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Abstract—The rheological behavior of metallic alloys containing both solid and liquid phases is investigated

in the low solid fraction range<(50%). This behavior depends on both the solid fraction and the shear rate.
The concept of effective volume fraction (EVF) is used to decorrelate the influence of these two parameters.
At high shear rate the slurry behaves like a suspension of hard spheres, whereas at lower shear rate particles
tend to aggregate in clusters, entrapping liquid and thus increasing the EVF and the viscosity. A lattice model
is introduced to simulate the aggregation/break-up processes within a slurry under shear. When the steady
state is reached, the entrapped liquid fraction is calculated, leading to a viscosity estimation. Simulation
results for the viscosity and structure of the three-dimensional cluster are in good agreement with experimental
results.J 2000 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.
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1. INTRODUCTION bonding and leads to a more dispersed suspension

Semi-solid slurries are characterized by the coexis?-(_}having more like a fluid.
y The concept of effective volume fraction (EVF)

ence of S.Ol'd and Ilgwd phases. They are usu‘B‘Hi)r/nroduced by Quemada [3] allows one to relate the
observed in alloys with two or more constituents for - . . .
cluster characteristics to the viscosity of the mixture.

temperatures between the solidus and liquidus lin . ; . L
The rheological properties of this dual-phase statee"gshe aim of the present paper is to build on this idea

of interest both for casting and for metal forming[yconszlderlng the dynamics of cluster formation, and

operations known as thixoforming [1]. When submit;> de_rlve a phenomendOgy for non Newtonian
° . behavior of a semi-solid slurry that is based on an
ted to shear, the steady-state viscosity decreases as !
: ; . understanding of the elementary phenomena govern-
the applied shear rate increases, reaching values.©o

ing the cluster dynamics.
the order of 100 mPa s [2]. L . .
This behavior is called rheofluidization and it is Rheofluidization has been studied extensively (see

the work of Quemada [4], for instance). Figure 1

usually explained by the interaction between the soli . : .
; : shows a typical shear rate dependence of the viscosity
particles. It is a very general phenomenon observgd - . . . -
! . - . I or a suspension of interacting particles. Shear thick-
in suspensions, metallic alloys in the semi-solid state, . . .
; . - -~ "€hing, which may occur for higher values of the shear
colloids, latexes, etc. Their characteristic behavior i$ . ) X .
o : " rate [5], is not considered. The behavior at high shear
qualitatively interpreted as a competition between thg -
. : rate when particles are well separated has been accu-
aggregating (Coulomb attraction, van der Waalsr tely described by Krieger and Dougherty [6]:
forces, surface forces, etc.) and break-up (shear% y y 9 gherty o]
forces. At low shear rate (typically lower than 1'% .
individual particles can aggregate into “clusters” that n=n (1_ @ > o 1)
.. 0 1
are able to form a more or less rigid network and the Dy
slurry is considered as a solid. At very high shear rate,
the motion of the particles prevents particle/particléd being the solid fraction of the suspension adg
its maximum value (close packing). Below a given
valuey,, an increase of the viscosity is observed. This
can be interpreted as an increase in the effective vol-

* To whom all correspondence should be addressed. ume fraction®.4, which takes into account both the
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we discuss the aggregation and break-up phenomena
leading to more or less opened structures, neglecting
the densification of the resulting clusters.

Different approaches have been used to simulate
the rheological behavior of colloidal suspensions.
Dynamic simulation tools such as non-equilibrium
Brownian dynamics [12] and Stokesian dynamics
[13] have provided insights into the influence of the
various colloidal forces on the microstructure and the
effect of this microstructure on suspension rheology.
A non-dimensional structural parameter has been
introduced to predict the rheology of aggregated sedi-
- ment suspensions [14] and semi-solid slurries [15].

Y, ¥s Based on simple physical assumptions, we propose
Shear rate (3‘1) in this paper an original computer simulation of the
microstructure of a semi-solid metallic alloy submit-
Fig. 1 Rheqﬂuidization: vis_cosity decreases ‘between the shaaid to shear. First, we discuss the parameters govern-
ratesy, andy,. 1—Percolating network, 2—dispersed suspeny, e structure, then we use a simple approach to
sion, 3—suspension of clusters. . ' . ) .
relate the microstructure with rheological properties.

