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Short Note
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We consider two external laser beams interfering inside an-GaAs with a nonlinear feedback. In a given parameter region
coexistence of the two unstable periodic domain trains (UPDTs) is found in this system. The UPDT is associated with the
formation of intermittent oscillating current in the circuit. By external periodic driving, a novel resonance is observed in both
inside one UPDT and the switching between the two UPDTs. The signal-to-noise ratio (SNR) as a function of driving amplitude
A is numericaly investigated and the nonmonotonic behavior of the SNR(A) spectrum is observed.
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The light-triggered Gunn-domain structure has recently
made a significant impact in the field of photorefractive semi-
conductors.1) The concept is based on application of a strong
electric field in the region of negative differential conductivity
of multivalley semiconductors and consideration of the spa-
tial modulation due to two external laser beams interfering in-
side semiconductors. In this case multiple high-field domains
and the spatially modulated refractive index, i.e., optical grat-
ing, can be formed simultaneously in the material. If these
two laser beams are under a feedback control, a new insta-
bility which changes the distance between adjacent domains
will appear.2) In simple words, when the distance between
adjacent domains is fixed, there is considered to be a stable
periodic domain train (SPDT) in the material, which corre-
sponds to oscillating current with a fixed frequency around
that of microwaves in the circuit and the wavelength of the
microwaves is constant over time. If the distance between ad-
jacent domains is a function of time, then an unstable periodic
domain train (UPDT) and the intermittent oscillating current
will appear. Therefore, the variation of wavelength of the mi-
crowaves can be periodic or chaotic, which corresponds to
periodic UPDT or chaotic UPDT, respectively. Besides, it is
also interesting to observe that different SPDTs and/or UP-
DTs can coexist under the same physical conditions.

Resonant phenomenon is an interesting and important topic
in dynamical systems. The issue of finding nonlinear reso-
nances is closely related to the optimal control of dynamical
systems.3) In general, there are two different kinds of reso-
nance in nature. One is classical resonance (CR)4) and the
other is stochastic resonance (SR).5) The fundamental differ-
ences between CR and SR are are follows i) When a linear
damped oscillator is subjected to an external periodic force,
the oscillating amplitude or the absorption rate of energy as a
function of external driving frequencyf will display a reso-
nant peak atf = f0, where f0 is the natural frequency of the
linear oscillator. This type of resonance characterized by ex-
ternal driving frequency is called CR. ii) SR is a phenomenon
for bistable systems driven by a stochastic force-field and pe-
riodic modulation. On computing the signal-to-noise ratio
(SNR) for the system’s response to periodic driving as a func-
tion of the stochastic field intensityDst, a characteristic max-
imum is observed. However, it is well known that there are
very strong relationships between deterministic chaos and ex-
ternal periodic modulation. For example, it is possible to find
driven chaos in dynamical systems.6) In other words, periodic
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modulation can induce randomness. Therefore, the general
formulation for SR with the coexistence of two chaotic states
shall be expressed as7)

SNR∝ A2

(Dst + D0)2
exp

[ −δV

(Dst + D0)

]
, (1)

whereA is the modulation amplitude,D0 is the deterministic
noise intensity, andδV is the potential barrier. Thus if there
is no external stochastic force field in the dynamical system,
i.e., Dst = 0, the only free parameter in eq. (1) isA, and
D0 is dependent on the modulation amplitude, i.e.,D0(A).
Therefore we can investigate SNR as a function ofA. Please
note that the physical meaning of eq. (1) is that a very weak
periodic modulation is considered which cannot change the
noise level. Then, SNR shall be proportional toA2, which is
treated as a nonresonant case. However, ifA is sufficiently
large, the relationship betweenD0 andA has no simple form.
It is because the chaotic dynamics can possibly be suppressed
or enhanced by the periodic driving. Therefore, the nonmono-
tonic behavior of SNR(A) spectrum is expected, i.e., resonant
case.

In Fig. 1, the electric circuit feedback generates a nonlin-
ear current function which will tune the incidence anlgle of
the laser beams. The current equation for the electric circuit
feedback is

In[λ(t)] = Ip[λ(t − T )] − Il[dλ(t)/dt], (2)

where Ip is the induced current from the microwave power,
detected by the detector (see Fig. 1),Il is the current loss in

