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Abstract

We model the collective clapping of spectators by globally coupled two-mode stochastic oscil-
lators. All distinct experimentally observable clapping modes are successfully reproduced. Sur-
prisingly, it is found that in an extended region of the parameter space the periodicity of the
collective output is strongly enhanced by the considered coupling. The model o1ers a realistic
way to generate periodic dynamics by coupling largely stochastic units.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many physical, biological or sociological systems composed of a large number of
oscillating and coupled units presents the phenomenon of synchronization [1]. Some
well-known examples are the synchronization of pendulum-clocks hanging on a wall
as <rst described by Huygens, arrays of bistable oscillators [2], >ashing of <re>ies
[3], neurons [4], pacemaker cells in the heart [5], chirping of crickets [6], menstrual
cycle of women living together [7] and the recently discussed phenomenon of rhyth-
mic applause [8,9]. In order to construct a realistic model for the above phenomena
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one has to take into account the stochasticity in the period of the oscillators, their dif-
ferent natural frequencies and sometimes also their di1erent operational modes. More-
over, the coupling has to be considered also in a realistic manner. The question
then whether synchronization in such system is possible or not becomes interesting
and non-trivial. In the limit of large number of units statistical physics models and
methods can become useful. Continuing our previous studies [8,9], in the present pa-
per we give an alternative description and model for the phenomenon of rhythmic
applause.

In our earlier studies we approached collective human clapping by using the simple
Kuramoto model [10], which is well-known in statistical physics. Within this approach
the clapping spectators are modeled by phase-coupled rotators. The rotators have dif-
ferent natural frequencies and they are globally and uniformly coupled. Following our
experimental investigations, we proposed that the rotators can operate either in low or a
high frequency mode. Applying then the results of the Kuramoto model, we were able
to qualitatively explain the characteristic features and intermediate regimes in collective
clapping. Particularly, we proved that in order to achieve synchronization the audience
has to clap with the low frequency mode. We also showed that the fascinating and
peculiar interplay between synchronized and unsynchronized regimes in rhythmic ap-
plause is a consequence of a frustration in the system. The audience has two con>icting
desire, <rst to produce large noise intensity, and secondly to achieve synchronization.
While large noise intensity can be achieved by clapping in the fast mode, seemingly
synchronization can be obtained only in the low frequency clapping mode. We argued
that this con>icting desire is responsible for the characteristic dynamics of rhythmic
applause.

The description based on the Kuramoto model is of course a very crude approxima-
tion to reality. First, it does not take into account the stochasticity of the individual
oscillators, and secondly the global phase coupling is unrealistic. Coupling should be
realized either through the global output of the system, or by a hierarchical consid-
eration of the neighbors. Modeling the clapping person by a rotator is also a rough
approximation and neglects the di1erent phases in a clapping cycle. The model we
describe in the present study has the aim to overcome the shortages of the previous
description. Beside the immediate interest in explaining this fascinating social behav-
ior, we show that this new model is useful for explaining other puzzling collective
biological phenomenon as well, or could be useful in designing self-correcting clever
systems with highly stable periodic output.

2. Facts about human clapping

Previous experiment revealed interesting properties of human clapping.
Regarding the clapping of one isolated individual, Musha et al. [11] showed the

stochastic nature of the clapping period. He also argued that clapping has features
resembling 1=f noise. Controlled experiments performed by us on high-school students
[8,9] supports the results of Musha et al. and also revealed the existence of two distinct
clapping modes. One mode is characterized by a lower frequency and corresponds to
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the natural clapping of the individuals. The second mode is an “excited”, fast clapping
mode, with a roughly doubled frequency.

