On the circular hydraulic jump
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We study both experimentally and theoretically the classical problem of the circular hydraulic jump.
By means of elementary hydrodynamics we investigate the scaling laws governing the position of
the hydraulic jump and compare our predictions with experimental data. The results of our simple
model are in good agreement with the experiments and with more elaborate approaches. The
problem can be effectively used for educational purposes, being appropriate both for experimental
investigations and for theoretical application of many fluid mechanics conceptaso®american
Association of Physics Teachers.

[. INTRODUCTION solution of these problems in his theory of shallow water
flows. Since then, a considerable amount of work has been
The hydraulic jump(HJ) following the impact of a liquid devoted to this question both from experimental and theoret-
jet on a plate is a very common example of a free boundarycal viewpoints.
problem in fluid mechanics: It is observable in everyday life Many experimental studies of the HJ have been
as one opens a water tap into a siske Fig. L When the  conducted '3 Olssonet al* investigated the flow profile in
vertical jet hits the horizontal plate, it first spreads out radi-the laminar flow regime, the speed at the free surface of the
ally into a thin layer. At some distance from the jet, however,fluid as a function of the distance from the incidence point of
the height of liquid suddenly jumps to a higher value. Thethe jet, and the radius of the HJ as a function of the charac-
position of this jump is dependent mainly on the rate ofteristic Reynolds number of the flow. Ishigai al® consid-
water flow from the tap. The existence of the hydraulic jumpered the problem from a thermodynamic viewpoint, studying
and the well-defined conditions which must be met at thene dissipated heat in the region of the HJ. Khattaal®
jump are discussed in many fluid dynamics textbotk€@n  stydied the flow in the turbulent regime. Crakal’ used a
the other hand, the physics underlying the radial location ofight absorption technique, and investigated the flow in the
the HJ is less well known and is seldom, if ever, discussed IRegion of the HJ. They also analyzed the scaling lawR af
textbooks. The complex details of flow in the neighborhoody, f,nction of the flow rate and drop height of the incident jet.
of the jump remain a topic of active study. Liu et al® investigated the wavelike instabilities in the re-
The phenomenon presents interest not only from a purely;, o the HJ as a function of the liquid's surface tension,
scientific viewpoint, bup also for techn|c.;al'appl|cat|ons. TheZhd siwos studied the flow in the impact and laminar flow
Luéggtlf,gﬁ:e fgfcn?{giﬁan%r;gstgf f2¥%EUI'gnJ:tmp \(/:virtle?eTﬂze egion of the jet. Very recently two new experimental studies
energy d?fssipation ig the neighborho)c/J%l of thegjump rﬁay pavere reported: Ellegaarel al1%-12 gbserved an interesting
Sransition of the HJ in a high viscosity fluid when the depth

useful for reducing the kinetic energy of the flow. the fluid far away from the jet is controlled; Hansen
The phenomenon presents many interesting aspects oﬁ’% 13 y J ’
al measured the power spectra of surface waves gener-

can investigate both experimentally and theoretically: € X ;
9 P y y ated by an unstable circular jump.

+ the flow profile in the laminar flow region, before the cir-  pyre theoretical studies were performed in Refs. 14—22.
cular HJ occurs Kuriharad® was the first to derive a theoretical scaling law for

* the flow in the turbglent region of t_he HJ R as a function of the relevant physical parameters, but his
* the mechanls_m_whl_ch causes th?‘-‘ Jump results do not agree with experiments. Khaltall® and
et o uncton 50116518 used mumerial methods (0 sove tr difer
h 9 ' ential equations describing the phenomenon. Buevich
ot et al1”!8 proposed an analytic approximation, which pro-
(i) the impact speed of the jet vides a good qualitative description of the phenomenon.
(i)  volume flow rate of the jet Bohr et al 1 performed analytic calculations, using complex
(iii) density and viscosity of the liquid mathematical apparatus, and obtained scaling resul® ifor
(iv) the boundary conditions governed by the size and gevery good agreement with experiments. They also elaborated
ometry of the plate a simple viscous theof§ of free-surface flows in boundary

o layers which yields the structure of the stationary HJ.

