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Sync or anti-sync — dynamical pattern selection in
coupled self-sustained oscillator systems
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Babesg-Bolyai University, Department of Physics, RO-400084, Cluj-Napoca, Romania

Abstract. The dynamics of similar, self-sustained oscillators coupled by a common platform
exhibits fascinating collective behavior. Experiments performed with pendulum clocks and
metronomes reported both the absence of synchronization, in-phase synchronization, anti-
phase synchronization, beat-death phenomenon, or even chaotic dynamics. Here we present a
numerical study on two identical self-sustained oscillators placed on a common movable platform.
As order parameter for synchronization we use the Pearson correlation coefficient between the
oscillators coordinates. As a function of the relevant physical parameters of this system we
reproduce all the experimentally reported dynamics. We provide conditions for obtaining stable
and emergent in-phase or anti-phase synchronization.

1. Introduction

Spontaneous synchronization of similar units is a very common form of collective behaviour.
No matter if the system is biological, electrical or mechanical, synchronization of oscillatory
dynamics will emerge under certain favoring circumstances.[1]. When similar units exhibiting
self-sustained periodic oscillations interact, the strength of the interaction will decide whether
the system exhibits or not an emerging synchronization. The synchronized state is likely to
appear if the strength of interaction exceeds a particular value. This threshold value depends
on how different the oscillators are: the more the oscillators are different higher threshold values
are necessary to achieve synchronization.

The most simple system that can exhibit spontaneous synchronization is formed by two coupled
self-sustained oscillators. The simplest way to imagine such system is by connecting somehow
two pendulum clocks as the dutch scientist Christian Huygens did in his legendary experiment.
Huygens observed that two pendulum clocks suspended on a common support synchronized in
anti-phase, meaning that during their dynamics they had a stable 180° phase-difference. He
called this phenomena ”odd kind of sympathy”, and carried out a series of studies to investigate
the conditions which lead to the emergence of spontaneous synchronization.[2] This simple phase-
locked state of the pendulum clocks, was found to be stable through time until an external force
perturbed the system. However, after the perturbation ceased, in around thirty minutes, the
system was able to return to this stable, anti-synchronized state. In his letters, he predicted
that in-phase motion should also be a stable state of the pendulum system, but later he never
mentioned to have observed such state. Strangely though, but even today we do not have a
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simple criteria determining when two coupled and similar self-sustained oscillators will end up
in an in-phase or anti-phase synchronized state.

Recently, the problem of emerging synchronization in coupled mechanical oscillator systems
entered in the focus of the scientific community again [3]. Huygens’ experiment was reconsidered
by several groups using modern experimental techniques. The first who re-examined Huygens
two pendulum clocks experiment was Benett and his group [4], reporting somehow similar results.
They found that the clocks synchronized in anti-phase when the system parameters were close
to the value indicated by Huygens. Stable anti-phase motion was obtained however only for
very accurately matching frequencies. When the frequency difference was slightly increased,
anti-phase synchronization disappeared, and the clock’s swing seemingly in an uncorrelated
manner. Huygens had some luck thus with his experiments by choosing two clocks with closely
matching natural frequencies. Benett and his group found also a ”beat death” phenomenon,
when due to the interaction one of the clocks stopped working. Panteleone used metronomes
instead of pendulum clocks [5]. His experimental setup consisted of a light platform, placed on
two empty soda cans. In this system he observed that for small intrinsic frequency differences,
the metronomes were likely to synchronize in-phase with a small phase difference. He explained
the appearance of the in-phase synchronization with the presence of large oscillation amplitudes,
which disturbs the equilibrium state, for which the anti-phase synchronization would emerge.
By adding large damping to the motion of the platform, seemingly the possibility of reaching
anti-phase synchronization increases considerably [5]. In response to the experiments carried
out by Panteleone, Ulrichs and his group, studied the system with computer simulations [6].
For modeling the dynamics of the coupled system they used the equations of motions derived
by Pantaleone. They found that the critical coupling strength for large number of metronomes
appears to be almost the same as for only two metronomes. In agreement with the observation
of the real metronome system, they reported only in-phase synchronization, and confirmed the
absence of the anti-phase synchronization. Czolczynski et. al [7] modeled an array of pendulum
clocks hanging from an elastically fixed horizontal beam, and reported many types of collective
behavior: in-phase synchronization of the pendulums, synchronization in clusters and anti-phase
synchronization in pairs. By performing an energy balance analysis they derived conditions for
different synchronization modes for the case of two [9] and many pendulum [8] system. Very
recently Boda et. al. [10] performed well-controlled experiments with metronomes placed on
a rotating platform, and considered also a realistic mechanical model for this system. Both
the experiments and computer simulations for realistically chosen system parameters yield only
in-phase synchronization.