Viscosity

solid and the entrapped liquid. replaces? in equ-
ation (1). 2. STRUCTURE AND VISCOSITY OF SHEARED

Jeffrey and Acrivos [7] underlined the notion of SUSPENSION

structure resulting from aggregation between solid The role of the solid fractiong, in the rheology

particles: for the same solid fractiotb, different of sheared suspensions has been studied extensively

structures can lead to different viscosities. The S'[I'UQe_g_, see the review of Rutgers [16]). The law used

ture itself depends on the shear rate. This statemefbst often for thed dependence of the viscosity is

is eaSin understandable for the two extreme limits qhe Krieger phenomen0|ogical law. It has the advan-

the shear rate: a “percolating network” for low sheagage of pointing out the concept of maximum packing

rate and a “disperse suspension” for high shear ra‘f?action,q)M.

Between these two domains, the structure of diphaSiCThe role of the shear rate is less clear. We know

solutions is not fully understood for several reasonshat it tends to break up the clusters, depending on the

applied shear rate and the solid fraction. The possible

¢ mean-field modeling fails to describe the dynamicstructures can be grouped schematically into four dif-
of such slurries because it does not take intferent classes (see Fig. 2):
account the interaction between solid particles;

¢ two-dimensional (2D) observations are useful bué at low solid fraction (P=®d,), the structure
not sufficient because they do not show the real depends on the shear rate. At low shear rate (1),
state of aggregation. In particular, the three-dimen- very little break-up occurs, leading to a 3D inter-
sional (3D) connectivity of the solid particles can-  connected network. At high shear rate (2), the
not be easily revealed. Serial cutting [8] allows 3D
reconstruction, but is only tractable for relatively
small zones; b

e the difficulty of 3D observations. Small-angle @
scattering is used efficiently [9] with colloids, but &
gives only a characteristic length scale of the sus=
pension. Moreover, it is limited to small solid par-
ticles (less than a few micrometers). A new obsel
vational technique, synchrotron-radiatior =
microtomography, is under development thaw)
should allow 3D investigation by means of phas
contrast of a relatively large part of a sample witt
a resolution of a few micrometers [10]. Q)

olid fractio
&
2

’?g Ys
In a previous work [11], an analytical estimation Shear rate (s)
of the characteristic radius of clusters was derived b|¥

18 2. Structure of the suspension in the®) phase-space.

considering that aggregation and coalescence leadlgGel, 2—suspension of individual particles, 3—suspension

spherical Co_mpaCt clusters. Th!S radius was found 9 clusters, 4—compact arrangement. In this paper we are
decrease with the shear rate \|s"’. In this paper mostly interested in regions 2 and 3.

®
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break-up process dominates leaving the system agental points were scaled back on a unique master

a dispersed suspension (individual particles am@urve.

well separated). In between these two domains (3), The critical point of this analysis is the estimation

the aggregation and break-up processes countef-the structure-dependent EVF, as a function of the

balance, leading to a suspension of clusters wihear rate. In the following section, we propose an
y-dependent characteristic size and shape; and approach to predict the structure evolution of a semi-
e at high solid fraction ¢=®y,), close packing is solid slurry submitted to shear.

observed for any applied shear rate. The shear is

then localized in particular planes.

3. THE STEADY STATE OF SHEARED SUSPENSION:
The frontiers delimiting the different domains in Fig. COMPETITION BETWEEN AGGREGATION AND
2 should be seen more as transition zones than BREAK-UP
strict boundaries.

In the dispersed suspension region the viscosity can
be accurately described with a model developed &
suspensions of hard spheres [see equation (1)]. In the
3D interconnected network region the deformatior®
mechanisms are totally different, involving much
more the solid than the liquid. Pseudo plastic models
leading to a power lawn=my" !, describe the rhe-
ology of the two-phase material successfully (see
Ref. [17]).