* the standing ripples of the free surface around the HJ, anfjgyerg* used a boundary layer approximation and numeri-
their dependence on the surface tension of the liquid. 5] computations to study the flow profile, and obtained re-
It seems that Lord Rayleidlwas the first to attempt a sults in good agreement with the experimental ones.
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Fig. 1. The circular hydraulic jump.

Fig. 2. Schematic experimental setup for studying the influence of the

. . . boundary conditions, flow rat@), and drop heightd) on the radius of the
Recently? he published an asymptotic order-of-magnitude gciar %/ydrau"c jump. ) P helghtd)

description for the structure of a circular laminar HJ.

There are also some studies which consider the problem
both 3from experimental and theoretical viewpoifits?’
Tan?® determines the scaling @t as a function of the im-  zontal basin bottom and in which the faucet can be rotated so
posed flow rate, but his experimental and theoretical resultthe flow column impacts the bottom. For quantitative mea-
are not in agreement. Watsdrapproximates analytically all - surements our basic assumption is in accordance with all
the interesting aspects of the problem, and compares the angrevious studies considering valid the
lytic results with his own experimental data. His approxima-
tion describes the flow profile well, but fails to_match the R qagfy> (1)
scaling ofR as a function of flow rate. Nakaryakb\studies
energy dissipation in the region of the hydraulic jump, get-scajing relation for a given tap with fixed nozzle diameter.
ting theoretical results in goqd agreement with his own eXFormula(l) means that for a given liquid the volume flow
perimental data. Godwifistudied the scaling dRas a func-  rate q and the drop height}, of the incident jet are the most
tion of the liquid’s viscosity, and his theoretical results are injynortant parameters governing tReradius of the HJ. On
good agreement with the experiments and the one given biqe other hand, the most important liquid parameter is the
Bohr et al. In this journal, Blackford rec_ently published a  kinematic viscosity,», while the density seems to play no
new model for the HJ. The depth profile of the flow wasimportant role. We will also check this hypothesis.
solved by computer simulation. Suitably adjusting two free  \ye ysed two experimental setups. Tirst setup(Fig. 2)
parameters the theoretical predictions were found to be ifyas designed to studg as a function of the geometry of the
good agreement with experimental results. However, the imp|ate yolume flow rate, and the height of the incident jet.
portant problem of the scaling law for the radius of the jumpyyater comes out from a tap into a plastic tube and falls on a
as a function of volume flow rate and viscosity was not ad-pjexijglas™ plate whose heighitwith respect to the exit of
dressed. We feel that the readers of this journal would benefthe tpe can be varied. The flow rate of watgris measured
from a discussion of this aspect of the problem. Thus theimply as the amount of liquid falling on the plate. It is
main question we will address in this contribution concermnsshown to be constant and can be regulated from the tap. In
the scaling laws which govern the positiaradiusR) of the  order not to disturb the hydraulic jump, the plates were large
HJ. Our purpose is not to further refine the technical apat least three times the radius of the hydraulic jumpd had
proaches discussed above, but rather to present an elemgpse houndaries. The Plexiglas plate was firmly attached to a
tary fluid mechanics description, accessible to undergraduaignnort in order to prevent any vibrations. Under the plate
students, which captures the main results of the more comgng protected by a glass plate, a sheet of millimetric paper
plicated methods. We will also consider the problem experiyyas inserted, allowing us to measure the radius of the circu-
mentally using a very simple and universally accessible exyar hydraulic jump. Measurements for various flow rates
perimental device. Indeed, this problem provides anyere done, repeatedly increasing or decreasing the volume
excellent introduction for students to fluid-dynamics re-fiqy rate, without any sign of hysteresis. From this reproduc-
search. The experiment, though quite simple, has to be dongjjity we could deduce that the surface state of the plate was
with care. The mathematics of the modeling is straightfor-st changing during the experiments. Téezond experimen-
ward. Moreover, the problem allows one to introduce andg) setup(Fig. 3) was used to study the scaling Bfas a
test the applicability of many basic principles of fluid me- fnction of the densityp and kinematic viscosity of the

chanics. liquid. The liquid in questiorimethyl alcohol, ammonia, oil,
and double-distilled watgiis placed in a reservoir and runs
Il. EXPERIMENTAL SETUP through a vertical tube with a tap, to fall on the horizontal