The present work adhere to the path drawn by the preceding studies and aims to investigate
theoretically the simplest coupled self-sustained oscillator system. The main question we intend
to clarify concerns the conditions under which such a system will end up in in-phase or anti-phase
synchronized states. The Pearson type correlation between the motion of the two oscillators will
be used to quantify the nature of the achieved synchronized state, and the parameter state of
the system will be thoroughly mapped. For the sake of simplicity we consider the case of two
perfectly identical oscillators coupled through a common freely movable platform. Such system
could be approximated either by considering two pendulum clocks hanging on a horizontally
movable beam (like in the setup in [7]) or by two metronomes placed on a movable platform
(like in the setup from [5, 10]).

2. Ideal oscillators coupled through a common platform

We consider a platform of mass M with two identical mass m attached to it through ideal
springs with spring constant k. This system represents two ideal harmonic oscillators with mass
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m coupled by the common platform with mass M (Figure 1). We denote by x; and zo the spring
deformation values and x3 is the absolute coordinate (relative to the chosen inertial Reference
frame) of the platform. As a first study, let us assume that friction and driving are absent.
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Figure 1. The considered coupled oscillator system.
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The Lagrange function for this system is

1 1 1 1 1
L= g M+ gmli + ) + gm(ds + ) — Shaf — Shad, (1)

where the first term is the kinetic energy of the platform, the second and third terms stands for
the kinetic energy of the oscillators relative to the chosen inertial reference frame, and the last
two terms are the potential energies of the oscillators. The Euler-Lagrange equations of motion
are:

M = k(21 + 22)
ma] = —kx; —mas (2)

miy = —kxy — mas

Eliminating the Z3 terms, we can derive a system of coupled differential equations yielding the
dynamical evolution of the two masses m:

. 2.
kay 4+ m(gethin )i — 5l gpia = 0

3)

kg + m(gt )iy — S0y = 0

This system allows for an exact analytical solution. Assuming the initial positions of the
oscillators x1(0) = 1,22(0) = a, and that they are in rest relative to the platform (&1(0) = 0,
#2(0) = 0) the exact solutions for z1(¢) and x2(t) are:

_1 —a cos@ a) cos k(2m + M)t
mld) = 2 <(1 ) \/m+(1+ ) \/kmM(Qm—i—M))

1 Vit k(2m + M)t )

The Pearson correlation coefficient will be used as a measure of the synchronization level for
the two oscillators. It is important to note, that this coefficient will not distinguish between
strong (phase-locked) and weak forms of synchronization. This order parameter will be denoted
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by r and take values between [-1,1]. For a completely in-phase synchronized state » = 1 and for
a completely anti-phase synchronized state r = —1. Mathematically it is defined as:

(Tr22)t — (1)1 (T2)8 5)
Vi) — (@) (@d) — (22)7

Here we denoted by (z); the time-average of quantity x. Taking into account that (cos(at)); = 0
and (cos(at) cos(ft)): = 0 for all a # 0, 5 # 0, by simple algebra one gets:

2a

(6)
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Figure 2. Pearson correlation of the two oscillators coordinate as a function of the initial
position of one of the oscillators (x1(0) = 1, #1(0) = 0, 22(0) = 0 and x2(0) = a, no friction
and no driving).