For the collective clapping of an audience one can distinguish four qualitatively
di1erent modes. A <rst mode is the weak “non-enthusiastic” clapping, encountered after
bad or average performances. Usually there is no synchronization in this mode, and the
average output intensity is low. A second possible mode is the thunderous clapping,
characteristic for an excited audience. The audience rewards exceptional performances
by this clapping mode. It is characterized by high output intensity, no synchronization
and fast mode clapping of the spectators. Another clapping mode which appears also
after exceptional performances is the so-called rhythmic applause. Rhythmic applause is
characterized by synchronized regimes and can appear in two forms. The most common
form has a frequency in the neighborhood of the average slow clapping frequency of the
spectators. A second form of rhythmic applause is characterized by synchronized high
frequency clapping. This later form is, however, very unstable and can be sustained only
seldom. Rhythmic applause has a complex dynamics, synchronized clapping alternating
with the thunderous clapping mode. Audio and video samples for rhythmic applause
can be downloaded from the web-page dedicated to our previous studies [12].

In conclusion experiments on individuals revealed both the stochastic nature of clap-
ping and the two possible clapping modes. Collective clapping of an audience can
lead to four qualitatively di1erent modes, distinguished by the intensity of the global
clapping, synchronization, and frequency.

3. The model

The model introduced in this section describes in a realistic manner the stochasticity
and pulse-like output of the clapping phenomenon, the two co-existing clapping modes,
and considers a realistic coupling through the global output of the system. It does not
take into account, however, the di1erences in the natural frequencies of the oscillators.
Since the stochasticity of the oscillators introduces already a frequency >uctuation, we
expect that our results will be qualitatively unmodi<ed for a small non-zero standard
deviation of the oscillators natural frequencies.

The model considers an ensemble of N oscillators. The cycle of each oscillator is
composed of three parts denoted by A, B and C. The oscillators operate by following
A → B → C → A → B → · · · periodic route. The total period of the oscillator, T , is
given then as T = 	A+ 	B+ 	C , where 	A, 	B and 	C denotes the time interval spent in
regime A, B and C, respectively. The stochastic part of the dynamics is A, and 	A is thus
a stochastic variable. This regime is intended to reproduce the stochastic reaction-time
of an individual. Following the accepted models of neuron dynamics [13] we model
this stochastic regime by an escape-dynamics of a stochastic <eld-driven particle from
a potential valley. The time length 	A is thus governed by the

P(	A) =
1
	∗

exp
(
−	A
	∗

)
; (1)
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Fig. 1. (a) Dynamics of the stochastic oscillators, and the two possible modes. (b) Pulse-like output of the
stochastic oscillator as a function of time.

distribution function. It is easy to realize, that the average value of 	A is 	∗. Part B
represents the 	B deterministic period, the individuals would like to impose. Part C is
also a deterministic regime, where the oscillator emits a constant fi = 1=N intensity
pulse. The dynamics of the oscillators and it’s output is sketched in Fig. 1. As shown
in the <gure, the two distinct clapping mode of an individual can be taken into account
by allowing two di1erent cycles for an oscillator. These two cycles are di1erent by the
time-length of the B regime. An oscillator can follow thus either mode I (A → BI →
C → A → BI · · ·), or mode II (A → BII → C → A → BII · · ·). In order to reproduce
realistically the two clapping modes we have chosen the lengths of the BI and BII
regimes as observed experimentally: 	BII ≈ 2	BI .

Shifting between the two possible modes and the coupling of the oscillators is real-
ized through their collective output. Let us assume that f∗ is an average output intensity
that the oscillators want to impose. The dynamics of the ensemble is described then
by the following rules:

(1) Each oscillator starts with a randomly selected mode and phase (A, B or C), and
follows the usual dynamics in the selected mode.

(2) After completing part A, each oscillator compares the

f =
N∑
i=1

fi ; (2)

total output of the system with f∗.
(3) If f¡f∗ the oscillator will follow mode I with shorter period, in order to increase

the average output in the system. If f¿f∗ the oscillator follows mode II with
larger average period, in order to decrease the global output.

(4) The oscillators continue inde<nitely their dynamics following rules (2) and (3).

The above dynamics is designed to keep the average output in the neighborhood of
the desired f∗ value. The coupling is thus realized through the global output of the
system. It is important to notice that the tendency and aim for synchronization is not
a priori introduced in the dynamics. In our opinion this model describes in a realistic
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manner the clapping individuals and their collective desire, which is to produce a given
intensity clapping, appropriate to the quality of the performance.