Plexiglas plate. The liquid is recollected under the plate. The

The experimental setups are very simple and can easily bmeasurements are made using a convenient level of the lig-
used as classroom experiments. Qualitative features of th&d in the reservoir and a convenient drop height. The flow
circular HJ can be determined from experiments in any homeate is previously determined for the chosen configuration.
or laboratory sink in which there is a relatively smooth hori- We use the scaling from the first experiment to rescale the
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Fig. 3. Schematic experimental setup for studying the influence of the ligFig. 4. Experimental results for the variation of the radiuef the HJ as a
uid’s density and Viscosity on the radius of the circular hydrau”c Jump function of the helght of the fa“d) Results for different volume flow rates
C)2

jump on the same andd parameters; thus we can study the B, Influence of the volume flow rate and height of the fall
effects of viscosity and density. The viscosities and densities

of the liquids are taken from physical tables. Figures 4 and 5 show the influence of the volume flow

rate,q, and the drop height, on the position of the hydrau-
lic jump.

From Figs. 4 and 5 we see that the radius of the hydraulic
lll. EXPERIMENTAL RESULTS jump is an increasing function @f. It seems also to increase

The precision of our measurements is influenced mostl$!ightly with increasing drop height, but no definite conclu-

by the width of the jump region and is estimated roughly toSION conceming this latter dependence can be made due to
be 4 mm. the experimental scatter. Neglecting the dependence, on

and fitting together all experimental results as a functioq of
(Fig. 5), we obtain the scaling law:
A. Influence of the geometry and size of the plate R~ 0703 2
The flow rate was fixed atj=38.24 ml/s, and the drop
height atd=42cm. We considered five different plates. C. Influence of liquid density and viscosity
Their characteristic sizes and geometries, together with the
obtained radiiR of the HJ, are presented in Table I.
The horizontality of the plates, and the constancy of th

In order to study this dependence we used four different
ejiquids: double-distilled water, methyl alcohol, automobile

volume flow rate, was verified for each measurement. engine oil(Shel), and ammonia. The relative dynamic vis-

These results suggest that the effect of the size and georfioSity (), relative density ), and relative kinematic vis-

etry of the Plexiglas plate is small, when we use open bound@osity (v;), of these liquids, at room temperature and with
aries. respect to the water, are presented in Table II.

If we used dish-like geometry, however, the height of the
fluid layer after the jump would be increased, and the radius

10—

of the HJ would be appreciably reduced. As revealed by '
recent experiment®~13for high viscosity liquids, stationary ©
polygonal patterns form, breaking the axial symmetry. We 8t
conclude thus, that the boundary conditions on a perfectly
flat plate do not influence the radius of the HJ, but vertical
obstacles imposed on the downstream flow will reduce the £ 6r
value ofR and in some conditions also the circular aspect of e
the HJ can be destroyed. T4 —
Od=27 cm
d=37.8 cm
ol =53.5 cm
Table I. Geometry and sizes of the considered Plexiglas plates. i
|
Geometry of the plate Characteristic sioen) R (cm) 0 0 5'0 1 (')0 1é0
Square 15 5.1 q (ml/s)
Square 20 5.0
Square 30 5.2 Fig. 5. Experimental results for the variation of the radiusf the HJ as a
Disc 10 (radiug 5.1 function of the volume flow ratég). Results for different falling heightsl).
Equilateral triangle 30 4.9 The best fit scaling indekconsidering all the experimental points for dif-
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Table Il. The liquids used, their relative dynamic viscosigy, ), relative

density (p,), and relative kinematic viscosityvf). 3r 1
Liquid My or v, o
~\,
R ~,
oil 880 0.945 931 ol .
Water 1 1 1 . W
Alcohol 0.6 0.8 0.75 & o |
Ammonia 0.155 0.617 0.2512 z .
\\
1 \\ -
\\\ :
We fixed the drop height at=34 cm, and measured both \\ I
the flow rateg, and the radiusR, of the HJ for a given level ‘\\ |
of the liquid in the reservoir. The results are shown in Table 05 0 » p 6 . r
[l
In(v)

