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Abstract. An ensemble of oscillators capable of a highly nontrivial synchronization is
investigated. The oscillators are stochastic units which can emit a signal and detect signals
emitted by others. They have two operational modes characterized by two different oscillation
periods. Switching between the modes is governed by a simple rule: the average output intensity
is kept around a prescribed threshold. This simple dynamical rule realizes the coupling of the
units and leads to a complex collective behaviour. Computer simulations proved that for a given
interval of the threshold parameter, partial synchronization of the units occurs. The appearance
and disappearance of this synchronization as a function of the threshold parameter indicates a
phase-transition type behaviour.

1. Introduction
Spontaneous synchronization occurs in diverse systems in nature. Examples include biological
systems such as fireflies flashing in unison or crickets chirping together, rhythmic applause,
mechanically coupled metronomes, the menstrual cycles of women living together, pacemaker
cells in the heart, etc. [1]

Several mathematical models have been put forward to explain how a large group of coupled
oscillators with different frequencies can synchronize spontaneously, without an external driving
force. Most of these models fall into two broad categories: those describing phase-coupled
oscillators, and those which use pulse-coupling between the units. In the present work we shall
take a look at a totally different type of synchronization mechanism: one in which the interaction
between the oscillating units is not chosen explicitly to induce synchronization. Instead of being
the result of an evident phase-difference minimizing force, synchronization arises as a side effect
of a simple optimization rule. Similar models are described in [2, 3, 4].

The classical phase-coupled model of synchronization was introduced by Kuramoto and
Nishikawa [5]. In their model, each oscillator has an associated phase between 0 and 2π. The
oscillators evolve according to a set of coupled first order differential equations, with a coupling
that minimizes the phase difference between them. The form of the equations was chosen to
allow for an analytic solution. In the thermodynamic limit, this model shows a second-order
phase transition as a function of the coupling strength. The critical coupling depends on the
variance of the oscillators’ frequencies.

Pulse-coupling is used in integrate-and-fire type models [6]. Each oscillator has a state variable,
which increases monotonically until it reaches a given value. At this point the oscillator emits
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a pulse (it fires) and resets its state. The state variable of all those other oscillators that can
detect the pulse increases instantly by a fixed value. Under the right conditions, a single pulse
can trigger an avalanche of pulses in the system, thus causing a high proportion of the units to
fire at the same time.

2. The Model
The model consists of an assembly of N similar oscillators, each of which can either be active
at a particular instant in time, outputting a signal of strength 1/N , or inactive, outputting no
signal at all. Thus the total output signal of the assembly can vary between 0 and 1. It is easy
to picture these oscillators as flashing units, so the active oscillators will be referred to as lit,
while the inactive ones will be called unlit. Correspondingly, the total output level of the system
can be thought of as the total light intensity.

The units are two-mode stochastic oscillators, i.e. they can oscillate with a longer or a shorter
period, and these periods are random variables. At the end of a period, oscillators stay lit for an
amount of time.

Each oscillator cycles between three states, which will be denoted by A, B and C (see
Figure 1a) [2, 3, 4]. The length of time a unit stays in each of the three states will be denoted by
τA, τB and τC .
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Figure 1. (a) Dynamics of the oscillators. Each oscillator cycles between three states, A, B and
C. The duration of phase C can be long or short (C1 and C2). (b) Shape of the ∆(T ) function
for parameters f∗ = 0.2, τ∗ = 0.05 and N = 2000.

State A is the stochastic phase of the oscillators. Its length, τA, is a random variable following
an exponential distribution:

P (τA) = 1
τ∗
e−(τA/τ∗) (1)

The average duration of state A is 〈τA〉 = τ∗.
Phase B has a fixed length τB. This ensures that the oscillator stays unlit for at least a time

of τB.
State C is the lit state of the units, and can have two durations, a longer one, τC1, and a

shorter one, τC2. These correspond to oscillating modes 1 and 2, respectively. When entering
state C, the oscillators decide how long to stay in that state based on the total output of the
system. If the output f is less than a prescribed value f∗, the oscillator will choose mode 1. If
f > f∗, it will choose mode 2.

