method is equivalent to the classical serial
Metropolis dynamics in which the spins are updated in a well-
defined order. Detailed balance and ergodicity are thus naturally
satisfied [27,26], so the obtained equilibrium statistics should
be the right one.

Implementing the above scheme on the CNN-UM is realized
as follows. In each step we first build three additional masks:
the first marks the spins which have all 4 neighboring spins
with similar orientation (1E = 8J ), the second one marks
the spins which have 3 neighbors with similar orientation
(1E = 4J ), and the third represents all the other spins for
which 1E ≤ 0. Separating these cells is relatively easy using
logic operations and some special templates which can shift
the images in different directions. We generate two random
images with probability exp(−8J/kT ) and exp(−4J/kT ) and
we perform an AND operation between the random image and
the corresponding mask. After uniting the results of these two
and the third mask (1E ≤ 0) we get a new mask which
marks all spins which have to be flipped. Finally, we use the
chessboard mask and allow only those spins to flip which
correspond to black (white) pixels if the time-step is odd (even).
The CNN code developed for studying this problem can be also
downloaded from the home-page dedicated to this study [24].
It is worth mentioning that cluster algorithms, like the one
proposed by Swendsen and Wang [28] or Wolf [29], seem to
be also appropriate for the parallel architecture of the CNN-
UM. As shown in the site-percolation problem clusters can
be easily detected using figure reconstruction templates. This
cluster detection can be effectively used to detect the cluster of
correlated spins as described in [29].

Simulation results obtained with a Metropolis type algorithm
are presented on Fig. 3. On this figure we compare results of
(i) the classical Metropolis algorithm on a digital computer,
(ii) the results of our parallel algorithm simulated on a digital
computer and (iii) the results obtained on the ACE16K chip.
By plotting the average magnetization, the specific heat and the
susceptibility as a function of the temperature one can conclude
that different results are in good agreement with each other. All
simulations were performed on a 128 × 128 lattice using free
boundary conditions.

Fig. 3(d) shows the time needed for 1 MC step as a function
of the lattice size L . While on a PC type computer this scales
as L2, on the CNN-UM the time does not depend on the lattice
size (each command is executed in a fully parallel manner on
the whole lattice). The time measured on the ACE16K chip
with L = 128 was 4.8 ms, while on a Pentium 4 PC working
at 2.8 GHz under Linux operating system the time needed
for 1 MC step was 2 ms. For this lattice size the simulations
are still faster on the classical digital computers, however the
difference is again caused by the low number of local binary
memories, which results in time-consuming extra operations in
our algorithms. Taking into account the trend that the size of
the CNN chip (Table 1) and the number of local memories will
increase in the near future these results are also promising.
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Fig. 3. Average magnetization M (a), specific heat Cv (b) and susceptibility χ (c) are plotted as a function of the temperature T for the classical Metropolis
algorithm on a digital computer (squares), our parallel algorithm simulated on a digital computer (triangles) and the algorithm simulated on the ACE16K CNN-UM
chip (circles). Figure (d) compares the simulation time t (in ms) needed for 1 MC step on a Pentium 4 PC with 2.8 GHz (squares) and the CNN-UM (circles) as a
function of the lattice size L . The filled circle marks the simulation time obtained on the ACE16K chip (L = 128).
4. Studying spin-glasses on a locally variant CNN

For the CNN-UM’s realized and used until now the
templates A, B, z are identical for all cells. This means that
the strength of the connections between neighboring cells can
be changed, but it varies simultaneously and identically for all
cells. Here we will consider a locally variant CNN, on which
these connection-parameters could be controlled separately for
each cell. This would mean that instead of the nine parameters
of matrix A, one would use nine images (arrays) describing
the strength of the parameters. Of course this makes harder to
control the system, but the number of possible templates and,
thus, the possible applications become much larger.

A hardware like this would need more memories, more
template registers and a more complicated control unit. The
lack of such a hardware is probably caused by the lack of
motivation and not that it is technically infeasible. Very few
studies are dealing with such kind of CNN and very few
applications have been developed until now.

Here we will define a locally variant CNN which can be
used to study and optimize frustrated models like spin-glasses.
As it will be shown this CNN is an analog correspondent
of locally coupled spin-glasses. The only difference between
the two systems is that for CNN the variables are continuous
variables in the [-1,1] range and not discrete ones (±1) like for
the usual Ising-type spin models.