In the intermediate region, Quemada [3] introduced

When a semi-solid slurry is left at rest, two differ-
t mechanisms occur:

Oswald ripening [19] and spheroidization tend to
minimize the solid/liquid surface energy by nar-
rowing the size distribution of the aggregates and
smoothing the surfaces of the solid particles.
These phenomena are diffusion-limited with a
characteristic length of the order of the individual
particle radiusa,. A characteristic diffusion time

the concept of EVF & in equation (2)] to replace
the solid fractiond of equation (1), turning it into:

—2.5b
qjeff) M

n:n0<1_ (I)M

()

The EVF takes into account the entrapped liquid not

involved in the hydrodynamic flow®. is then the
sum of the real solid fractiomp and the part of the
liquid that no longer takes part in the liquid flow. It

could be approximated bya3/D=2 s, where
D=~5x10"° m?s ! is the diffusion coefficient of the
solute in the liquid andy=100 pm; and

particle aggregation occurs to lower the
liquid/solid surface energy. The driving force of
aggregation is the difference between twice the
solid/liquid surface energy and the solid/solid sur-
face energy:Ac=20g —0,. The aggregation kin-
etics is limited by the collision frequency, which
is estimated in [20] for a sheared suspension of

could be, for example, the entrapped liquid in the hard spheres a§=(8/m®y. In the intermediate
middle of a solid aggregate. Note that liquid does not region of Fig. 2, the characteristic time between
need to be completely surrounded by solid to be two collisions (1f;) ranges from 1 s to 1 ms when
entrapped (see Section 4). On this basis, the structurey ranges from 10 to 1000 &,

of the suspension is re-injected into equation (1)

through its correlation with the EVF. For a suspension

of compact clusters, the EVF would be equal to the | the present paper, we are interested in a shear
solid fraction, while for a more open structureaie domain where the kinetics of aggregation is much
(gontammg more e.ntrappe.d liquid) it could .be m.uclpnore rapid than the kinetics of Oswald ripening (see
higher thz_anfD, Ieadm_g to h|gher values of VISCosity. apove). We will then neglect Oswald ripening.
The maximum packing fractiom,, characterizes a |ngeed, in a relevant time for diffusion-limited mech-
geometrical compactness. It is a function of the sizgnisms aggregation induces more drastic changes in
and shape distribution of the individual solid particle$he microstructure than Oswald ripening.

and does not depend op The EVF takes into  The aggregation mechanism is collision-induced.
account the dependence of the microstructure as\fe are interested in the physical mechanisms taking
function of the applied shear rate. The structure COUHace during the contact between two particles. Two

have been introduced in a shear-dependent packiggnerical objects of radiua, aiming at one another
fraction &y, [18], instead ofd. Both approaches lead i, 5 shear flow with shear ratewill meet during a

to the same results. ) _mean contact time, approximated by Adleet al.
Ito et al. [8] used this concept to interpret experi{21] for the limit of small solid fraction as:
mental results on semi-solid slurries. After a time-

consuming micrography analysis on many planes,
they managed to give a 3D reconstruction of clusters T.=-y L (3)
resulting from stirring at steady state. They gave an z

estimation of the entrapped liquid fraction and plotted

the measured viscosity versus EVF for slurries solidburing the contact, if a favorable crystallographic
fied under different shear rates. All of the experiorientation is encountered, a rigid neck will be built
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between the two particles (see Fig. 3). We now usaggregation and break-up are collision-induced, the
a result derived in Ref. [15] concerning the growtlcollision frequency influences only the kinetics of
rate of a neck between two solid spherical particlesggregation/break-up but does not influence the equi-
of radiusa, (see Fig. 3). Ifx is the neck radius and librium between these two mechanisms.

7; the neck formation time after collision of the par- In the present study, we deal with “liquid-driven

ticles, ; follows: deformation”. This means that the shear rate is suf-
ficiently high to allow the competition between aggre-
1 /x\® gation and break-up, the deformation being allowed

T = 5A<30> a, ( by the free liquid between the clusters.

From these simple considerations, the probabilities
where A is a constant dependent on thermophysicgi @9gregation and break-up between particles and
properties of the material (see Ref. [11] for mor&lusters of particles will be derived and used to simu-
details). Assuming that the neck builds up during th&ite cluster dynamics.
contact timer,, we havet=t;, leading to an esti-

mation of the neck size: 4. LATTICE MODEL SIMULATION OF CLUSTER
STRUCTURE
1/5_
x:<ﬂ) Yy %ags. (5) In a real system containing=10° particles, one

