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It is known that an ensemble of two-mode pulse-emitting stochastic oscillators globally coupled through their collective 
output will synchronize for some controllable parameter values. These oscillators proved to be appropriate for modeling the 
dynamics of rhythmic applause or several other synchronization phenomena in biological systems. Within this work we 
generalize this two-mode oscillator model to the case of several modes and investigate the effect on their synchronization. 
Computer simulation proves that synchronization appears for several modes as well and the system undergoes a phase 
transition-like phenomena while changing a controllable parameter.  However, if the number of modes is increased 
synchronization will be present for smaller and smaller parameter range.  
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 1. Introduction 

 
Synchronization phenomena is observed in many 

physical, social, biological and chemical systems, and it 
has attracted the interest of scientists for centuries [1]. It is 
an interesting example of self organization. It is also 
important to mention that in many biological and 
sociological systems synchronization is not the primary 
aim of the individuals, and synchronization appears as a 
co-product of some optimization phenomenon. Some well-
known examples in such sense are: (a) the synchronized 
clapping of the spectators after a good performance [2], 
[3]; (b) synchronization of fireflies  and cricket chirps [4]; 
(c) synchronization of neurons fire [5]; (d) synchronization 
of pacemaker cells in the heart [6]; (e) or even 
synchronization of the menstrual cycles of women living 
together [7]. In the present work we will study a special 
type of synchronization which is induced by a simple 
collective optimization phenomenon in multi-mode pulse-
coupled oscillators.  

 
 

 2. Classical models for synchronization 
 

 There are two main category of models widely used 
for describing synchronization of non-identical oscillators. 
One is for phase-coupled oscillators (Kuramoto-type 
models), and the other one is for pulse-coupled oscillators 
(integrate and fire-type models). For a more detailed 
review of these models we suggest references [8], [9],  and 
[10]. Here only a very brief description will be given. 
 The Kuramoto model [8] is a mathematical model 
for the collective coupling of a large set of non-identical 

oscillators. It is motivated by the behaviour of many 
chemical and biological oscillators, and it has found 
widespread applications. In the most popular version of 
the Kuramoto model each of the N oscillators is 
considered to have its own intrinsic natural frequency ω_i, 
and it is coupled equally to all other oscillators. 
Surprisingly, this fully nonlinear model can be solved 
exactly for some special coupling in the infinite-N limit. 
This is done by a clever transformation and the application 
of self-consistency arguments. The main result of this 
model is that for each ensemble of oscillators there is a 
critical coupling level, above which partial 
synchronization of the system will appear. This critical 
coupling is linearly proportional with the dispersion of the 
oscillators natural frequencies [8].    
 The integrate-and-fire oscillators is possibly the 
simplest model of neuronal behavior [9,10]. A variable 
associated with the membrane voltage of a neuron is 
allowed to increase from zero until a threshold is reached. 
Once the threshold is attained, the oscillator is said to 
“fire”. This variable is instantaneously reset to zero and 
the process repeats. Once fired, the neuron must recover 
before firing again. The slow collection and quick release 
of voltage is called integrate and fire behavior. Although it 
is a gross approximation of neural activity, the integrate-
and-fire model has been of heuristic value to 
neurobiology. The Fitzhugh-Nagumo equations were 
derived simultaneously by Fitzhugh and Nagumo for such 
oscillators [11]. These equations provide a fairly detailed 
picture of the action potential of a neuron and can also 
lead to synchronization phenomena.  
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 In order to describe the dynamics of rhythmic 
applause and synchronization in several other biological 
systems Nikitin et. al studied pulse-coupled  stochastic 
oscillator systems with two different oscillation modes 
[12].  Depending on the global output level, the cycle of 
these oscillators can be performed in two ways: 

ACBA I →→→  or ACBA II →→→ , 
respectively. The periods corresponding to these two 
modes IT  and IIT  are given as 