Let us now consider a CNN in which the A parameters are
locally defined: A(i, j; k, l) ∈ [−1, 1], where (i, j) and (k, l)
mark two neighbor cells. We consider symmetric connections:
A(i, j; k, l) = A(k, l; i, j) and A(i, j; i, j) = 1 for all (i, j).
The parameters B which control the effect of the input image
will be taken simply as: B(i, j; i, j) = b and B(i, j; k, l) = 0.
The parameter z is not needed, so finally our template is defined
by {A, b}. The state-equation of the system writes as:

dxi, j (t)

dt
= −xi, j (t) +

∑
<k,l>∈N (i, j)

Ai, j;k,l yk,l(t) + bui, j , (4)

where we emphasize again, that xi, j is the state value, yi, j is the
output, and ui, j is the input of the cell (i, j) with neighborhood
N (i, j) (8 neighbors and itself).

It has been shown by Chua et al. [6] that if the connection
matrix is symmetric A(i, j; k, l) = A(k, l; i, j) it is possible to
define a Lyapunov function of the CNN which behaves like an
energy function of the system. For the CNN defined above with
self-connecting parameters A(i, j; i, j) = 1, this energy can be
written as:

E(t) = −

∑
〈i, j;k,l〉

A(i, j; k, l)y(i, j)y(k, l)

− b
∑
i, j

y(i, j)u(i, j), (5)

where 〈i, j; k, l〉 denotes the nearest-neighbor connections and
each pair of neighbors (i, j) and (k, l) is taken only once into
the sum. By choosing the parameter b = 0, the energy of this
special CNN corresponds to the energy of a generalized Ising
type system with locally varying coupling constants on a square
lattice. The only difference is that spins are usually defined as
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±1 while here we have continuous values between [-1, 1]. Since
the A(i, j; k, l) coupling constants can be positive and negative
as well locally coupled spin-glasses can be also mapped in such
systems. In the following, we will be especially interested in the
case when the A(i, j; k, l) couplings leads to frustration and the
system behaves as a spin-glass [30,31].

This Lyapunov function has two important properties (for
details see [6]):

1. it is always a monotone decreasing function dE/dt ≤ 0,
so starting from an initial condition E can only decrease during
the dynamics of the CNN.

2. the final steady state is a local minimum of the energy:
dE/dt = 0. In addition to these, our CNN has also another
important property: due to the fact that all A(i, j; i, j) = 1 it
can be shown that the output values of the cells in a final steady
state will always be ±1.

Considering these properties we can conclude that the local
minima of CNN and the generalized Ising-type spin model
coincide. Starting from an initial condition the final steady
state of the template — meaning the result of an operation —
will be always a local minimum of the generalized Ising type
spin model with connections defined in matrix A. The fact that
one single operation is needed for finding a local minimum of
the energy, gives us the opportunity for developing very fast
optimization algorithms.

As already emphasized we will consider the complicated
frustrated case (locally coupled spin-glass type model) where
the A coupling parameters can take both positive and negative
values. We are searching for the minimum energy configuration
of such models. Our algorithm is based on ideas similar to the
well-known simulated annealing method. The noise is included
with random input images, and the strength of an external
magnetic field is governed by parameter b. Whenever b is
different from zero, our CNN template minimizes the energy
with form (5): the first part of it being the energy of the pure
Ising-type model and the second part is minimal when the state
of the system is equal to the input image. For those familiar
with Ising type models it is evident that the input image acts
as an external magnetic field. If b is a very large number, the
result will be the input image itself, if b = 0 the result is a local
minimum of the pure Ising-type system. For values in between,
our result is a “compromise” between the two cases, so slowly
decreasing b will result in a similar process like in simulated
annealing: first big fluctuations of the energy are allowed, but
slowly we drive the system to a low energy state, even if we can
not be sure that the global minimum was found.

The steps of the algorithm would thus be as follows:
1. we start from a random initial condition x , and b = b0

(with this value the result of the template is almost exactly the
same as the input image).

2. We generate a binary random input image u with 1/2
probability of black pixels,

3. the defined CNN template is performed using the x initial
state and the u input image,

4. we decrease the value of b with 1b,
5. we repeat steps 2–4, until b = 0, always using the results

of the template as initial state in the next step.
6. When b = 0 the image is saved and the energy is
calculated.

Usually in simulated annealing many steps at a single
temperature are needed. Here the CNN template working in
parallel replaces all these steps. We could choose to perform
more templates at a given value of b, but the results would
not improve. Instead, we choose to repeat this whole cooling
process several times. As a result of these, different final states
will be obtained, and one gets higher probability of finding the
right global minima.

In our experiments spin-glass system with connections
A(i, j; k, l) = ±1 were simulated. The p probability of the
positive connections can be varied (influencing the amount of
frustration in the system) and we considered local interactions
with the first 8 nearest neighbors. The initial value of b was
chosen b0 = 5 (with this value the result of the template will be
almost equivalent with the random input image). Choosing the
value of 1b is a more delicate problem, a proper value had to
be found, which provides an acceptable compromise between
the quality of the results and speed of the algorithm.