This means that in this simple system, the synchronization order parameter R (measured
through the Pearson correlation) of the oscillators depends only on their initial relative phases
and does not depend on any other physical parameters of this system. This universal r(a) curve
is plotted in Figure 2. The phase portraits corresponding to different a values are Lissajous
curves, and in Figure 3 we illustrate them for some specific a values. The obtained results
suggests that complete in-phase synchronization is possible only if the oscillators start with the
same initial phases. Similarly, complete anti-phase synchronization will be obtained only if the
oscillators are initially in anti-phase. In all other situations only a weak form of synchronization,
without phase-locking is possible.

3. Coupled oscillators with damping and driving

Adding damping and driving to the system makes the collective behavior more interesting. In
such cases strong synchronization (through phase-locking) can be observed under more general
conditions. The equations of motion can be derived from the ones given in (2). Adding friction
and driving terms, the equations of motion becomes:

Mﬁl‘?, = k(wl + 1’2) + Cl(i:l + 1'2) — C(]fg — F1 — F2
mz, = —kx1 — mas — Ci121 + Fy (7)

mxy = —kxo — may — Ci12s + Fy

Co and (7 are friction coefficients for the motion of the platform and of the oscillators,
respectively, and F; and F5 denote driving forces applied to each of the two masses m. A pulse-
like driving acting at the moment when z; = 0 (¢ € {1,2}) in the direction of the oscillators
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Figure 3. Phase portraits x1(t), x2(t) of two identical oscillators for various x2(0) = a values.
(x1(0) =1, 1(0) = 0, ©2(0) = 0, no friction and no driving).

motion is used. This is similar with the driving experienced in pendulum clocks or metronomes.
We assume thus:

P is a coefficient, which characterizes the strength of the given pulses and 6(x) is the Dirac
function. The term &; is needed in order to ensure a constant momentum input, independently
of the metronomes’ amplitude. It also insures that the excitation is given in the good direction
(direction of the motion). It is easy to see that the total momentum transferred, My, qns, to the
metronomes in a half period (7'/2) is always P:

t+T/2 Tmax
Mirans = / P(S(ZE@):L‘Zdt = / P(S(l'z)d:l?z =P (9)
t

Tmax

The equations of motion with damping and driving cannot be solved analytically, we consider
thus a numerical integration by using the Mathematica software. Since the Dirac delta function
is not suitable for use with numerical methods, we approximated it with a steeply decaying
exponential of the form: F; = Pz; exp(—10z7).

For setting the units for the mass we fix m = 1. We also consider P = 10, all over the simulations.
This later condition together with the fixed initial condition x1(0) = 1 fixes the units for forces
and distances. The spring-constant value and the friction coefficients are given through this unit
definition. The dynamics of the system is initialized always as x1(0) = 1, z2(0) = a, £1(0) =0
and #2(0) = 0.

The numerical integration for the equations of motions (7) exhibits a high dependence on its
parameters rather than the initial position of one of the oscillators. For simulation time t > T
(where T is the natural period of the oscillators alone) the system shows either no synchronization
or a stable in-phase or anti-phase synchronization, depending on parameters M, k, Cy, C1.

Let us fix as a first example Cy = C7 = 1 and study the behavior of the system as a function of
M and k alone. For k = 1 we illustrate some phase-portraits in the x1, o plane. In the case of
M = 2 for example, the time-evolution of the system for various initial conditions (quantified
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by the value of a) is sketched in Figure 4. One will observe that regardless of the initial starting
condition, the system ends up in a complete anti-phase synchronized state. As another example,
in the M =1 case (Figure 5) the system never synchronize. The fact that the behavior of the
self-sustained oscillators shows little dependence on the initial position a, allows us to average
the correlation coefficient across all values of a (R = (r),) and to get the general behavior of
the system in the M,k parameter plane. We have mapped the R averaged correlation for the
M € [0,100] and k € [0,100] interval, and the results are plotted in Figure 6.

