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Spatial stochastic resonance in one-dimensional Ising systems
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The one-dimensional Ising model is analytically studied in a spatially periodic and oscillatory external
magnetic field using the transfer-matrix method. For low enough magnetic field intensities the correlation
between the external magnetic field and the response in magnetization presents a maximum for a given
temperature. The phenomenon can be interpreted as a resonance phenomenon induced by the stochastic heat
bath. This “spatial stochastic resonance” is realized in the equilibrium state and not as a dynamical response
to the external time-periodic drivingiS1063-651X%99)50210-9

PACS numbd(s): 05.40—a, 05.20--y, 05.50:+q

[. INTRODUCTION energetically frustrated system &t 0. Spatial SR type ef-
fects have been already reported in one-dimensional chains

Many recent paper$l-9] revealed unequivocally the of coupled SR elements driven by time-periodic signals. The
phenomenon of stochastic resonaf8®) [10] in the kinetic  noise enhanced spatiotemporal synchronization was numeri-
Ising model driven by a temporary oscillating magnetic field.cally demonstrated and discussed for a chain of linearly
SR was anticipated by considering the Ising model as a syssoupled bistable elemen{d1]. Experimental evidence of
tem of coupled two-state oscillators in the stochastic forcesuch behavior was obtained in an array of coupled diode
field of thermal fluctuations. In this sense the system has allesonatord12]. The main difference between these earlier
the ingredients necessary to observe the classical phenorstudies and the present one is that our Hamiltofdaus now
enon of stochastic resonance. time independent. The expected resonancelike phenomenon

In the present paper we intend to study the oneds realized in the equilibrium state and not as a dynamical
dimensional ferromagnetic Ising model in a spatially peri-response to external time-periodic driving.
odic and oscillatoryB(i) magnetic field. We consider
(B(i));i=0 (the brackets denote a special averapiagd Il. METHOD
B(i+\)=B(i). 2\ is the spatial period of the magnetic
field, i the lattice points,i=1,23...,2p\, and p
=1,2,... aninteger.

The Hamiltonian of the system is written as

To give an exact solution for the proposed problem we
choose the most simplest possitiBéi) configuration with
the above imposed properties. We chodg)=B for i
=2n\+1 (n=0,1,2...p—1), B(i)=—B for i=(2n

200 20\ +1)A+1, andB(i)=0 for all other lattice points. We are
H=—3> Si)S(i+1)— B(I)S(i), 1 interested in thgS(1)) average magnetization at the 1
igl (NS(i+1) ’“.21 (1)S(1) @ position from where ther correlation is easily determined.
From the chosen magnetization profile we get
with u the magnetic moment of thg(i)= =1 Ising spins. RS _ n
We impose periodic boundary conditions, tHB&2pA +1) o =(B(1)S(1))=pB{(S(1)) =(S(A +1))). @
=5(1). Themagnetic field is taken stationary in time. From symmetry argument§S(1))=—(S(A+1)), and we

Due to the oscillatory nature of the magnetic field at thecgn write
T=0 thermodynamic temperatutand not to high magnetic
field intensitieg the o=(B(i)S(i)) correlation is greatly re- op=2pB(S(1)). 3
duced.(The brackets in the correlation denotes both a spatial ) .
and ensemble averagdhis is simply understandable real- N order to determingS(1)) we calc+ulate(|)_ the Zop,
izing that the infinite correlation lengfté(0)=2] competes Partition function of the systentji) the Z,,, partition func-
with the finite 2\ period of B(i). At T= the leading sto- tion for S(1)=1 imposed condition, andii) and theZ,
chastic contribution gives=0. We expect that for a given partition function for theS(1)= —1 imposed condition. We
finite temperature thé correlation length will be of the order get the desiredS(1)) value, as
of the \ period ofB(i) and thus ther correlation will reach 7+ 7o
a maximal value. This spatial resonancelike phenomenon is (S(1))= 2P\ T2ph (4)
induced by the stochastic force fieltemperaturg for the Zopy
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During our calculations we use several matrices whose 21
explicit forms are given in the Appendix. Zh=>2 > ... > expjl > S()S(i+1)
32) 5(3) S(2\) =1

lll. L=2N LENGTH CHAIN (p=1)

With the notationsj=J/kT and h=uB/kT (T is the
temperature of the system, akds the Boltzmann constant

the partition functiorz,, is written as [for the = cases we hav&(1)=*1, respectively we per-
form a similar calculation,

+hS(1)—hS()\+1)} (16)

2\
ERPIPIES ex”[j 2, SIS+ +hs(D) =3 3 - (S2VIsds)
—hS()\+1)] ) X(S(2)[16]S(3))- (S| SA+1)