By using Eq.(1), we rescaled all the results to a flow rate

of go=60ml/s. The dependence Bfon v, is plotted in Fig.  Fig. 6. Experimental results for the variation of the radiisf the HJ as a
6 function of viscosity shown on a log—log plot. The best fit line indicates the

'As can be seen from Fig. 6, the dependenc&®ain the  scaling index—0.295.
viscosity v, can be nicely fitted by the power law
R~ V:0.295. (3)

The dependence on density does not show a monotonic b
havior and no scaling law could be determined.

flow (one before and the other right after the jumghe
€ondition for conservation of momentum can be written as

dp
L 2_ 2_p. _
IV. THEORETICAL APPROACH gt ~ 2mReHVI=2mRphvE=F, —Fs, @
Many attempts have been made in the literature to deriva&vhere
the scaling laws for the radiuR of the circular hydraulic N
jump as a function of the physical parameters governingthe g _o>. R f X dx= RH2
phenomenon?-1921-26 1memRee pOTRIT
Due to the fact that most current theoretical works are very (5)
technical, and thus inaccessible to nonspecialists, one aimof - _, o ngx dx=pgmRH?
our paper is to approach the phenomenon on the level of 2 p 0 P '
elementary fluid dynamics. o .
In the following we will present some simple theoretical We make the simplifying assumption

approaches to the phenomenon. First we will present the h<H 6)
theory of the circular hydraulic jump for ideal fluids, and '
then consider the real problem of viscous fluids. which by the continuity equation

Although our derivation will remain mostly on the level of _
elementary hydrodynamics, our results are in good agree- 2mRvh=27RVH, 7
ment with all the accepted ones. leads us to
A. Ideal fluids V<v. €))

rate,u the speed, and the diameter of the jet at the contact

point with the horizontal plateh, v, andH, V the height and pvh~3pgH?. 9
speed of the liquid layer just before and after the hydraulic
jump, respectively. We denote the density of the liquidoby
the gravitational acceleration lgy and the radius of the hy-
draulic jump byR.

With ideal (nonviscous fluids, we will have no velocity
gradient inside the liquid layer in the vertical direction. In the
neighborhood oR, if we take two cylindrical sections of the

Table Ill. Measured volume flow ratg and radiusR of the HJ for the
considered liquids.d=34 cm).

Liquid g (ml/s) R (cm)
Qil 57 1
Water 60 7.4
Alcohol 48 7.1
Ammonia 37 8.8

Fig. 7. Notation for the ideal fluid approximation.
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An elementary application of Bernoulli's theorem showsin a laminar fashion as though it were nonviscous, except for
that the radial velocity of the liquid before the hydraulic a boundary layer near the surface of the plate. The thickness
jump is uniformly equal to the velocity= y2gd of the in-  of this boundary layer can be shown to be approximately
cident jet:

vr vr
vV=u. (10) o=\—= (18)

Vo J2gd’

The flow inside the boundary layer can be described as a

From (10) and the mass conservation equations,

ST, viscous laminar flow, and the flow above it as a laminar flow
2mRvh=za‘u=q, AD  with velocity vo. Godwirf® conjectured that the HJ occurs
when the boundary layer reaches the total height of the fluid
we get film and obtained good agreement with experiments for the
4q viscosity dependence of the jump radius.
V=32 (12 Our first two approaches are based on Godwin’s conjec-
ture. We will show that not only the right viscosity depen-
q a® dence, but also a good approximation of the dependence on
h= 27RV _8R’ (13)  volume flow rate, can be achieved. In our last approach we

_ _ _ _ will go even further and show that one can derive the same
Inserting these in the approximate relati@, we get the  scaling law by analyzing the stability of the flow after the

radius of the hydraulic jump: boundary layer is fully developee., reaches the fluid film
492 surfacg. Using an analogy with flow in a diverging channel,
R= i (14  we identify the HJ with the instability that can appear in such
m a‘gH cases.

