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We study a system of two-mode stochastic oscillators coupled through their collective output. As a
function of a relevant parameter four qualitatively distinct regimes of collective behavior are observed.
In an extended region of the parameter space the periodicity of the collective output is enhanced by the
considered coupling. This system can be used as a new model to describe synchronizationlike phenomena
in systems of units with two or more oscillation modes. The model can also explain how periodic
dynamics can be generated by coupling largely stochastic units. Similar systems could be responsible
for the emergence of rhythmic behavior in complex biological or sociological systems.
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Collective dynamics of stochastic systems shows a great
variety of interesting phenomena like pulsating patterns
[1], spiral waves [2], synchronization [3], or stochastic
resonance [4]. While the collective dynamics of single-
mode stochastic oscillators is relatively well understood
[5], the dynamics of stochastic oscillators with many pos-
sible modes is less studied [6] and leads to interesting and
new effects. An example in this sense is our recent study
on the peculiar dynamics of the rhythmic applause [7],
where the fascinating dynamics appears as a result of two
different frequency clapping modes [8]. Many other bio-
logical or physical systems exist, which perform stochastic
oscillations with different modes. As examples we men-
tion the unicellular alga Gonyaulax polyedra where circa-
dian oscillators with two different periods have been shown
to coexist [9], the thalamocortical relay neurons which can
generate either spindle (7-14 Hz) or delta (0.5-4 Hz) os-
cillations [10], and the hippocampal CA3 model which
spontaneously can generate four different rhythms [11].
When the system can switch between the available modes
as a function of some threshold condition, new and inter-
esting collective behavior is observed.

In this Letter, we report such results for an ensemble
of coupled two-mode stochastic oscillators. As a function
of a threshold condition we reveal different types of syn-
chronized and unsynchronized phases. We also show that
rhythmic collective behavior can be generated by suitably
coupling largely stochastic units; i.e., the periodicity of the
total output relative to the output of one stochastic oscilla-
tor can be strongly enhanced. As an immediate application
we offer a new and realistic description for the dynamics
of the rhythmic applause, reproducing all experimentally
observed characteristics.

Our system is composed by identical pulse-coupled two-
mode stochastic oscillators. Their cycle can be performed
in two modes: A— By —-C —AorA— Bjj— C —
A, respectively. The periods corresponding to these two
modes 7 and Ty are given as 71 = 74 + 7, + 7¢ and
Ty = 74 + 7, + 7¢, Where 74, 75, and 7¢ are time
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intervals spent in states A, B, and C, respectively. The
stochastic part of the dynamics is state A, and 74 is a
stochastic variable with distribution:

P(74) = L* exp(—%) ey
T T

(7% = (74)). State A should be imagined and modeled with
an escape dynamics of a stochastic field-driven particle
from a potential valley of depth U. If the stochastic force
field is totally uncorrelated with (¢) = 0 and (£(r)&(r +
7)) = D&(7) we get a distribution of escape times given in
(1) with 7* ~ exp(U/D). In analogy with the well-known
FitzHugh-Nagumo system [12], state A corresponds to a
stochastic reaction time of the neuron fire. This causes all
the experimentally observed fluctuations in the rhythmic
human activities [13,14]. In states B and C the dynamics
is deterministic and corresponds to the relaxation of the
neurons [13,15]. State B represents a “waiting time” or
the thythm giving part of the cycle. In biological systems
this is a period the individual units want to impose, and
usually this is the longest part of the cycle. The length of
state B (7p, or 7p,,) distinguishes between the two modes.
We have chosen 75, = 275,. The output of the units is in
state C. During this state the oscillator emits a constant
intensity pulse of strength 1/N, where N is the number of
oscillators in the system. The output of the whole system
at a given moment is

N
f=>r. )
i=1

where f; is the output of oscillator i, f; = 1/N if the
given oscillator is in state C, and f; = 0O otherwise. This
total output is the origin of the coupling and shifts the
oscillators between their operating modes. The rules for
the evolution of the system are as follows: (i) oscillators
start with randomly selected modes and phases and follow
the stated dynamics; (ii) there is a fixed output intensity,
f*, for the system; (iii) after completing the dynamics
in state A, each oscillator will choose to operate either
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in mode I or mode II; (iv) if at that moment f < f™* the
oscillator will operate in mode I; otherwise it will follow
mode II. The above dynamics has the tendency to keep the
average total output as close as possible to f*. Since each
oscillator has a fixed output intensity, this can be achieved
only through switching between the available modes. In
this sense the proposed rules are natural, making our model
realistic.