CIBAI τ+τ+τ=T  and 

CIIBAII τ+τ+τ=T , where Aτ , Bτ , and Cτ  are time 

intervals spent in states A, B, and C, respectively.  
 The stochastic part of the dynamics is state A, and Aτ  
is a stochastic variable with probability density: 
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Aτ=τ * ). State A should be imagined and modeled 
with an escape dynamics of a stochastic field-driven 
particle from a potential valley of depth U. If the 
stochastic force field is totally uncorrelated with 0=ξ  

and )(τD=τ)+ξ(t)ξ(t δ  we get a the distribution of 

escape times given in (1) with D
U

eτ ∝* . In analogy with 
the well-known Fitzhugh-Nagumo system, state A 
corresponds to a stochastic reaction time of the neuron 
fire. This causes all the experimentally observed 
fluctuations in the rhythmic human activities. In states B 
and C the dynamics is deterministic and corresponds to the 
relaxation and firing of the neurons. State B represents the 
“waiting time” or the rhythm giving part of the cycle. In 
biological systems this is a period the individual units 
want to impose, and usually this is the longest part of the 
cycle. The length of state B (

IBτ  or 
IIBτ ) distinguishes 

the two modes. We have chosen
IIBIB =τ 2τ . The output 

of the units is in state C. During this state the oscillator 

emits a constant intensity pulse of strength
1
N , where N 

is the number of oscillators in the system. The output of 
the whole system at a given moment is thus 
 

f=∑
i= 1

N

f i ,               (2) 

 

where if  is the output of oscillator i:  
N

=f i
1  if the 

given oscillator is in state C, and 0=fi  otherwise.  

 This total output is the origin of the coupling and 
shifts the oscillators between their operating modes. The 
rules for the evolution of the system are as follows: (i) 
oscillators start with randomly selected modes and phases 
and follow the stated dynamics; (ii) there is a fixed output 
intensity, *f , for the system; (iii) after completing the 
dynamics in state A, each oscillator will choose to operate 
either in mode I or mode II; (iv) if at that moment *f<f  
the oscillator will operate in mode I; otherwise it will 
follow mode II. The above dynamics has the tendency to 
keep the average total output as close as possible to f . 
Since each oscillator has a fixed output intensity, this can 
be achieved sometimes only by switching between the 
available modes. In this sense the proposed rules are 
natural, making our model realistic. 
   

 

 
 

Fig. 1. Global output of the system for two different f 
values.  The first case corresponds to a synchronized 
phase and the second one to an unsynchronized behavior. 
Number of oscillators in the simulation is: 1000, in case  
                        a. 0.15* =f ; for b. 0.4* =f  
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 For given *τ  and *f  values a synchronization-like 
phenomenon appears in the system. Synchronization in 
this system means that the global output has a periodic 
nature due to the fact the a large part of the oscillators 
produces output signal at relatively close time moments.  
 This is presented on Fig. 1. In figure 1.a. oscillators 
work almost synchronously, and it is evident that the 
average output is around the desired 0.15* =f  value.  In 
Fig. 1b. there is no synchronization and the desired output 
level ( 0.4* =f  ) is not reached. 
 A more complete analysis of this synchronization will 
be given in the next chapter. 
 It is important to emphasize again that within this 
model the only goal of the oscillators is to hold the global 
output level around a fixed *f  value. There is no direct 
driven force favoring synchronization, and 
synchronization in this model is a highly nontrivial 
secondary effect.  
The aim of the present work is to generalize the two-mode 
oscillator model to the n-mode case and to investigate 
what happens with the observed nontrivial synchronization 
if the number of modes are increasing.  

 
 

3. The n-mode Stochastic Oscillator model 
 
 By increasing the number of modes two important 
questions arises: (i) whether synchronization gets better or 

worst, (ii) whether it is present for a larger or smaller f 
interval. These questions will be answered by performing 
stochastic simulations. 