would have to treat=10° clusters in order to be rep-
resentative of the distribution. This is untractable with
"Yandard computer power. We are interested here in
steady-state interaction, which means a dynamical
equilibrium between cluster aggregation and cluster
fracture. We assume a sort of “ergodic” hypothesis,
namely that in steady state, the size distribution of a
(6) population of clusters at a given time is equivalent to

the size distribution of a given cluster along time. Our

main simplifying approach based on the above
wherep, V, y and AL are the mass density, the vol-hypothesis is in considering only one representative
ume, the shear rate and the size of the cluster in tbﬁjster that can either aggregate with its copy, or can
normal direction of the rupture plane, respectivély. pe broken in a random plane. The time evolution of
has to be compared with the energetic cost of thgis cluster will approximate the ensemble properties
plastic rupture (classically considered to be 1008f the equilibrium semi-solid slurry.

The shear will tend to break the aggregates duri
collision. As collision of two clusters of sizé\L
occurs their mean relative velocity ial(/2)y. Thus,
the kinetic energyE. available for rupture is:
1 V(. AL>2
E.= S PVYIYS )

times larger than the fragile rupture energy [22]):  The cluster is made up of a cubic arrangement of
connected spheres (elementary particles of raaius
Er=nmx*100QA0, (7) 1t is stored in a 3D matrix (cubic lattice), where 0

stands for free liquid, 1 stands for solid and 2 stands
n and Ac being the number of broken necks of sizgor entrapped liquid. The size of the matrix unit cell
x [defined in equation (5)] in the fracture plane ang2a,) is chosen so that the elementary particle is
the energy cost due to liquid/solid surface creatiohipscribed into this cubic unit cell.
respectively.

If yis small, the contact time, is long and necks
will be large. Moreover, the kinetic energy will be The aggregation probability?, per collision is
low, preventing any break-up of the resulting clustefassumed to be the probability for two particles to
This situation will lead to the formation of a rlgld 3D encounter with a favorable Crysta"ographic orien-
network. For largey the contact time is short and thetation. As in Ref. [15], we consider that only a low-
kinetic energy is large enough to prevent any aggreémgle grain boundary<{0.25 rad) will give rise to a
gation. This leads to a dispersed suspension. As ba{Bn-wetted grain boundary, leading ¢g=0.02. This

condition is equivalent to:

4.1. Aggregation

Pa= Qe (8)
ao 4.2. Break-up

The rupture probability per collisio®, should be
a monotonically increasing function of the ratio of the
available kinetic energy over the energetic cost of the
rupture EJE,). At zero kinetic energy it should be
zero, and folE.=E, it should converge to 1. The most
simple form satisfying the above criterion is the sim-
Fig. 3. Neck growth between two solid particles. ple P.=EJE, approximation. A fracture plane is ran-




PEREZet al: SEMI-SOLID ALLOYS UNDER SHEAR 3777

domly chosen. The differential kinetic energy intro- Table 1. Symbols, their meanings and values for Al-6.5 wt% Si
duced in [11] is given by equation (6). The volume
\Y Qf the cluster is taken ase—(s)(Zz.ao)f, with e ands Symbol Meaning
being the number of entrapped liquid voxels and the

number of solid particles in the cluster, respectivelya Constant depending on thermophysical
The energetic cost of the rupture is given by equation Fa_tf_a?“e“:tf_sl(l?ﬂdqm s m) [11]
. - 8y nitial particle raaius
(7) We then have the rupture pI’ObabI|Ity per COIII'D Diffusion coefficient of the solute in the liquid
sion: (5%10°m? s %)
dy, d,, d; Distance between a liquid voxel and the nearest

solid particle in the directionsdx), (Oy), (Oz)