The evolution of a single uncoupled unit is simple since
it preserves the starting mode (s). The average value of
its period is

(TYy =A7po + 715, +7c)=7"+ 78 + 7c. (3
Its relative standard deviation
2y — (T2 .
[ T @
<T> T+ T B, + 7 C
shows an increasing tendency as a function of 7.

In contrast with the simple uncoupled case, the dynam-
ics of the coupled units is complex. Generally the oscilla-
tors will shift irregularly between their two modes. As a
function of f* many interesting regimes are observed.

For the limiting values f* = 0 or 1 the dynamics is
trivial. For f* = 1 we always have f < f* and all units
operate in mode I. The f output randomly fluctuates due
to both the initial random phases and the stochastic nature
of 74. As the number of units increases, the variance
of this fluctuation decreases. The average value of the
collective output { f(f* = 1)) = (f)1 is a function of 7¢
and (Ty) only:

_ Tc
(h = Ty &)

The above considerations will apply in the N > 1 limit
for the f* > (f); cases as well. In this manner we can
analytically predict that for high enough f* values the
units operate as simple uncoupled stochastic oscillators in
mode I. For f* = 0 all units operate in mode II, and again
there is no effective coupling between the units. The total
signal will randomly fluctuate, and due to the larger (Tyy)

value its mean will be smaller than the one measured in
the f* > (f) cases:

— ) = —C_
(o= =00 = 75

For 0 < f* < (f)» we have a nontrivial regime, where
the coupling is effective and the oscillators switch between
their modes. This region will be studied by computer
simulations. We can numerically follow both the dy-
namics of a selected unit and the total f output of the
system. For fixed 7p,, 7p,,, and 7¢ values the parameters
governing the system dynamics are f* and 7*. We choose
73, = 0.4 and 7 = 0.1. By mapping the relevant
{f*, 7"} parameter space, four different regimes (phases)
can be revealed. Phase I is an unsynchronized regime
with (f) = (f) (Fig. 1a). Phase Il is a synchronized
regime with quasiperiodic total output and large oscillation
periods close to the (Ty;) value (Fig. 1b). Phase III is
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FIG. 1. Total f output of 200 coupled two-mode oscillators

[r* = 0.1, 75, = 04, 7¢ = 0.1 and f* = —0.1 (a), f* = 0.1
(b), f* =02 (), f* =03 ().

a synchronized regime with quasiperiodic output and
slow oscillation periods close to the (Ty) value (Fig. 1¢).
Phase IV is an unsynchronized regime with (f) = (f)
(Fig. 1d).

Changing the values of 75 and 7¢ leads to qualita-
tively similar phases in the parameter space. From the
phase space sketched in Fig. 2 we learn that by increas-
ing the value of f* the systems’ collective output changes
from the unsynchronized phase I behavior to the synchro-
nized phase II and phase III dynamics, leading finally to
the unsynchronized phase IV regime. As 7" is increasing
phase III disappears (7* = 0.5) and the f™ interval where
synchronization is present (phase II and III) diminishes.
In agreement with our previous analytic justifications, in
phase T we have (f) = (f)o (Fig. 1a), in phase IV, (f) =
(f)1, and for f* > () the collective behavior of the sys-
tem always corresponds to the phase IV one.

In the 0 < f* < (f); regime the dynamics of a single
unit is nontrivial. The units stochastically shift between
mode I and mode II oscillations. In this regime although
the movement of each unit is largely stochastic, their col-
lective behavior leads to a periodic output. In order to
characterize numerically the enhancement in the periodic-
ity we define a measure for it. Let us denote the output
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FIG. 2. Phases in the {f*, 7"} parameter space (N = 200,
B = 04, Tc = 01)
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signal as a function of time as f(z). We can define an er-
ror function, A(T), which characterizes numerically how
strongly the f () signal differs from a periodic signal with
period T,

A(T) = ——lim, ...