Three, five and nine-mode stochastic oscillators 
will be considered. States A and C will remain the same as 
in the two-mode case. In the three-mode case there are 
three Bτ  values chosen as: 0.80.6,0.4, =τ=τ=τ

IIIBIIBIB
. In 

the five- mode case we have chosen: 0.4=τ
IB

, 0.5=τ
IIB

, 
0.6=τ

IIIB
, 0.7=τ

IVB
, 0.8=τ

VB
; and in the nine-mode 

case: 0.4=τ
IB

, 0.45=τ
IIB

, 0.5=τ
IIIB

, 0.55=τ
IVB

, 
0.6=τ

VB
, 0.65=τ

VIB
, 0.7=τ

VIIB
, 0.75=τ

VIIIB
, 0.8=τ

IXB
. 

 As a first hint, synchronization can be examined from 
the Fourier transform of the output signal. Peaks will 
indicate the periodicity of this. As an example in such 
sense on Figure 2. results for the five-mode oscillators are 
plotted considering four different f threshold values. The 
Fourier transform suggest partially synchronized states for 
two of them   ( 0.10* =f  and 0.15* =f ).  It is easy to 
show that the n-mode case is similar with the two-mode 
oscillator system. As f increases the systems collective 
output will change from an unsynchronized phase to a 
synchronized one, and finally back again to an 
unsynchronized phase. The series given in Figure 2 
illustrates this trend. 

 

 
 

Fig. 2. The Fourier transform of the global output (N = 5000, 0.2* =τ , 5 modes) 
 

4. Phase-space of the n-mode oscillator  
     ensemble 

 
 For fixed Bτ  and Cτ  values the parameters 

governing the system dynamics are *f and *τ .  Following 

the method used for two-mode oscillators [12], we would 
like now to map the whole { }** τ,f  phase-space and 
calculate the total output signal periodicity level in order 
to recognize the synchronized phases. For this a 
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numerically computable periodicity measure is defined as 
follows.  
 Let us denote the output signal as a function of time as 
f(t). We can define an error function, Δ(T) , which 
characterizes numerically how strongly the f(t) signal 
differs from a periodic signal with period T, 

 

| |∫ −∞→

x

x dtT)+f(tf(t)
x

=Δ(T)
0

1lim
2M
1             (3) 
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| |∫ −∞→
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x dtf(t)f(t)
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∫∞→

x
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x
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0
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 The general shape of the Δ(T)  curve as a function of 
T is sketched on Fig. 3.  
 

 
τ= 0 . 2  

 
Fig. 3: Plot of the Δ(T)  error function. 

 
 For any f(t) oscillating function we have an initially 
increasing tendency at small T values, after which for T 
= mT  a minimum ( mΔ ) is reached. One can state that mT  
is the best approximation for the f (t) signals period, and 
the “periodicity level” of the signal is characterized by 
 

p= 1
Δ m

                                  (6) 

 
 It is possible to compute this measure both for one 
oscillator working independently (p1) in the long period 
mode (where the effect of randomness on the period is 
smaller) and for the whole system (p). The ratio p/p1 will 

characterize then the enhancement in the periodicity due to 
the considered coupling. This ratio will also indicate the 
synchronization level of the oscillator ensemble. We have 
analyzed throughout the { }** τ,f  parameter space this 
measure. Results for N = 1000 oscillators are given in Fig. 
4. 
 

 
 
 

Fig. 4 Synchronization level (p/p1) illustrated in a gray-
scale code in the { }** τ,f  parameter space. ( N = 1000 
oscillators). Lighter colors means stronger 
synchronization. The gray-scale code is given on the left- 
                                side of the images.      
 