p = E._ 2 pa(%l’s( 25)*2’5x(e+s)(AL/4a0)2v12’5 E, Rupture energy of a cluster
r— g~ EYN . E. Kinetic energy of a cluster
Er 125mAc \2A n e e Number and mean number of entrapped liquid
(9) voxels in a cluster
fe Collision frequency of clusters in a shear field
. . . K Physical constant defined in equation (10)
The fI_I’St group ef terms in equation (9) _d_epends Oon Size of the cluster in the normal direction of the
material propertiesg Ao, A) and the initial state rupture plane
(ao), whereas the second member is calculated at eath™ 3D matrices used to store the cluster
. ) 1] Number of necks in the fracture plane
step of the simulation. P. Aggregation probability
During cluster/cluster collisions, aggregation orP Eregkibn?nllnrfobettwbility icles ¢ o wih
. Oe robability for two particles to encounter wi
rupture may occur. However, most of the time, B favorable crystallographic orientation
neither aggregation nor break-up occurs and the twe R Cluster gyration radius and cluster mean
clusters are left as before. As we deal with the steady _ gyration radius S
. . .. .S S Number and mean number of solid particles in
state there is no need to consider these collisions wi a cluster
no effect. The only parameter is then the reé@igP,: Vv Volume of the cluster (solieentrapped liquid)
X Neck radius
/ s y Shear rate
P, n 125ng.A0 25) Vo Gelation shear rate
2 12/5 2175 Vs ear rate from which no aggregation occurs
Pr (e+s)(AL/4a)) Y 2 pPags \ZA n Viscosity of the suspension
(10) o Viscosity of the liquid (20 mPa s) [8]
p Density (2350 kg m?3)
. . . Grain boundary surface energy (negligible;
Through equation (10), K incorporates the material” Coincidence Site Lattice hypothesis)
properties and the initial state. For an Al—-6.5 wt% Sps. Liqt;id/solid surfadce enel,rgy, é?-lﬁdhﬁrf
alloy with a 50pm globular structure, K5x108s 125 =¢ anton (03 apy @ lauicisold surface
(see Table 1). T Contact time between two particles in a shear
For each step, the one-cluster algorithm randoml field _
¢ Formation time of a neck between two particles
selects a rupture plane and calculates the break-yp Volumic solid fraction
probability (aggregation probability is fixed ). A P Effective volume fraction (EVF)
number is randomly generated between 0 BgeP,: v Maximum packing fraction

e f it ranges between 0 anfd,, fracture is processed

by deleting all solid particles belonging to the rup-
y g p ging p = -

ture plane. One of the resulting clustersisrar g o | H = =& = = ==
domly selected and stored in the matrix M; or els: HE EN EE EEE N Ll
* the cluster is duplicated in a matrix N, randomly (A1) (A2) (A3) (A4)
rotated, and the two matrices, M and N, are the -
aggregated allowing interpenetration.  The Aggregatlon
resulting cluster is stored in the matrix M.
Aggregation and rupture mechanisms are illustrate .= = .= [ [P .=E.,:>.= = .=
in Fig. 4 and a simplified algorithm of the numerical HEM L e [

simulation is shown in Fig. 5. (R1)
The number of solid particles, the number of

entrapped liquid voxelg and the gyration radiuR Rupture
are extracted from the matrix M, leading to the calcu

Iat|9n qf the gffectlve volume fraqtlon- The gyrationgig 4 aggregation process: (A1) initial clustetA2) initial
radius is defined as the mean distance between thester is duplicatee(A3) random rotatioss(A4) sticking of
cluster center of mass and all of its solid particleghe two clusters. Rupture process: (R1) initial clust¢R2)
Averages R 5, @ are calculated over the total sterjandom rotatior»(R3) random selection of a fracture

; [T T : plane—(R4) erasing the particles in the fracture plar&5)
number. Since the mean “lifetime” between two colli random selection of the resulting cluster. Note that the fracture

Sior_]s is assu_med to be independent of the clustgbbability depends on the number of necks to be broken in
radius, there is no need to weight the averages. the fracture plane.

(R2) (R3) (R4) (R5

~
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4»{ Randomly rotate M‘
.

Calculate the break-up and aggregation
probabilities: P, and P,
and select whether breaking or sticking occurs
A A4
9‘3'3“\ 2L%9at, "
Delete the solid particles Copy Mto N
in the breaking plane and rotate Mand N

! !

Select randomly Stick M and N and
one of the resulting puttheresultin M| R = 1.1 R=3.6
clusters, and put itin M . ) o
\/ Fig. 6. Representation of the entrapped liquid (gray) for a 2D
> cluster: the liquid is entrapped if three or four of the principal
For each liquid voxel of M, directions point to any solid particle (black). In the case of two
select whether it is entrapped or not directions pointing to solid particles, the mean distance to the
l solid is compared with the cluster gyration radius.

Calculate the new:
|_| *» mean gyration radius: R 18
* mean solid particle number: s

* mean entrapped liquid particle number: e

Fig. 5. Simulation algorithm: the cluster is storedNhandN
(3D matrices).