The diameteia is determined by the volume flow rate,
the nozzle diameteA, of the tap, and the drop heiglt, By )
using the continuity equation inside the vertical jet and con-1- First approach

sidering the acceleration of the liquid in the jetgsve get This theory is a very simple one and it is a first generali-

mlgd 1\ "V zation of formula(14) to viscous flows. Making the approxi-
B8 A% (15  mation that the boundary layer is a very small part of the

q liquid film thickness right upto the HJ, we use the nonvis-
We should mention here that for real viscous fluids the aboveous result and formuléd), writing
formula has proved to be inadequateyt it is justified in our 2

. X X R . . 4q

nonviscous fluid approximation. For small heights and high r— ' (19)
volume flow rates §d/q?<1/A%), the a~A approximation 2m%a?vh

is sufficient; however, this limit is not always applicable in\yherevis the average fluid velocity at the given radius. We
typical experimental conditions. Accepting formylis) with haveV=v, close to the impact point of the jet, andis

the above remarks, finally we get always smaller thaw, as the boundary layer develops. In

a—=

5 [m%gd 1 particular, at the site of the jump we will always have
4q 82 * A <vg, and replacing by vg, (19 will give us a lower bound
R= e (16)  for R
2
This very first theoretical description already gives inter- R>%. (20)
esting results. We see that the radius of the jump is strongly 2mvgh

dependent on the jet’s volume flow ratg,and the imposed
downstream boundary conditions which influetteThe ra-
dius depends slightly on the heightnd it is independent of
the density of the liquid.

This is an inequality, but one can still hope that the scaling
relationship we are looking for will be preserved. Using Eq.
(12) we can now write:

2

Neglecting the viscosity is of course a rough approxima- q q
tion. In the following, by means of elementary fluid dynam- ~ R> 2 T omvh’ (21)
ics we will try to approach also the realistic case of viscous —2mvh
liquids. 4
Following Godwin’s conjecture about the position of the HJ,

. . R

B. Viscous fluids h= = (22)
0

We will present three approaches to the problem, of dif- ) .
ferent levels of complexity, all leading to the same scalingVe get immediately
law of R as a function of the relevant physical parameters. —1/4\ 2/3
The physical picture underlying our approximation is the one R>(2W4— q?3d Y6, (23
proposed by Godwif® and it is based on the important role m
played by the viscous boundary lay&rwhat happens at Assuming that this inequality has the same scaling as the

smallr is that the jet spreads sideways with a velocity: original equality, we have
vo=12gd 17 R~q?%d 16y~ 13, (24)
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Vo q=27-rrf0hv(x)dx, 29
?W to yield:

5 3q
gé% R V(X)= ——3(2hx—x?) . (30)
? 47rh

b. Flow profile in a viscous free-surface laminar flow with
SIT cylindrical symmetry. In order to get the flow profiléa(r),
we now study the energy balance. The energy dissipation in
a volume element situated betweeandr +dr with height
1 betweenx andx+dx can be expressed both as the dissipa-
tion associated with viscosity and as the divergence of the
kinetic energy fluxJ. The energy dissipation rate in our vol-
ume element can be written as

AW
MW
A,

Fig. 8. Notation for the viscous fluid approximation.

o av\?

2. Second approach d Wd_(zw’“)r(a_x) dx dr. (3D
This is a more accurate approximation, although the hy-The kinetic energy flux flowing into our volume element is

drodynamics involved is still elementary. It is also based orgiven by

Godwin’s conjecture and gives the same scaling law for the dJ= 7prv(x)2v(x)dx (32)

position of the jump as our previous approximation. In con- P :

trast with the first approach considered, we now get an equal- Integrating the quantities in Eqé31) and (32) gives the

ity for R, which is more useful than the lower bof2B). dissipation ratedW, betweenr andr+dr, and the kinetic
The outline of our method is the following: energy fluxJ(r) through a cylindrical surface of heightr)