X{S(N+1)[1 _|S(N+2))

X (SN +3)[1g] SN+ 4))- - (S(2x—1)|Io[S(2))),
(17)

(the sums are foB(i)==*1).
We use the transfer-matrix method to calculdg ,
Zo =Tr(S 1y _1572).
Zp=2 2 -2 (SDI.]S(2))

§1) 52) S(2\) The S. matrices are also given in the Appendisee Eq.
(A5)]. Using Eq.(8) we can write
X(S(2)[16S(3)) - (SIS +1) 9=

* _ Apg— 1A
(SO 1)1 _|S(N+2)) Z5=Tr(P.IgM~11p), (18)
X (SN +2)|1o|S(N+3))- - - (S(2h = 1[19|S(2))) P.=l5'S.15". (19
X{S(2\)[1oS(1)) Again, we calculate the trace in the representation whgre

is diagonal and we get
with the |5 and .. matrices given in the Appendisee Eq.

(A1)]. It is now immediately apparent that Z5,=2%"te=Mcosth)[ cost*(j) + sint?(j)]
Zon=Tr(1 131y h (6) 2 sinf(h)sinh(j)cosh(j)}. (20
[where Trd) denotes the trace of thematrix]. Introducing ~ With the obtainedZ;, and Z;, values(S(1)) is easily de-

the M [see Eq(A2)] diagonal matrix we get termined/see Eq(4)] and for theo, [see Eq(3)] correlation
we get finally,

l.=Mly, @)
_B tanh(2h) 2
I-=M""o, (8) . 1 1+tanrf(j)>2'
1+ :
w=MIyM g, (10) IV. L=2pA (p>1) LENGTH CHAIN

In order to be able to make the calculations easily in the

Choosing a representation wheéggbecomes diagonal we get ) o .
9 P beo 9 9 p>1 case we first writ&;, in a more convenient form,

lo=UloU ™", (D Z5 =Tr(PLIAM “U M) =THRLW'), (22
M’=UMU"%, (12) R,=P,M'" 1L (23
W =M'IMM Y, (13)  Is easy to realize that
Zoy=TrH(W') (14) Zop=Zn+Zp=Tr(W), (24)
(theU, I, andM' matrices are also given in the Appendix Zy—Zy =Tr(R'W'). (25

After some elementary algebra one will find o )
For thep>1 case it is immediate that

Z,, =22 costt(h)[cosi(j) -+ sinktPr(j)]

Zyop\= Tr(W'P). (26)
— 2 sintf(h)sinh(j)cosh(j)]}. (15)

Writing up the effective forms ozz?m\ like in thep=1 case,
For Z;, andZ,, one can also show that



RAPID COMMUNICATIONS

PRE 60 SPATIAL STOCHASTIC RESONANCE IN ONE. .. R3465
1 . 1.4 ; ; .
B=2.1 J/|
08 | "
0.6 b
A
v
04
0.2
0 - 0.4 I L L
0 1 2 3 0 05 1 15 2
KT/ uB/J
FIG. 1. Characteristic shape ¢5(1))(T) for three different FIG. 2. T, resonance temperature as a function of the applied

magnetic field intensities «B/k=0.1,1.0,2.1). The continuous magnetic field intensity. We draw the results for two differant
lines are forp=1, the dashed ones far=oc, A =20 (lattice spac-  values ¢ in units of lattice spacing The continuous lines are for
ing) for all curves. p=1, the dashed ones far=cc.

Zopn = TH(RLW'P). (277 =1 cases as well. Th&, resonance temperature depends
- both on theB intensity of the applied magnetic field and the

In the representation wheW' is diagonal it is easy now to characteristia. distance of the spatial oscillations Bfi). In
calculate (S(1)) and o,. Denoting by x; and x, (x1 Fig. 2 we illustrate thél,(B) dependence, and in Fig. 3 the

=y,) the eigenvalues ofV’, after some simple algebra we T:(\) trend. From Fig. 2 we learn that in tie—0 limit the
find T, values are converging to a constéwhich is dependent

on p), and in theuB/J=2 limit T,=0, thus no resonance
Tr(R'W'P) Tr(W') x5— x5 behavior is obtained. Th& (\) variations(Fig. 3) are also
o T o1 o o (28)  the ones expected from our phenomenological consider-
Tr(W'?) VA XB+ X ations. In the limith — o we getT,—0, andT, is monotoni-
o ) cally decreasing with increasingvalues. It is interesting to
A=Tr(W')*—4 detW’), (29 note that for the minimal possibbe value (\=1) the reso-
nancelike behavior is still present but tipe=1 and p=<

0'p:

_Tr(W’) +\A curves are much more distant compared to the largalues
X12= 2 ' B0 Case.
In the limit p— we get the simple formula 3
Tr(W") (31
Ox=01—F—,
V(A

which is easily computable from th&" matrix given in the
Appendix[see Eq.(A6)].