One of the crucial points of this simulation is the 5,
evaluation of the entrapped liquid in the cluster :
Indeed, this effect governs the effective volume frac 0 100 200 300 400 500
tion @4 that will be introduced in equation (2) to Step Number
predict the viscosity. It is calculated at each step anglg. 7. Time evolution of the cluster gyration radiwfluctu-
defined as follows: a liquid voxel is entrapped if fourates a lot, but its time evolution is assumed to be representative
or more of its six principal directions (cubic lattice) of the spatial distribution of the clusters.

(Ox, Ox, Oy, -Oy, 0z, -O2) hit any solid particle of
the cluster. If only three directions out of the six point

Gyration Radius (R / 2ao)

. X T . - 0.4
to a solid particle, the liquid is entrapped if the aver g
. . . . -— | —5000 steps
aged distance between the considered liquid vox @ \‘
and the three intersected solid particles is smaller thac—) 0.3 I 500 steps

the cluster gyration radiuB. In other terms, ifd;, d, 8
andd; are the distances between the liquid voxel an § g 0.2 ¢
the nearest solid particle in the three directions corg =
sidered, the liquid is entrappeddf,+d%,+d*,<R% For & 0.1 -
a better understanding, this procedure is visualized &

Fig. 6 for the 2D case. Z 0

5. NUMERICAL VALIDATION Gyration radius

The simulation starts with a cluster constituted oFig. 8. Distribution ofR after various computation steps. Steady
one solid particle. It usually grows until it reaches &tate is reached when distribution fluctuations are less than

large enough size to be broken. A typical time evol- 10%.
ution of the cluster gyration radiu® is shown in Fig.
7 for a shear rate of 500°& Although the gyration 6. RESULTS

radius R fluctuates strongly in time, the distribution

of Ris stable. The numerical convergence is reached The results of the simulation will be presented as
when fluctuations of the distribution are less thaifollows:

10%. Fig. 8 displays the cluster gyration radius distri-

bution after various computation steps. Steady state the 3D cluster shape at different shear rates will
is reached after=5000 steps. be depicted;
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can be accurately described by a “log-normal” law,
frequently encountered in fragmentation problems
(see Ref. [23]). Since these experiments are ensemble
distributions, whereas our simulation deals with time
evolution, this similarity gives some confidence to the
“ergodic”-type hypothesis used herein.

The normalization brings the simulated distribution
for various shear rates to a single master curve. The
size dispersion is then proportional to the mean size
of the clusters: the lower the shear rate, the larger the
mean cluster radius and the larger the size dispersion.
For low shear rate, the cluster can explore either small
and large sizes, whereas for high shear rate, only
small sizes are possible.

In Fig. 10, one can compare the simulated distri-
bution with the mathematical model of Takago al.

[24] often used as a model for aggregation processes.
This model, based on homogeneous coalescence fre-

V=100 s

Fig. 9. Clusters for two different shear rates. Liquid is transquency, gives a normalized size distribution at steady

V=500 s

parent, solid is gray, and entrapped liquid is black. A largegtate These two different approaches lead to compa-
cluster corresponds clearly to a higher entrapped liquid frac: - s . .
tion. fable profiles, giving some confidence into the general

basis of our simulation.

2. the size distribution of clusters for different shea6.3. Mean cluster radius versus shear rate
rates will be plotted and compared with an analyti-
cal model available in the literature,

3. they dependence of the mean radRsf the clus-
ters will be discussed;

4. the parameted./P will be computed as a func-
tion of the shear rate, giving a more precise stru
ture map than the one given in Fig. 2; and

5. finally, the viscosityn will be given as a function
of the shear rate and the solid fraction.

The mean gyration radius values obtained are plot-
ted as a function of the shear rate in Fig. 11. The
mean gyration radiuR decreases with increasing
shear rate following a power lawRecy °7. This
(gependence is comparable with the power law esti-
mated for the compact cluster scenario [1R&y °S.
It can be observed that, above a givigwnly elemen-
tary particles remain and hence there is no further
evolution ofR.