X X X
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Figure 4. Phase diagrams for x1(t), xzo(t) with M = 2,k = 1 show convergence to anti-phase
synchrony regardless of the initial position a. Darker color denotes greater simulation time.
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Figure 5. Phase diagrams for x1(t), x2(t) for M = 1,k = 1 shows non synchronized state of
the system regardless of the initial position a. Darker color denotes greater simulation time.

(Co=Cy=1).

For the chosen friction coefficients Cyp = C7 = 1, one can observe that only the anti-phase
synchronized state (R = —1) is stable. As a function of M and k, either the phase-locked and
complete anti-phase-synchronized state is obtained, or no synchronization is detected (R = 0).
In the intermediate states R € (0,1) the nature of the final stable dynamics depends on the
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chosen initial condition. As a function of a, either in-phase synchronized states, anti-phase
synchronized states or no synchronization is achieved. The R > 0 values suggests however that
anti-phase synchronization is more often obtained than in-phase synchronization.

Figure 6. Averaged correlation, R, as a function of M and k. (Cy =Cy =1).

We turn now our attention to the Cy and C4 friction coefficients. The value of the friction
coefficient of the platform Cy does not affect qualitatively the motion of the oscillators very
differently than the mass M. By increasing either of them, the oscillation amplitude of the
platform will decrease. Changing however the C friction coefficient of the oscillators the picture
becomes largely different, and one can achieve also a state of total in-phase synchrony in the
system. Increasing the value of the C'y damping without changing the driving force leads to much
lower amplitudes of the oscillations and large numerical errors accumulates in our calculations.
Meaningful results for £ = 1 were obtained thus for friction coefficient values C; < 15. Numerical
results obtained for R as a function of C; and M are plotted in Figure 7. This plot suggests
that complete in-phase synchrony can be achieved with high values of the Cy friction values.
Seemingly thus the selection of the phase locked complete in-phase or anti-phase synchronized
states are mainly governed by the choice of the C] parameter. For experimentally reasonable
situations with M > m, we found that low values of C are favoring the in-phased synchronized
states and high values of C] will lead to anti-phase synchronized states. This simple picture
can be nicely illustrated by considering now a multi-dimensionally averaged correlation across
all M € [1,50], k € [1,50] and a € [—1,1] (R = (r)q,m) and plot it as a function of C. The
results plotted on Figure 8 shows clearly that there are region of C'; where the nature of the
achieved synchrony (in-phase or anti-phase) is independent of any other parameters than solely
the value of C.

Figure 7. Averaged correlation, R, as a function of M and Cy. (Co =1,k =1).
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Figure 8. Correlation averaged across all M € [1,50], k € [1,50] and a € [-1,1]
(R = (r)a,mk) as a function of C1. (Cop=1).

4. Conclusions

Spontaneous synchronization in a system composed of two identical self-sustained oscillators
coupled through a common platform was investigated. @ Such systems can be realized
experimentally using pendulum clocks suspended on a common beam or metronomes placed on
a movable platform. The equations of motions were numerically integrated, and a Pearson type
correlation coefficient was used for quantitatively characterizing the emerging collective behavior.
Particularly, we were interested in determining the conditions under which stable phase-locked
in-phase and anti-phase synchronization emerges. Simulations suggested that depending on the
system’s parameters, the dynamics of the two oscillators will show either a stable in-phase or
anti-phase synchrony, or the system will fail to converge to any type of synchrony at all. We
found that spontaneous synchronization is present in a relatively large part of the parameter
space. The main parameter that will decide whether the in-phase or the anti-phase synchrony
is selected is the ratio of the oscillators friction coefficient and the platforms friction coefficient
(C1/Cy). For 3 < C1/Cy < 7 mainly the anti-phase synchrony is the stable dynamics, while
for C1/Cy > 10 the in-phase synchronized collective behavior is dominant. This selection can
be also understood by assuming the convergence to an energy balanced state with zero total
momentum, the nature of which is determined by the friction coefficients value, as it was studied
in [9]. A simple and elegant explanation for the observed dynamical pattern selection is still
lacking however.
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