 
 As expected, in the { }** τ,f  parameter space there is 
an island-like structure where synchronization is present. 
The brighter is a point in this parameter space the stronger 
is the synchronization. One can immediately observe that 
increasing the number of modes the size of the 
synchronized island diminishes. Another observation is 
that with the number of modes the synchronization 
becomes weaker. Naturally, synchronization is better for 
smaller values of *τ  where the effect of the randomness is 
smaller. For 0.6>τ , synchronization completely 
vanishes. Concerning the dependence as a function of *f  
we conclude that synchronization is present only for a 
limited interval. Fig. 4 suggest the same picture as Figure 
2, i.e.  by increasing the value *f  of  the systems’ 
collective output changes from the unsynchronized 
behavior to the synchronized dynamics, leading finally an 
unsynchronized regime again. 
 For Figure 4, simulations were performed with the 
same N=1000 oscillator number. Now let us study and 
compare the p/p1 values for different oscillator numbers as 
well.  For fixed *τ  and *f  but different oscillator 
numbers the p/p1 periodicity level is plotted on Figure 5.  
Similarly with the two-mode oscillator case one gets that 
by increasing the number of oscillators, the periodicity is 
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enhanced. Fig. 5 suggests again that by increasing the 
number of modes synchronization gets worst.  

 

 
 

Fig. 5. Enhancement in the periodicity of the output 
(p/p1) as a function of the number of oscillators for the 
two- and nine-mode oscillator system.  Upper curve is for 
the two-mode oscillators, and the curve from below is for 
the nine-mode oscillators ( 0.2* =τ , 0.15* =f  for both  
                                         cases). 

 

5. Phase-transition and mode-distribution in  
     the n-mode oscillator system 

 
 Let us study now the emergence and disappearance of 
the periodic behavior (synchronization) in the n-mode 
oscillator system as *f  is varied. If we consider the order 
parameter as (p/p1), the variation of this quantity as a 
function of *f  suggests two first-order phase transitions: 
one for the appearance of the synchronized phase and one 
for its disappearance.  Results for various number of 
modes and system sizes are plotted in Figure 6. The 
scaling with system size and the abrupt trend of this 
variation are all in agreement with the presumed first-order 
nature of this transition. The results also suggest that the 
interval where synchronization is present gets smaller as 
the number of modes increases. The *f  values where the 
synchronization appears and dissapears can be considered 
as critical values. 

 

 
 

Fig. 6. First-order phase transitions for the emergence and disappearance of the synchronized phase 
 (order parameter as a function of *f ,  for 0.2* =τ . 

 
 It is also instructive to see the distribution of the 
modes in which the oscillators operate. In other words this 
means that we construct the histograms showing the 
percentage of the oscillators working in different modes, 
averaged for a long dynamics. It is evident that if *f  is 
small, all oscillators will follow the mode which 
corresponds to the longest period.  If  *f  is big, all 
oscillator will choose the smallest period. On the other 
hand, in the synchronized phase all modes are present. 
Results in this sense are presented on Figure 7. Moreover, 

most of the oscillators will not keep their mode during the 
dynamics and will continuously shift between the 
available modes. Synchronization will appear as a result of 
this.   
 

6. Conclusions 
 
 A multi-mode stochastic oscillator system coupled 
through their pulse-like output was studied by Monte 
Carlo simulations. The oscillators are realistic in the sense 
that they model the behavior of several biological and 
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sociological systems, where the individuals are capable of 
imposing various discrete periods and tend to optimize a 
global output. In our case the system is designed to keep a 
given global output level, and no direct interaction 
favoring synchronization is present. As a highly nontrivial 
effect it was found that the system synchronizes for a 
given interval of the desired global output. In this 
synchronized regime the periodicity level of the global 
output can exceed the periodicity level of one stochastic 

oscillator. The transition between the synchronized and 
non-synchronized regimes shows evidences of a first-order 
phase transition. The best synchronization (highest 
periodicity level of the global output) was achieved for 
two-mode oscillators. Increasing the number of modes will 
not favor synchronization. The periodicity level of the 
global output will decrease, and also the parameter region 
where partial synchronization is present will decrease as 
the number of modes are increased.       

 
 

 
 

Fig. 7. Distribution of the modes in which the oscillators operate. (N = 1000, τ* = 0.2) 
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