As the physical parameter K depends strongly on
the size of the individual particles, [see equation
(20)], computations are presented for two different

. S reasonable values @,. For the smaller elementary
Fig. 9 shows a cluster of radiwith its entrapped particle size, the clusters are larger at some given

Iquld fqr two qm‘erent shgar rates. For smyglaggre- shear rate and solid fraction.
gation is dominant, leading to a more open structure

6.1. Cluster shape

entrapping more liquid.

6.2. Cluster size distribution

Fig. 10 exhibits normalized radius distributions fo

6.4. Effective volume fraction versus shear rate

r

Fig. 12 displays the calculated rat.,/® as a
function of y for two different elementary particle
sizes. For highy (high enough to break all of the

different shear rates. The size distribution of particles
1.2 1 10 ¢
> . — Takajo » 0
2
17} 1 - \ = 100 =y
> o o
rEY B * .ﬁ - e ° 300 -O m
O gos _"‘F-"An:l-' 4500 SQ
T Q am Ay we c
R S L N
— 3 mA ° . - - 8
= | A o (&) ap =50pum, K=5.10 .
g Z o4 ._;5. ":.,_-_ . é UE: * ay = 100pm, K = 3.107 s
P I A ~
g 0.2 .l.-. E
0 = 0.1 .
0 1 10 100 1000 10000

Gyration radius

Shear Rate (s)

Fig. 10. Gyration radius distribution for 5000 simulation steps-ig. 11. They dependence of the mean gyration radius. For
at various shear rates compared with the mathematical modehigher thany,, the shear breaks the clusters into individual
of Takajoet al. [24]. particles.
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; ; ® in theory, the apparent rigid network will
: ao=5°“’“x'<=5-‘°“7 appear when EVED,: the whole volume of
* 2= 100um, K=3.10 the sample is invaded by a unique clusters
i found to be®-dependent. We can observe that
the simulation leads to a more realistic descrip-
.| tion of the structure (Fig. 13) than in Fig. 2.
\’Ys Indeed, the lower the solid fraction, the higher
—.:m?-—- the liquid fraction involved in the hydrodyn-
i amic flow for some givery and aggregation
state characterized byands.
® |n the intermediate range we have a suspension of
clusters with decreasing size and entrapped liquid

Fig. 12. The ratio®./® as a function ofy for two values of fraction asy increases.
the simulation constant corresponding to two initial particle
sizes. Fory higher thany,, the structure is too small to trap

any liquid.

10 100 10?0 10000
Shear rate (s™)

6.5. Viscosity versus shear rate

necks), there is no entrapped liquid®/®=1). For For the calculation of the viscosity, the entrapped
smally, more connected structures lead to a high fradiquid is taken into account through (a) the mean

tion of entrapped liquid @/ P=2). number of entrapped liquid voxels, end (b) the
In Fig. 13 we can identify the three differentamount of entrapped liquid within a cubic voxel con-
domains introduced in Section 2 (Fig. 2). taining a solid sphere, which depends on the mean

numbern, of solid neighbors of a particle over the
e For highy values &Y.), the dispersed suspension26 possible neighbors in the cubic lattice. The liquid
like behavior is observedy is reached when the fraction within a unit cell is 0.42 (difference between
mean radius of the clusters is equal to the radidbe volume of the cube and that of its inscribed
of the elementary solid particles, that is to sagphere). The viscosity follows:
when the effective volume fraction is equal @@

Note that an approximation gf can be obtained - (1 D) "2%m 1
by makingP, and P, equal in equation (10). We N="o D, ' (11)
find for AI—(_S.S wt% Si With initial particle siz_e & 0.42(m/26)

a,=100 um: y.=1300 s*. This value is clearly in D= 14?—5 ,

accordance with the transition domain of Fig. 12.

° Z(s)trirlr?a\:\tli\éxatlal;es ciy”)eﬁéifignniavgorils;?;rin'mzhci_whereé and s are the mean number of entrapped
anism- Yo d€P 9 liquid sites and the mean number of solid sites in the
o - .. cluster, respectively. With a suspension of hard

* experimentally, the apparent_rlgld network W'"s heres,®,, would have been 0.65, but as we deal
appear when the mean radms of the cluste ith polydisperse and deformable solid particles, it is
reaches the characteristic size of the measures \conto be 1. Indeed. the liquid phase has been
ment  apparatus  (Couette  rheometer, fo|15roved to remain connected for solid fraction up to

example); 0.8

These equations lead to Fig. 14, where viscosity is
plotted versus the solid fraction. The viscosity exhib-