KT /J

V. DISCUSSION

Equationg21) and(31) give us theo=(B(i)S(i)) corre- 1
lations for thep=1 andp=o periodic chains. Ther(T)
correlation is proportional to th€S(1))(T) curves[see Eq.

(3)]. In Fig. 1 we plotted(S(1))(T) for three different ap- B=1.5 Jin
plied magnetic field intensities.

As expected, fouB/J<2 (when the interaction with the 0 - -
external field is weaker than the interaction with the neigh-  © 20 40 60
boring sping a clear resonancelike behavior is obtained. A
Both for p=1 andp=c, (S(1))(T) exhibits a clear maxi- FIG. 3. T, resonance temperature as a function of xhiength
mum at aT,# 0 resonance temperature. It is also observablgin units of lattice spacing We draw the results for two different
that the(S(1))(T) curves forp=1 andp=c« are very close, applied magnetic field intensities. The continuous lines arepfor
thus thep=1 result is qualitatively well describing the =1, the dashed ones far=o0.
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VI. CONCLUSIONS coshth) sinh(h)

In the present paper we studied the response of a one- | sinh(h)  coshh) |’ (A3)
dimensional Ising chain to spatially periodic and oscillatory
magnetic fields. Considering the most simple magnetic field costth)  —sinh(h)
profile we exactly solved the problem by using the transfer- I } (A4)

; i ; sinhth)  costth)

matrix method. We found that the=(B(i)S(i)) correlation
between the applied magnetic field and the local magnetiza- cosh(j) 0 e*2i 1
tion exhibits a maximum for a givem, resonance tempera- =2 0 sink(j)|” S.=e*N 1 eval
ture (Fig. 1). The T, resonance temperature depends mono- D] (A5)
tonically on the\ spatial oscillation length of the magnetic
field (Fig. 3). The value ofT, depends also on tH&intensity (Wi, wi,
of the magnetic field, and becomes independerB af the W' =22\ ; } (AB)
smallB values limit(Fig. 2). For large\ values, the length of [ W21 W3

the chain L=pXx2\) has no major influence on the ob-
served resonancelike behavior. The obtained spatial type SR
is induced by the stochastic heat bath. It is realized in the
equilibrium state and not as a dynamical response to external
time-periodic driving.

w1, = coslf(h)cost(j)—sint?(h)cosh (j)sinh(j)
w},=sinh(h)coshh)sinh(j)[sinh(j) —cosh(j)
wy,=sinh(h)cost{h)cosh(j)[cosh (j)—sinh*(j)]

APPENDIX W4,=coslf(h)sint?(j) —sint?(h)cosh(j)sinh'(j)
e el ei=h  g-izh .
0=| 5 o | Te=| gen en | (AD) il I
e_l e] - e_]‘*' eJ‘*’ Pi—T il 1 f (A?)
" e" 0 y 1[1 1} A2) 0 1 1[ 1 *1
= = — r— ! —
0 efh ) \/E 1 _1 ’ R 1 O ) Ri 2 +1 1 . (A8)
[1] Z. Neda, Phys. Rev. 51, 5315(1995. J. Appl. Phys81, 5597 (1997.
[2] Z. Neda, Phys. Lett. A210, 125(1996. [9] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev.
[3] K.-T. Leung and Z. Neda, Phys. Lett. 246, 505 (1998. Lett. 81, 834(1998.
[4] K.-T. Leung and Z. Neda, Phys. Rev.59, 2730(1999. [10] For review, see, e.g., L. Gammaitoni, P.ridai, P. Jung, and
[5] J. Javier Brey and A. Prados, Phys. Lett2A6, 240(1996. F. Marchesoni, Rev. Mod. PhyZ0, 223 (1998.
[6] L. Schimansky-Geier and U. Siewert, 8tochastic Dynamics  [11] J. F. Lindner, B. K. Meadows, W. L. Ditto, M. E. Inchiosa, and
edited by L. Schimansky-Geier and T.debel, Lecture Notes A. R. Bulsara, Phys. Rev. Leff5, 3 (1999; Phys. Rev. 553,
in Physics Vol. 484(Spinger, Berlin, 199) p. 245. 2081(1996.
[7]U. Siewert and L. Schimansky-Geier, Phys. ReVS& 2843 [15] \ Locher, G. A. Johnson, and E. R. Hunt, Phys. Rev. L%t.
(1998. 4698 (1996.

[8] S. W. Sides, R. A. Ramos, P. A. Rikvold, and M. A. Novotny,