For testing the algorithm and measuring the number of steps
needed to achieve this we always previously have to search
for the exact global minima. In case of small systems with
L = 5, 6 this search was quick and exact. For bigger systems
the classical simulated annealing was used with decreasing rate
of the temperature 0.99 and performing 1000 Monte Carlo steps
at each temperature.

As shown on Fig. 4(a). in case of a lattice with size L = 8,
the number of steps needed for finding the global optimum
shows a minimum at a given value of 1b. In this simulation at
each value of 1b the number of steps needed is averaged over
4000 different systems - covering widely different densities of
the + connections. As shown on Fig. 4(b) this optimal 1b value
also depends on the size of the lattice L . For bigger lattices
we could not afford to do the simulations with the optimal
parameter values since the time needed would increase too
much (1b was too small). We have thus worked with a fixed
1b = 0.05 value. As an example at a p = 0.4 probability
of the positive connections we have also plotted the number of
steps needed for finding the optimal energy previously searched
with simulated annealing. Results in this sense are presented on
Fig. 5(a). As expected an exponential growth with the systems
size is observable. The number of steps depends also on the p
probability of positive connections, as illustrated on Fig. 5(b)
for a system with L = 7. 5000 different systems were analyzed
at each value of p. It was found that the system is almost
equally hard to solve for all p values in the rage of p ∈

(0, 0.6).
Now, some thoughts about the estimated speed of such an

optimizing algorithm. Since there is no real CNN available
with locally variant connections we were only simulating
how a CNN would work. For this we had to solve a huge
system of partial differential equations. This process gets very
slow for bigger lattices and this is the reason why all of
our results were obtained on rather small system sizes. A
real locally variant CNN chip with its parallel architecture
would solve one template in a very short time of the order
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Fig. 4. (a) In case of a system with 8 × 8 cells, the number of steps needed to get the global minima is plotted as a function of 1b. 4000 different systems were
considered covering the whole range of the possible p values. (b) The optimal value of 1b is shown in function of the lattice size L .

Fig. 5. (a) The number of steps needed to find the optimal energy as a function of the lattice size L . The density of positive connections is fixed to p = 0.4, and the
parameter 1b = 0.05 is used. (b) For a system with size L = 7 the number of steps needed for getting the presumed global minima is plotted as a function of the
probability of positive connections p.
of microseconds, independently from the lattice size. At each
step of our algorithm we are also generating a binary random
image. This process was already 5 time faster on the ACE16K
chip than on a 2.8 GHz Pentium 4 digital computer and needed
around 100 µs (see [18]). It is important, that we do not need to
save information at each step, only at the end of each cooling
process. Saving an image is in the range of 10 milliseconds
on the ACE16K. Making a rough approximation, a chip with
similar properties like the ACE16K and by using 1b = 0.05
should be able to solve between 1000–5000 steps in one second,
independently from the lattice size.

Spin-glass like systems have many applications in which
global minimum is not crucial to be exactly found. In most of
the practical applications the minimization is needed only with
a margin of error. In such cases the number of requested steps
will decrease drastically. For example it has been shown that
using spin-glass models as error-correcting codes, their cost-
performance is excellent [32], and the systems usually are not
even in the spin-glass phase. In this manner finding acceptable
results could be very fast even on big lattices considering the
parallel structure of the CNN.

5. Conclusions

Cellular wave computers [4,3] and, as a special case, the
Cellular Neural Network Universal Machine [5] represent a
new computation paradigm. There are inspired from some
basic principles of our nervous system (specially the retina):
(i) several thousands of cells (neurons) locally interconnected
with each other and working totally in parallel; (ii) the states
are described with analog values; and (iii) the evolution of
the system is continuous in time. The system is mainly used
for developing visual microprocessors [13,8,2]. In the present
work we have shown that the CNN-UM chips can also be
useful in studying complex problems of statistical physics. The
natural noise of the chip can be effectively used in stochastic
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simulations, and the parallel nature is very appropriate when
simulating lattice models. Experimental results are promising.
By increasing the lattice size of the chips and the number of
local memories in the near future will definitely favor such kind
of computational approaches. Quasi three-dimensional chips
with several layers of cells are already appearing, introducing
a new level of complexity and many new possibilities for
applications. It is also believed that cellular wave computing
is very probable to develop much further, going beyond the
standard CNN model. As an example, a non-standard CNN
was presented in Section 4, with locally variant coupling
parameters. It was used with success for optimizing frustrated
spin-glass type systems. It seems that CNN computers and, in
general, cellular wave computing could soon become a useful
complementary tool for making complex computer simulations
on lattice models.
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