4. Results

Let us <x the values of 	C and 	BI (	BII =2	BI ) and study the model on the 	∗−f∗

parameter space.
For f∗6 0 all units operate in mode II, trying to decrease the average output of

the system, which in this case is

〈f〉0 = 	C
TII

=
	C

	∗ + 	BII + 	C
: (3)

This coupling is not e1ective, and after all the oscillators had switched to mode II they
will just keep this mode. No synchronization can be achieved in this limit. Moreover,
even if all oscillators start in mode II and in a synchronized manner, due to the
stochasticity in their periods this synchronization is quickly lost. For f∗ = 1 all units
will tend to oscillate in mode I, trying to increase the average output, which in this
case is

〈f〉1 = 	C
TI

=
	C

	∗ + 	BI + 	C
¿ 〈f〉0 : (4)

Again, the coupling is not e1ective and the oscillators cannot achieve synchronization.
It is easy to realize that the above considerations should hold in the f∗¿ 〈f〉1 limit,
as well. For 0¡f∗¡ 〈f〉1 the dynamics is non-trivial and the oscillators continu-
ously shift between the two possible modes. This regime can be studied however, only
computationally. Fixing 	C=0:1 and 	BI=0:4, we have mapped the relevant 	∗−f∗ pa-
rameter space by studying the global output after dynamical equilibrium was achieved.
Four phases, distinguished by qualitatively di1erent dynamics were revealed (Fig. 2e).
For small f∗ values we obtained a non-synchronized low intensity output (phase I).
A global signal characteristic for this phase is plotted in Fig. 2a. By increasing the
value of f∗ a partially synchronized dynamics is observed (phase II). In this phase
the global output of the oscillators show a periodic nature (Fig. 2b), with a frequency
close to the slow mode of the individual oscillators. In a quite narrow f∗ − 	∗ pa-
rameter space a partially synchronized regime with a high intensity global output is
observed (phase III). The frequency of this global output (Fig. 2c) is close to the high
frequency mode of the individual oscillators. Finally, for high f∗ values, again no
synchronization can be achieved (phase IV) and the global output has a high average
intensity, close to the value of 〈f〉1. A global output characteristic for this regime is
plotted in Fig. 2d. We conclude thus, that as a function of the 	∗ and f∗ parameters
the system can exhibit four qualitatively di1erent types of dynamics. Two of these is
characterized by partial synchronization of the oscillators.

It is interesting and important to note that in the partially synchronized phase II
the global output has a strong periodic nature. A <rst qualitative comparison with the
signal given by one oscillator shows that the global output becomes much less stochastic
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Fig. 2. (a)–(d) Global output of the system in the di1erent phases, (a) phase I, (b) phase II, (c) phase III,
(d) phase IV. (e) Phases in the f∗ − 	∗ parameter space.

than the output of a single oscillator following either mode I or mode II. This means
that this setup is appropriate to enhance the periodicity of stochastic oscillators. In
the rest of this section we investigate quantitatively this enhancement. In order to
characterize numerically the enhancement in the periodicity, <rst we need to de<ne a
measure for it. Let us denote the investigated signal by f(t). We can then de<ne an
error function, �(T ), which characterizes how strongly the f(t) signal is di1erent from
a periodic signal with period T

�(T ) =
1

2M
lim
x→∞

1
x

∫ x

0
|f(t)− f(t + T )| dt ; (5)

where

M = lim
x→∞

1
x

∫ x

0
|f(t)− 〈f(t)〉| dt;

〈f(t)〉= lim
x→∞

1
x

∫ x

0
f(t) dt : (6)

The general shape of �(T ) is sketched in Fig. 3.
For any f(t) oscillating function, �(T ) has an initially increasing tendency at small

T values, after which for a T = Tm period a �m minimum is reached. One can then
consider that Tm is the best approximation for the period of the f(t) signal, and the
level of periodicity of the signal is characterized by

p=
1
�m

: (7)
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Fig. 3. A general shape of the �(T ) function.