1 X
slime [ 170 = £6 = lar, @)

where

M = limy — [ L0 - (el
X Jo
e ®)
(F0)) = limy — [ Fydr
X Jo

The general shape of the A(T) curve as a function of T
is sketched on Fig. 3. For any f(¢) oscillating function
we have an initially increasing tendency at small T values,
after which for T = T, a minimum (A,,) is reached. One
can state that 7, is the best approximation for the f(r)
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FIG. 3. Characteristic shape of A(T). Determining the A,,
and T, parameters. (7* = 0.1, f* = 0.3, 75, = 0.4, 7¢ = 0.1,
N = 200).
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signals period, and the “periodicity level” of the signal is
characterized by

1

P Am-
We can compute this parameter both for one oscillator
working independently (p;) in the long period mode
(where the effect of stochasticity on the period is smaller)
and for the whole system (p). The ratio p/p; will
characterize the enhancement in the periodicity. We have
analyzed throughout the {7*, f*} parameter space this
enhancement in the periodicity. Results for N = 200
oscillators are given in Fig. 4. From these data it is clear
that there is quite a large parameter space (corresponding
to small values of f* and large limits for 7*) where the
enhancement in the periodicity is considerable. The com-
puted best periods (7;,) are in agreement with the phases
previously discussed and sketched in Fig. 2. Increasing
the number of coupled oscillators will further enhance the
periodicity of the total output. As an example results for
7" = 0.4 and f* = 0.1 are presented in Fig. 5. It is also
interesting to note the stochastic resonance-type effect
[4] for the enhancement in the periodicity (Fig. 4). For
fixed f* values there is an optimal noise level (7%) in the
oscillators dynamics, where a maximal p/p; enhancement
ratio is achieved through the considered coupling.

As an immediate application one can create a new model
and explanation for the phenomenon of rhythmic applause
[8]. Different phases of the collective output (Fig. 2)
reproduce the regimes observed in collective clapping.
The high intensity (phase IV) unsynchronized phase corre-
sponds to the initial thunderous clapping of the spectators
following an exceptional performance. Phase II describes
the rthythmic applause where spectators clap in unison with
a relatively long period. Phase III with a shorter period
and partly synchronized output is characteristic for the un-
stable transition intervals from synchronized to unsynchro-
nized clapping. The low intensity unsynchronized phase I
dynamics is characteristic of the clapping of a nonenthusi-
astic audience. Modeling the clapping individuals by the
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FIG. 4. Enhancement in the periodicity (p/p;) as a function
of the 7" and f* relevant parameters. (Results for N = 200
oscillators, 75, = 0.4, 7¢ = 0.1).
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FIG. 5. Enhancement in the periodicity of the output (p/p;) as
a function of the number of oscillators in the system. (f* = 0.1
and 7 = 0.4, 75, = 04, 7¢ = 0.1).

proposed two-mode stochastic oscillators and the coupling
between them by the proposed threshold criteria is realistic
and in agreement with experimental results: (i) the clap-
ping sound is pulselike and is reproduced by state C of
the oscillators; (ii) the clapping period of one individual
has a fluctuating nature [14] and is modeled by state A of
the dynamics; (iii) the thythm of the clapping is modeled
by state B; (iv) our previously reported measurements on
clapping individuals [7] revealed the existence of the two
distinct clapping modes with short and longer periods, re-
spectively; (v) the period of the longer clapping mode was
found do be roughly 2 times larger than the one of the short
clapping mode. In view of this new model the character-
istic interplay between synchronized and unsynchronized
regimes in the rhythmic applause should be a consequence
of a peculiar dynamics in the f* threshold and should have
a psychological origin. It is clear that after a bad perfor-
mance the f* threshold is low and leads to phase-I-type
collective response. For an enthusiastic audience f™* is big
and high intensity collective response forms, resembling
the total output of the units in phase IV. By lowering the
level of f* (fatigue or just resting?) synchronized collec-
tive response arises (phase III) which corresponds to the
rhythmic applause.

In our opinion the presented model has possibilities for
understanding and modeling the origin of other rhythmic
biological or sociological phenomena [16]. The most in-
teresting aspect of our results is the finding that regular pe-
riodic output can be obtained by coupling a large number
of stochastic units. Similar phenomena should be respon-
sible for the emergence of rhythmic behavior in complex
biological or sociological systems.
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