« We determine the velocity profie(x,h), and flow profile ~ and radius, respectively,

h(r), in a viscous laminar flow where the boundary layer h(dv\?2 3 po?
is fully developed(The velocity profile will be needed in dWy=2mu)r drf (d_ dx= pye thr, (33
order to determine the flow profile o\ ax ™
* We use Godwin's conjecture and identifg from the h 27 pq?
h(R) = & equality, presuming that the shape of the bound- J= fo dJ= 12072 12" (34

ary layer evolution is continuous &
a. Velocity profile in a viscous free surface laminar flow  The energy balance relation id(r +dr)—J(r)+dW,
with cylindrical symmetry. The problem has cylindrical _q \yhich leads to
symmetry and thus the current position in the plane of im- '
pact will be given by the distanaeto the impact point. The dJ dwy
notation used in the model is shown in Fig. 8. We will de- mJ’ dar (39)
note the velocity profile by (x), the height of liquid at a
distancer from the impact position by(r), and the volume
flow rate byq.
For a real fluid the velocity profile of a free-surface flow is h ( h' 1

generally self-similar, i.e., satisfying the condition: Tt F) =b, (36)

Performing the differentiation if35) leads to the analyti-
cally solvable differential equation

X
v(x)zv(h)f(H : (25  Where
357
In the above equation the value lotan ber dependent, but b= 959 (37)
the form of the functiorf is independent of. The velocity ra
profile must also satisfy the boundary conditions: The solution of the above equation is
v(0)=0, 26 b C
©) 29 h(r)=-r2+—, (39
dv 3 r
dx h: @7 with C an integration constant.

) o N Let us underline two important facts:
There are of course many functions satisfying the conditionsg As we alreadv mentioned. the quadratic form of the veloc-
(25—(27), and we will consider in the following the simplest y ’ d

possible one, which is a second-order polynomial in the vari- ity profile was chosen somewhat arbitrarily. There are
many possible functions satisfying the imposed boundary

ablex/h: conditions and Eq(25). One can just presume that the
x [x\?2 chosen form approximates the reality. If we use the same
v(x)=v(h) 2e=g] | (28) (26)—(27) assumption fof and now make use of the mo-

mentum conservation principle to determine the flow pro-
The flow speed at the free surfagéh) can be found by file we would get the same differential equati8b), but
inserting(28) in the continuity equation the coefficienb would differ by a factor of 54/35 from the
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one obtained by our energetic arguments. This difference 279~ 14\ 23
is a sign that the functiohis not really parabolic; however ry= (W) q?Rd ey 1R (44)
we think it is an acceptable first approximation.
« In writing the energy baland@5), we have neglected both ~ Knowing C, we have the flow profilé€38), which appears
the gravitational potential energy and the surface tensioto be like the one in a convergent, then divergent, channel.
contributions. Neglecting the surface tension in the laminatWhen the channel is convergent, the flow is stable. When the
flow regime is acceptable due to the fact that the height ofhannel is diverging, instabilities can appear. Given that in
the fluid layer is much smaller than the average radius ofhe region where we would expect the hydraulic jump the
curvature of the free surface. Were we to consider detailflow profile is divergent, it seems reasonable to think that the
in the free surface as the standing ripples around the hyappearance of these instabilities corresponds to the hydraulic
draulic jump, we would have certainly to take into accountjump.
those capillarity effects. As far as gravitational effects are Itis known from the literatur€ that for a flow in a diverg-
concerned, they are certainly negligible in the laminar flowing channel instabilities might appear when the Reynolds
regime since the height of the liquid layer varies slowly. number, Re, exceeds a critical value,;R€6), which is de-
However, those effects are likely to be important bothpendent on the angle of the diverging channel. In the limit
close to the impact point, and to determine the height and— 0, Re,,,=K/6 (K a real number and the condition for

shape of the hydraulic jump. getting instabilities becomes:
c. The radius of the HJ.As we already emphasized, the
Red>K. (45

jump radius will be obtained from thie(R) = §(R) equality.
A problem which arises here is the for®8) of h(R) which ~ The K number is known for a flow between two diverging
contains an undermined integration const@htHowever, in plates?® but this value should certainly not be used in our
the jump region the second term (88) is supposed to be free surface flow(which looks like half of the flow between
smaller than the first one, and as a first approximation ithe two plateswith cylindrical symmetry. We will thus treat