Fig. 1. Proposed experimental setup: the feedback loop consists of a pair
of waveguidesWg, a phase shifter whose fast and slow axes are at 45◦
to a pair of crossed polarizersP, a detectorDe with a time response of
approximately 10 ns, modulation currentm, a delay line with retardation
time T of approximately valuems, and a pair of acustooptic scannersS to
tune the incidence angleα of laser beams. The purpose ofDe is to detect
microwave power and to convert the nonlinear power into electric current.
The phase shifter is used to generate the nonlinear power function.
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the circuit, andIn is the net current for driving a pair of acous-
tooptic scanners which will tune the incidence angle of the
laser beams. Usually,Il is much smaller thanIn and Ip, thus
Il can be neglected in eq. (2). In ref. 2, we show thatIn andIp

are proportional toλ(t) andλ2(t − T ) sin2[π D/λ(t − T )], re-
spectively, whereT is the delay time andD is the length of the
phase shifter. For the convenience of analysis, we treat eq. (2)
as a difference equation, i.e.,λn ≡ λ(t + nT ) and 0< t < T ,
and reduce it to be dimensionless, i.e.,λn/λ0 → λn,

λn = 1 + βλ2
n−1 sin2

(
π D

λ0

1

λn−1

)
. (3)

In the above discrete dynamics formula,β is considered as the
effective microwave power andλ0 is the initial wavelength,
determined by the initial incidence angle of the beams with
no feedback control.

The discrete dynamical system exhibits very rich behaviour
as a function of the two relevant parametersβ and D/λ0.
Choosing their value properly, one, two or several SPDTs,
periodic UPDTs, chaotic UPDTs or a coexistence of these
can be found.2) For our present study, we consider the case
D/λ0 = 2.3 andβ = 0.4 to determine the coexistence of
three PDTs. One is a SPDT and the other two are chaotic
UPDTs via a period-doubling route. In order to study the res-
onant effect, we add now a slow modulation currentIm to the
dynamical system. The new difference equation governing
the dynamics in our systems is

λn = 1 + βλ2
n−1 sin2

(
π D

λ0

1

λn−1

)
+ A cos(2π f n). (4)

The numerically computed SNR is defined as

SNR=
lim� f̄ →0

∫ f +� f̄

f −� f̄
[S( f̄ ) − S0( f̄ )]d f̄

S0( f )

∝ 1

N

S( f ) − S0( f )

S0( f )
≡ R

N
, (5)

where

R = S( f ) − S0( f )

S0( f )
(6)

S0( f̄ ) is the one-sided power spectrum of the noisy back-
ground,S0( f ) is the power of the deterministic noise at the
driving frequency, andS( f̄ ) is the power of the total response.
N = 2p (p = 1, 2 . . . ) is the length of the inputλn series
we investigate.R is the height ratio of net signal power and

Fig. 2. R/N as a function of driving amplitude considering four different
driving frequencies.

noisy power at the driving frequency. In Fig. 2, considering
four different driving frequencies, we plotR/N as a func-
tion of the driving amplitudeA. Two different regimes are
observed. ForA < 0.37, the system is trapped inside one
chaotic UPDT (i.e., inside its own basin), while forA ≥ 0.37
the system can jump between the two chaotic UPDTs. In the
first regime for 0 < A < 0.17, the system is trapped in-
side the first chaotic UPDT (with lower values ofλ) and for
0.37 > A ≥ 0.17 in the second chaotic UPDT. (All state lim-
its are given only with a precision of two decimal digits.) At
the lower driving frequencies (i.e.,f = 0.001 and 0.0001),
we can observe thatR/N exhibits the expected scaling from
eq. (1), i.e.,R/N ∝ A2, when the system is flipping between
the two chaotic UPDTs. It implies thatD0 is not sensitive to
the variation of the driving amplitude at the lower driving fre-
quencies. In other words,D0 in this case can be considered
as a fixed value determined from the original chaotic dynam-
ics. However, when we increasef to 0.1, both a resonant
peak as a function of driving amplitude andR/N ∝ A2 scal-
ing after the appearance of resonant peak occur. Therefore, in
the resonant regime, the intermittent chaos-chaos transition
can be optimally synchronized with the external modulation,
which is much better than the synchronization viaR/N ∝ A2

scaling. Whenf is fixed at 0.01, a clear resonant peak is
observed while the dynamical system is trapped inside one
chaotic UPDT. It is interesting to find thatR/N fast decays
to very small values after the resonant peak. This means that
the periodic signal can be optimally encoded in the chaotic
output. This result can be applied to private communication.

The above results show that the nonmonotonic SNR(A)

spectrum can be obtained in our proposed microwave system.
Not only in the flipping between the two chaotic UPDTs but
also inside one chaotic UPDT, resonant peaks are observed.
To our knowledge, this kind of resonance is unique. We think
that SNR∝ A2 scaling is a very intuitive concept when the
external modulation is applied to the chaotic system. How-
ever, this nonresonant concept is only valid at the lower driv-
ing frequencies in our system, which is demonstrated by our
numerical study. Our results are different from those for CR
and SR. For CR, there is a resonant peak in theS( f ) spectrum
but no characteristic maxmium is observed in theS(A) spec-
trum, which always displays monotonicS ∝ A2 scaling. For
SR, the resonant peak is observed in the SNR(Dst) spectrum
not in the SNR(A) spectrum.
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