Fig. 4. Enhancement in the periodicity in the relevant f∗ − 	∗ phase-space. Two di1erent views.

For a single oscillator the highest periodicity is obtained while operating in mode II,
since in this slow mode the relative length of the 	A stochastic time-interval is shorter.
Let us denote this periodicity by p1, and the periodicity of the global output simply
by p. Then, the p=p1 ratio will characterize the enhancement in the periodicity. We
have studied this enhancement throughout the whole relevant 	∗−f∗ parameter space.
Results for N = 200 oscillators, 	C = 0:1 and 	BI = 0:4 are plotted in Fig. 4.

The data indicates that in a quite extended parameter range (corresponding mainly
to phase II) the enhancement is strong. Moreover, increasing the number of oscillators
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Fig. 5. (a) Enhancement in periodicity as a function of the number of oscillators (	∗=0:4, f∗=0:1, 	BI =0:4
and 	C = 0:1). (b) The best TM periods in the f∗ − 	∗ parameter space.

will further increase the periodicity of the global output. To illustrate this, we <xed
	∗ =0:4 and f∗ =0:1 and investigate the enhancement as a function of the N number
of oscillators. Results are summarized in Fig. 5a. From this result we conclude that
the periodicity is monotonically increasing with the size of the system, although this
increase is slower than a linear trend. Finally, we also mention here that the best Tm
period obtained for the global signal (Fig. 5b) supports our previous statements about
the four possible phases in the global dynamics of the system.

5. Discussion

The four qualitatively di1erent dynamics obtained in our two-mode stochastic oscilla-
tor model reproduces the observed four distinct type of collective clapping modes. Phase
I reproduces the non-enthusiastic clapping mode, characteristic after bad or average
performances. In this case the spectators are satis<ed with a low intensity average
output. Phase II reproduces the synchronized regime of the common rhythmic ap-
plause, and phase III the fast-mode rhythmic applause. The parameter space where
the fast-mode rhythmic applause appears is quite restricted and in accordance with the
observations, our model predicts that this should be a quite rare phenomenon. Phase
IV corresponds to the thunderous clapping mode of the excited audience, when high
average output is desired. The present model suggests that in order to get rhythmic
applause after an outstanding performance the average noise level of the thunderous
clapping should be lowered. This is in fact what happens in reality. In order to get
synchronized clapping the audience lowers detectably the average clapping output in-
tensity and achieve synchronization in the low frequency clapping mode. Frustration
due to the two con>icting desires: to get synchronization and high intensity clapping
is responsible for the characteristic interplay of synchronized and thunderous clapping.
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Our previous theory based on the Kuramoto model yield the same conclusion [8,9]. The
ideal clapping mode of an excited audience would be of course to synchronize with
high output intensity. According to the results of the present model this fast-mode
synchronization can be achieved only under very restricted parameter values, and it
is highly improbable for “untrained” audience. Seldom, especially in East-European
countries, one can observe this synchronization mode, as well.

Apart from the interest in explaining the fascinating phenomenon of rhythmic ap-
plause, the present model could become useful also for understanding synchronization
of other biological or sociological systems where two or more oscillating modes are
present. As such examples we mention here the uni-cellular alga Gonyaulax polyedra
in which circadian oscillators with two di1erent periods coexist [14], or the thalamo-
cortical relay neurons which can generate either spindle (7–14 Hz) or delta (0.5–4 Hz)
oscillations [15].

From Fig. 4 it is also interesting to observe a stochastic resonance-type e1ect [16].
For <xed f∗ values it seems that there is an optimal 	∗ noise-level, where the maximal
p=p1 enhancement is achieved.

Finally, in our opinion the most important message from the present model is that
periodicity enhancement can be obtained by coupling in a simple and realistic manner
an ensemble of two-mode stochastic oscillators. One can thus design devices giv-
ing well-controlled periodic pulses (clocks) by using largely stochastic elements. Such
biology-inspired technology would lead to clever, self-correcting clocks or bistable
elements.
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