might be neglected. One thus gets K as an undetermined number.
The use of the#— 0 limit is totally justified since the flow
9R2= Rv (39) profile is very slowly varying in the laminar flow regime.
3 J2ad’ Adapting this criterion to our situation:
. h(v
which leads to Re— v)_ g | 46
27g~ 14\ 213 a6 1 v 27y
R= 2174357T> a7 (40 dh 2br C
L _ _ 0=t9(0)= =73 12 (47)
The scaling is in agreement with the previous approach, and r r
we obtain a good numerical estimate for the radius of thg@eads to the condition:
jump as well(see the discussion part
q (2br C 48
2arvl 3127 48
3. Third approach The radius of the hydraulic jump can now be identified as

the smallest value af satisfying the conditior{48), and we

The drawbacks of the previous two approaches were thaa: the equation

we used an unproved conjecture regarding the condition fo
the jump. With this third approach, we intend to determine 35 qC
the scaling ofR as a function ofd, g, v, andq from basic 27 27vR°

principles of hydrodynamics, without using Godwin’s con- . .
jecture. We will only presume that the HJ occurs after thel®' the radiusR, of the hydraulic jump. In the above equa-

boundary layer reaches the free surface. We use the flow)n’ K being thg only undetermined constant, using the value
profile given by Eq(38). Because we assumed that the HJ is43) for C we will get the scaling law

after the point £,) where the boundary layer is fully devel- R~q%3d 16,13, (50)
oped, the constar€ in (38) can be determined by imposing
smooth evolution of the boundary layer rgf. This means
that both theh(r) and &(r) functions and their derivatives
must match at:

(49

This is exactly the scaling law obtained in our previous
approximations. One can also realize that theadius(44)
has the same scaling properties, which explains why God-
win’s conjecture works well.

Vro b 2 C
0=\ 7gg 3" r, Mo (4D v. DISCUSSION

We now compare our experimental and theoretical results,

do(ro) _ l vo_ 2b _ E_ dh(ro) 42 and discuss them in connection with earlier results in the
= =5l 2= . (42 ¢

dr 2 Vy,/2gd 3 ro dr literature.

Our experimental results are in good agreement with those

It is straightforward to determine the valuesrgfand C: in the literature. The scaling law fd® as a function of the
27 flow rate(2), the weak dependence as a function of the drop
C= qg Y212 (43) height,d, and the independence Bfon the geometry of the
140mv2 horizontal plate, confirm the results of Watéband Craik
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Table IV. The scaling exponents for the radius of the HJ obtained by our approximations, the ones accepted in
the literature, and the experimentally obtained ones.

Physical quantity Exponent Our theory Bodir al. Godwin Our experiment
Flow rate(q) a 2/3 5/8 0.703
Height (d) B -1/6 0 B ~0
Viscosity (v) y -1/3 —-3/8 —-1/3 —0.295

et al.” The scaling of the jump radius as a function of thereconsider the theoretical part of the paper by offering a nice

viscosity is in agreement with the results obtained byalternative to our originally proposed theoretical attempt. We

Godwin?® also wish to thank Dr. J. Dushoff for carefully reading the
The theoretical resultél6) obtained using the ideal fluid manuscript and for his valuable comments.

approximation are only qualitatively confirmed by experi-

ments. The strong dependenceRbn the flow rateg, and
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of Ras a function ofj (1) is different from the one indicated 25 \hitaker, “Hydraulic jump,” in Introduction to Fluid Mechanics

in (16), which would suggest roughly a quadratic law. The (Prentice—Hall, Englewood Cliffs, NJ, 195&p. 382—385.

dependence oR on H, which is governed by the boundary 3Lord Rayleigh, “On the theory of long waves and bores,” Proc. R. Soc.

conditions imposed on the downstream flow, are partially London, Ser. A0, 324-328(1914. _ o
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A NEW ANGLE ON RELATIVITY THEORY

Homework questianCharlie has just caught a lake trout 20 inches long. Zipping by in her motor
boat, the game warden sees the fish as 12 inches long. Uh-oh! The minimum legal length is 16
inches.

(a) How fast was the game warden going?

(b) Will Charlie have to pay a fine? Briefly, why?

Catherine’s answers.
(a) v=0.8c.

(b) Charlie will not pay a fine because as soon as he is done measuring the fish, he will proudly
hold it perpendicular for his wife to take a photograph, where upon the warden will see she was
mistaken.

Wesleyan University, Spring 1998.
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