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Crack propagation in thin glass plates under high shock loading is investigated by computer simulations. The widely used 
spring-block type model is adapted in order to reproduce the main features of the glass breaking phenomenon. Blocks 
represent mesoscopic elements of the glass while the coupling between them is modeled by elastic springs with well 
defined breaking threshold values. The amorphous structure of glass is captured by randomly distributed blocks and 
spatially randomly distributed friction forces. The localized external stress is applied by increasing the spring constants in a 
central region of the studied system. Therefore, radial crack lines will nucleate and propagate through the system. The 
simulations reproduce qualitatively well the experimentally obtained radial crack lines and the dynamics induced by the 
shock is also revealed. 
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1. Introduction 
 

Cracking and fragmentation of materials is a common 
phenomena being present from astrological length-scales 
down to nano and atomic scales. This is the reason why 
the phenomenon is still subject of large scientific and 
industrial interest. The glass breaking phenomena we are 
going to investigate is in the middle of this scale. Crack 
propagation in glasses, inelastic deformation and failure 
mechanisms produced by external shock loading has 
attracted extensive research in the last decades [1-4]. In the 
early sixties a scaling law was obtained for the size-
distribution of the resultant pieces [5]. From that point on 
the experimental research focused on many other 
interesting aspects. In the last years the cracking process 
was investigated also by high-speed camera snapshot 
series [6]. At the same time, many theoretical models have 
been created in order to understand the breaking 
mechanisms of glass rods and plates, focusing mainly on 
the case of parallel shock loading [7]. 

Glass breaking produced by perpendicular projectile 
impact was experimentally investigated in the framework 
of a student research project by the group of Y. Bréchet 
[8]. As a results of these experiments the group 
qualitatively revealed and classified the breaking patterns. 
As presented in Figure 1. the most common structure has 
two concentric circles and many radial cracklines initiating 
from the impact point. 

In the present work crack propagation in thin glass 
plates under localized perpendicular shock loading is 
investigated using computer simulations. Based on the 
classical Burridge-Knopoff type spring-block model a very 
simple model is constructed, which reproduces 
qualitatively well the experimentally obtained radial crack 
lines. The objective of the present work is to investigate 

the applicability of the model, to find the relevant 
parameter values and to reveal the crack line formation 
and propagation dynamics. 

 
Fig. 1. Typical glass breaking pattern after a localized 

perpendicular shock loading [8]. 
 
 

2. Theoretical model 
 

The model incorporates the main features of glasses: 
the amorphous structure, the elastic response to small 
stresses (local reorganization) and the plasticity in case of 
low stresses. In order to match these requirements within 
the framework of the spring-block some changes relative 
to the original Burridge-Knopoff type model is 
incorporated [9]. 

 

 
♣paper presented at the Conference “Advanced Materials”, Baile Felix, Romania, November 9-10, 2007. 



E.-Á. Horváth, F. Járai-Szabó, Z. Néda 
 

 

2434 

 
The model built in such manner is rather similar with 

the spring-block stick-slip model which has been 
successfully used for describing fragmentation structures 
obtained in drying granular materials in contact with a 
frictional substrate [10] or drying of nanosphere 
suspensions [11]. The model is two dimensional; its main 
elements are blocks which can move hindered by friction 
and springs connecting them (Fig. 2). Disk shaped blocks, 
all with the same radius r0, model mesoscopic elements of 
the glass while the coupling between them is modeled by 
elastic springs. 

 
 

 
 

Fig. 2. Basic elements of the spring-block model. 
 
 

In the model considered by us all springs have similar 
spring constants k, and their length is defined as the 
distance between the centers of the connected blocks. Fig. 
3a shows the spring force which is proportional to the 
length of the spring (Fk = kl), and it has a well defined 
Fk_max breaking threshold value. In the spring force it is 
also included a hard-core type repulsion which forbids 
blocks to interpenetrate each other. This repulsion is 
described by the repulsive part of a Lenard-Jones-type 
potential. The friction (pinning) equilibrates a net force 
less than Ff_max (Fig. 3b). Whenever the total force (Ft) 
acting on a block exceeds Ff_max , the block will slip with 
an overdamped motion. It has to be mentioned that in 
order to model the amorphous structure and to maintain 
the disorder in the system, the Ff_max pinning forces are 
randomly assigned in the simulation space. 

 
 

 
 

Fig. 3. Spring (a)  and pinning (b) forces acting on blocks 
 
 

Initially blocks are randomly distributed and 
connected by a network of springs (Fig. 4). By this, the 
initial disorder of the system is modeled. We put springs 
between those spheres, for which the centers can be 
connected without intersecting another sphere (this 
condition will be referred later as the geometric condition). 