]
[ = 100um
8 - K =3.107
—— 4 H
Fos| & g |
s 2
= . > v
o - ¥ T © 2t -
N A e L] ] =100 |
0 P " 3 — =50 |
1 10 100 1000 10000 g —y=1000
1 0 = . .
Shear Rate (s7) 0 02 04 06 0.8 1

Fig. 13. Suspension structure dependingy@nd . V, is now Solid Fraction

&-dependent, except at low solid fraction where gelatiofrig. 14. Viscosity as a function of the solid fraction for differ-

occurs when a cluster reaches the size of the apparatus gay shear rates. The higher the shear rate, the higher the solid
(left vertical line). fraction leading to gelation.
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its the typical profile of a semi-solid mixture [2]. Theallows us to consider that the aggregation degree of
viscosity increases with the solid fraction until thehe microstructure corresponds to the steady aggre-
solid fraction reaches a threshold value, where thgation degree. The good agreement between simul-
suspension behaves more like a solid than a liquidtion results and experimental results plotted in Fig.
The higher the shear rate, the higher this thresholb tends to validate both the former assumption and
value. the basis of the simulation.

7.3. Particle size distribution
7. COMPARISON WITH REAL MICROSTRUCTURE Fig. 17 plots the simulated distribution master

AND EXPERIMENTAL VISCOSITY MEASUREMENT . . .
curve (see Section 6) and experimental normalized

7.1. 3D microstructure visualization size distributions resulting from microstructure analy-

The advantage of such a simulation is the abiIit)zljti%r?]br-:—)?i?ergzitﬁ;tcel?;ve seems to fit the real distri-

of viewing 3D structures. It is of interest to compare
them with real structures resulting from serial cutting
and micrography analysis made by bal. [8]. Fig. 8. CONCLUSION

15 shows experimental and simulated 3D cluster The structure of semi-solid slurries results from the

structures. The physical parameter K [see equatlocr(])mpetition between aggregation due to surface

(1.0)] has been calculated for_the Al-6.5 % Si allo)forces and break-up induced by the shear field. The
\t’\kl]';? tﬁfrgsgtts?;fﬁg;fég éao:l:;tsa(ﬁ;sn()c)t“g r’;‘g;_ aggregation probability is set to be constant. The
tative of the population Th):JS we. extractedpfrom th preak-up probability is then set fo be proportional to

pop ) ’ the ratio of the available kinetic energy over the rup-

simulation a cluster with comparable size. . .
ture energy. Using a one-cluster algorithm, we sup-

7.2. Viscosity measurement posed that the time evolution of a single cluster

Comparison with experimental viscosity measure-
ment is not an easy task. Viscosity measurements ¢ 1 7 )
usually performed after solidification under shear rat 7/%//7// 2 = 50um, K = 510" 00=0.1
[8]. Both the solidification and the aggregation pro o ’/%5 2 % = 100um, K = 310
cesses take place simultaneously. o Lz > o ¢=0.2

. . . .. 8

In our approach a suspension of dispersed indivic2 .1 00
ual globL_JIar particles is submitted_to she_ar until i@ S (X
reaches its steady state of aggregation. This procedi Q |
decorrelates solidification and aggregation. Howeves T —
the solidification process is assumed to have a slight 0.01
effect than the shear on both the structure and tt ' 100 1000
viscosity. We then compare the simulation result Shear Rate (S'1)

with experimental viscosity measurements performeu
on Al-6.5 wt% Si alloys partially solidified under stir- Fig. 16. Comparison between simulation results and experi-

ring [8]. Those experimental results were obtainefental viscosity measurement of an Al-6.5 wt% Si alloy [8]
a function of the shear rate and solid fraction. Simulation

with a Couette rheometer ar_]d the measurements W‘isgults are spread over a domain limited by two reasonable
performed at steady state, i.e., when the shear strggfies ofa,. This domain contains the experimental steady-

is stable over time. This experimental procedure state measurements.

(@) (b)

Fig. 15. Experimental and simulated cluster structure taken from an Al-6.5 wt% Si semi-solid slurry sheared
at 900 s*. (a) 3D reconstruction extracted from Ref. [8]; (b) simulated withbK1(P.
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