By choosing mode 1 when f < f∗ and choosing mode 2 when f > f∗, the units try to keep
the output close to f∗. As a side effect of this optimization, for certain values of the model
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parameters the oscillators will flash synchronously, and the total output of the system becomes
approximately periodic in time.

This model is a variant of the models presented in [2, 3, 4]. In the earlier models, instead of
phase C, it was the length of phase B that was different between the two modes. Note that unlike
in the earlier versions, in the present model the length of a full oscillation period is lengthened
rather than shortened by a low total output.

To back up the claim that the units are capable of flashing in unison, we need an objective
way to detect synchronization in the system. For this, a ∆(T ) function that characterizes the
periodicity level of the total f(t) output was chosen [2, 3]:

∆(T ) = 1
2M lim

x→∞
1
x

∫ x

0
|f(t)− f(T )| dt (2)

where
M = lim

x→∞
1
x

∫ x

0
|f(t)− 〈f(t)〉| dt and 〈f(t)〉 = lim

x→∞
1
x

∫ x

0
f(t) dt (3)

The shape of this function is sketched on Figure 1b. The more periodic the output signal is
(assuming a period T ), the smaller the value of ∆(T ) will be. Thus the period of the approximately
periodic function f(t) can be considered to be Tm, where ∆m = ∆(Tm) is the deepest minimum
of ∆(T ) (excluding the obvious minimum at T = 0). It is easy to see that for a perfectly periodic
function ∆m = 0, and that ∆m does not depend on the amplitude of the signal. We can define
the periodicity level of the output as p = 1/∆m.

The quantity p/p1 was chosen as the order parameter characterizing the synchronization level
of the assembly of oscillators. Here, p1 is the periodicity level of a single unit oscillating in the
long mode (τC1), hence p/p1 is the increase in the periodicity level of the output due to the
coupling between the oscillators.

3. Results
The model was implemented on a computer, and studied numerically using simulations. The
level of synchronization as a function of τ∗ and f∗ was studied. The other parameters of the
model were fixed at the following values: τB = 0.20, τC1 = 0.15 and τC2 = 0.10. (Other choices
lead to qualitatively similar results.)
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Figure 2. (a) Synchronization level as a function of τ∗ and f∗. Lighter shades of grey indicate
a higher p/p1 value. Synchronization occurs only in a certain region of the f∗-τ∗ space.
(b) Synchronization level versus the number of oscillators.

Similarly to earlier models, where the modes differed in the value of τB, the present model
exhibits synchronization in an island-like region in τ∗-f∗ space (Figure 2a). It was also found
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that in this region, the synchronization level, as measured by p/p1, increases monotonically with
the number of units in the system (see Figure 2b).

For a fixed τ∗, synchronization appears and disappears abruptly as f∗ is varied (see Figure 3a).
The transition gets sharper as N is increased, suggesting a phase-transition like phenomenon.

The distribution of the followed oscillation modes is plotted on Figure 3b for a few values of
f∗. As expected, for those values of f∗ where synchronization occurs, both modes are present.
For low or high f∗, solely one mode occurs, barring any possibility of non-random shift in the
length of oscillation cycles and thus synchronization.
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Figure 3. (a) Synchronization level as a function of f∗. τ∗ was fixed at 0.05, and the number of
units, N , is indicated in the legend. (b) Distribution of the oscillation modes for various values
of f∗. Results obtained for τ∗ = 0.05 and N = 2000.

4. Conclusions
An assembly of two-mode stochastic oscillators were investigated by computer simulations.
At the end of its oscillation period, each unit emits a signal of either long or short duration
(corresponding to the two modes), depending on the total output intensity in the system. When
the light intensity is less than a threshold value, f∗, the system emits a long signal, otherwise a
short one. This dynamics tries to keep the average output around f∗. As an unexpected side
effect, for certain values of f∗ synchronization occurs. The abrupt appearance and disappearance
of this synchronization resembles a phase transition. Synchronization is improved by increasing
the number of units in the system.

The synchronization mechanism found in this study is interesting and puzzling because no
phase-difference minimizing interactions are involved in the dynamics.
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