In this way, an initially pre-stressed spring-block network 
is thus constructed. 

 
 

 
 

Fig. 4. The initially constructed spring-block network. 
 
 

The simulation consists of two successive simulation 
steps. In the first one, the initial pre-stressed system is 
generated and relaxed to a stable configuration where the 
tension in each existing spring is lower than the breaking 
threshold Fk_max and the total net force acting on each 
block is lower in magnitude than the slipping threshold 
Ff_max. Due to the random friction this equilibrium state 
will include internal stresses “frozen” into the system. 
Then, in the second step an external stress is applied by 
increasing the spring constants according to the shape of 
the external shock loading. In order to take into account 
also the shock-wave propagation through the glass plate a 
two dimensional standing wave is used.  The source of this 
is placed in the impact point.  

The system is relaxed and during this relaxation 
process crack lines are nucleating and propagating in the 
system. 

The relaxation process is realized through several 
relaxation steps. The time length dt for each relaxation 
step is taken as unity (dt = 1). Considering a classical 
molecular dynamics simulation for relaxation would be 
very time-consuming. Following the method used for 
simulating drying processes in granular media [10,11], we 
choose thus a simplified, overdamped dynamics. Each 
relaxation step may be described as follows: 
(1) Reorganization. At the beginning of each relaxation 
step the spring system is reconstructed fulfilling the 
geometric condition. By this effect the local reorganization 
capability of “glass particles” (elasticity) is modeled. 

(2) Breaking of spins. For all springs the tension is 
compared with the breaking threshold. If max_k

ij
k FF > (i 

and j denoting the blocks connected by the spring), then 
the spring is considered to be broken and it will be taken 
away from the system. 

(3) Recalculation of Forces. Total forces acting on 
blocks are calculated: ∑=

p

ip
kipt

i FdF
rr

, where the sum is 
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over all the other blocks p, dip is 1 if the blocks are 
connected by spring and 0 otherwise. 

(4) Motion of the blocks. Each block is analyzed. If 
the magnitude of the total force i

tF
r

 acting on a block is 

bigger than the Ff_max threshold, then the block will slip 
with an over-damped motion governed by viscosity η, and 
its position will be changed by: η/dtFrd i

t
i

rr
= . The 

repulsive part of the spring forces forbids the blocks to 
slide on each other and the presence of viscosity 
eliminates unrealistic oscillations. 

The (1)-(4) relaxation procedure is repeated until a 
relaxation step is finished without having any spring 
breaking or disk slipping event. Since within this 
algorithm it takes a long time to achieve perfect relaxation, 
a tolerance is introduced, and it is assumed that the 
relaxation is completed when the maximal slip in the 
system is smaller than this tolerance value. 

Several types of boundary conditions can be 
considered. One possibility would be to use free boundary 
condition which can be realized in a simple manner by 
positioning initially the blocks inside a circle to minimize 
the effect of edges.   

Another possibility is to consider fixed boundary 
conditions. This can be realized by positioning again the 
blocks inside a circle and considering a chain of fixed 
blocks on the chosen perimeter.  

These fixed blocks are then connected between their 
neighbors with geometrically allowed springs. One can 
also consider periodic boundary condition and position 
initially the blocks inside a rectangle.  

This latter condition is not applicable, because it is 
unrealistic to have crack lines leaving the system in one 
side and entering on the other side and thus self-
interacting. In case of free boundaries, right in the initial 
simulation step the system is compacting and therefore a 
higher density external region is formed. Consequently, in 
the simulations fixed boundary conditions are used which 
may correspond to a glass plate fixed at its boundaries. 

The model, as described above, has several 
parameters:  

(1) The initial space filling of blocks ( )2RNS πρ =    
(where S is the simulation area). While a continuous media 
is simulated, one has to deal with very high, almost close-
packing space filling values. 

(2) The radius of blocks r0, considered as unity (r0 = 
1). It defines the unit length in system. 

(3) The value of the spring-breaking threshold Fk_max. 
It is set as unity (Fk_max = 1) defining the unit force in the 
system. 

(4) The initial value of the spring constants, k. It is 
desirable to choose the value of k so that only a small 
number of broken springs to be found in the initially 
relaxed system. 

(5) The parameter which governs the repulsive part of 
the spring force. It is set to get no repulsion at the distance 
2R and strong hard-core type repulsion for smaller 
distances. 

(6) The viscosity � The model will only work for 
viscosity values chosen between reasonable limits, and for 

these viscosity values the final patterns are rather similar. 
Choosing a too small viscosity will result in unrealistic 
oscillations of blocks, while a too high value will make the 
block slip too small and increase considerably the 
relaxation time. 

(7) The shock propagation velocity v. This is set at the 
same magnitude as the crack line propagation velocity.  

(8) The amplitude k0 of the shock wave at the impact 
point. 

(9) The range (Ff1, Ff2) from which the pinning force 
values are randomly selected. 

As one can observe only the last two parameters of the 
model are not adjusted by some conceptual considerations. 
We remain thus with two main parameters governing the 
generated patterns: the magnitude of the external shock 
loading and the disorder in the studied material.  

The influence of these parameters on the final 
structure will be investigated by large scale computer 
simulations. 
 
 

3. Results 
 

The above described model can be easily 
implemented on computer and relatively big systems with 
10000-100000 of blocks can be simulated in reasonable 
computational time. 
 
 

 
 

Fig. 5. Characteristic time evolution of crack 
propagation in glass plates due to a central impact. The 
structures   are    obtained   with   the   parameter  values  
                            specified on the figure. 

 
 

First, let us take a look on the time evolution of the 
model. A characteristic time-sequence for the crack 
propagation dynamics is plotted in Figure 5. The 
simulation field has a diameter of D = 600 block radius. 
The snapshots are taken at every 4000 time steps starting 
from 0 to 28000.  

The simulation parameters are given on the figure. As 
observable from the figure and in agreement with 
experiments, first one circle is formed around the external 
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shock. Then, radial crack lines are nucleating and 
propagating in the outside directions. It was observed that 
all radial crack lines are nucleated at the same time and 
their propagation velocities are almost identical.  

Figure 6 represents the average crack-propagation 
velocity as a function of the simulation time. The units of 
the figure are derived from the arbitrary units used in the 
simulation (r0 = 1 and dt = 1). Based on simulation results 
and in agreement with theoretical considerations it can be 
concluded that the radial crack-propagation velocity is a 
decreasing in time.  

 

 
Fig. 6.  Averaged radial crack line propagation velocities 

as a function of simulation time for the simulation 
presented  in Fig. 5. 

 
 
In order to analyze the dependence of the obtained 

patterns as a function of the strength of the impact, 
different simulations have been considered with the same 
parameters but for different k0 values. Figure 7 shows two 
of the resulting patterns. The main difference between 
these snapshots consists in the radius of the central circle 
and the number of the radial crack lines. Namely, in case 
of higher shock loadings many radial crack lines have 
been nucleated.  For these simulations the radial crack line 
propagation velocities have also been measured. The same 
value of 0.06 was obtained for both simulations. It means 
that the propagation velocity is almost independent on the 
strength of the external shock. 
 
 

 
 

Fig. 7. Simulation results for different impact strength. 
On the figure in left side the k0=500 while in the figure 
on the right side k0=1000. The rest of the parameters 

have the same values as inFigure 5. 

The effect of the disorder modeled by random pinning 
forces has also been studied.  

In Fig. 8 two simulated patterns are presented for 
different (Ff1, Ff2) ranges.  

For these simulations it was found that the average 
crack line propagation velocity is decreasing in function of 
the disorder in the system. It is also important to be 
mentioned that in case of higher disorder the crack lines 
are more fragmented. 

 
 

 
 

Fig. 8. Simulation results for different pinning force 
distributions. In the left panel the pinning force values 
are taken randomly and uniformly in  the range [0, 0.2] 
while in the right panel the values are taken from                  
[0, 0.5].  The  other  model   parameters   are   D  =  400,              
                 η = 1/0.01, ρ = 0.85, k = 0.4, k0 = 500. 

 
 

4. Conclusions 
 

A mechanical spring-block type model with an over-
damped relaxation dynamics was used for modeling crack 
propagation in thin glass plates under a central and 
localized shock loading.  

The simulations reproduce qualitatively well the 
experimentally obtained radial crack lines. The relevant 
model parameters have been identified and their influence 
on the final pattern were investigated.  

The introduced model is appropriate for large-scale 
computer simulations and for investigating theoretically 
the crack line formation statistics and the crack 
propagation dynamics in glass plates. As a continuation of 
our previous studies concerning the applicability of the 
simple spring-block type models in materials science 
[10,11], we have proven thus again that such simple 
approaches could yield valuable and important results.  
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