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We study both experimentally and theoretically the classical problem of the circular hydraulic jump.
By means of elementary hydrodynamics we investigate the scaling laws governing the position of
the hydraulic jump and compare our predictions with experimental data. The results of our simple
model are in good agreement with the experiments and with more elaborate approaches. The
problem can be effectively used for educational purposes, being appropriate both for experimental
investigations and for theoretical application of many fluid mechanics concepts. ©1999 American

Association of Physics Teachers.
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I. INTRODUCTION

The hydraulic jump~HJ! following the impact of a liquid
jet on a plate is a very common example of a free bound
problem in fluid mechanics: It is observable in everyday l
as one opens a water tap into a sink~see Fig. 1!. When the
vertical jet hits the horizontal plate, it first spreads out ra
ally into a thin layer. At some distance from the jet, howev
the height of liquid suddenly jumps to a higher value. T
position of this jump is dependent mainly on the rate
water flow from the tap. The existence of the hydraulic jum
and the well-defined conditions which must be met at
jump are discussed in many fluid dynamics textbooks.1,2 On
the other hand, the physics underlying the radial location
the HJ is less well known and is seldom, if ever, discusse
textbooks. The complex details of flow in the neighborho
of the jump remain a topic of active study.

The phenomenon presents interest not only from a pu
scientific viewpoint, but also for technical applications. T
turbulence accompanying the hydraulic jump can be u
effectively for mixing fluids or for oxygenating water. Th
energy dissipation in the neighborhood of the jump may
useful for reducing the kinetic energy of the flow.

The phenomenon presents many interesting aspects
can investigate both experimentally and theoretically:

• the flow profile in the laminar flow region, before the ci
cular HJ occurs

• the flow in the turbulent region of the HJ
• the mechanism which causes the jump
• the energy dissipation in the region of the HJ
• the scaling of the radiusR of the circular HJ, as a function

of:

~i! the impact speed of the jet
~ii ! volume flow rate of the jet
~iii ! density and viscosity of the liquid
~iv! the boundary conditions governed by the size and

ometry of the plate

• the standing ripples of the free surface around the HJ,
their dependence on the surface tension of the liquid.

It seems that Lord Rayleigh3 was the first to attempt a
723 Am. J. Phys.67 ~8!, August 1999
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solution of these problems in his theory of shallow wa
flows. Since then, a considerable amount of work has b
devoted to this question both from experimental and theo
ical viewpoints.

Many experimental studies of the HJ have be
conducted.4–13 Olssonet al.4 investigated the flow profile in
the laminar flow regime, the speed at the free surface of
fluid as a function of the distance from the incidence point
the jet, and the radius of the HJ as a function of the char
teristic Reynolds number of the flow. Ishigaiet al.5 consid-
ered the problem from a thermodynamic viewpoint, study
the dissipated heat in the region of the HJ. Khalifaet al.6

studied the flow in the turbulent regime. Craiket al.7 used a
light absorption technique, and investigated the flow in
region of the HJ. They also analyzed the scaling laws ofR as
a function of the flow rate and drop height of the incident j
Liu et al.8 investigated the wavelike instabilities in the r
gion of the HJ as a function of the liquid’s surface tensio
and Siwon9 studied the flow in the impact and laminar flo
region of the jet. Very recently two new experimental stud
were reported: Ellegaardet al.10–12 observed an interesting
transition of the HJ in a high viscosity fluid when the dep
of the fluid far away from the jet is controlled; Hanse
et al.13 measured the power spectra of surface waves ge
ated by an unstable circular jump.

Pure theoretical studies were performed in Refs. 14–
Kurihara14 was the first to derive a theoretical scaling law f
R as a function of the relevant physical parameters, but
results do not agree with experiments. Khalifaet al.15 and
Bowles et al.16 used numerical methods to solve the diffe
ential equations describing the phenomenon. Buev
et al.17,18 proposed an analytic approximation, which pr
vides a good qualitative description of the phenomen
Bohr et al.19 performed analytic calculations, using comple
mathematical apparatus, and obtained scaling results forR in
very good agreement with experiments. They also elabora
a simple viscous theory20 of free-surface flows in boundar
layers which yields the structure of the stationary H
Higuera21 used a boundary layer approximation and nume
cal computations to study the flow profile, and obtained
sults in good agreement with the experimental on
723© 1999 American Association of Physics Teachers
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Recently22 he published an asymptotic order-of-magnitu
description for the structure of a circular laminar HJ.

There are also some studies which consider the prob
both from experimental and theoretical viewpoints.23–27

Tani23 determines the scaling ofR as a function of the im-
posed flow rate, but his experimental and theoretical res
are not in agreement. Watson24 approximates analytically al
the interesting aspects of the problem, and compares the
lytic results with his own experimental data. His approxim
tion describes the flow profile well, but fails to match th
scaling ofR as a function of flow rate. Nakaryakov25 studies
energy dissipation in the region of the hydraulic jump, g
ting theoretical results in good agreement with his own
perimental data. Godwin26 studied the scaling ofR as a func-
tion of the liquid’s viscosity, and his theoretical results are
good agreement with the experiments and the one given
Bohr et al. In this journal, Blackford27 recently published a
new model for the HJ. The depth profile of the flow w
solved by computer simulation. Suitably adjusting two fr
parameters the theoretical predictions were found to be
good agreement with experimental results. However, the
portant problem of the scaling law for the radius of the jum
as a function of volume flow rate and viscosity was not a
dressed. We feel that the readers of this journal would ben
from a discussion of this aspect of the problem. Thus
main question we will address in this contribution conce
the scaling laws which govern the position~radiusR! of the
HJ. Our purpose is not to further refine the technical
proaches discussed above, but rather to present an ele
tary fluid mechanics description, accessible to undergrad
students, which captures the main results of the more c
plicated methods. We will also consider the problem exp
mentally using a very simple and universally accessible
perimental device. Indeed, this problem provides
excellent introduction for students to fluid-dynamics r
search. The experiment, though quite simple, has to be d
with care. The mathematics of the modeling is straightf
ward. Moreover, the problem allows one to introduce a
test the applicability of many basic principles of fluid m
chanics.

II. EXPERIMENTAL SETUP

The experimental setups are very simple and can easil
used as classroom experiments. Qualitative features of
circular HJ can be determined from experiments in any ho
or laboratory sink in which there is a relatively smooth ho

Fig. 1. The circular hydraulic jump.
724 Am. J. Phys., Vol. 67, No. 8, August 1999
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zontal basin bottom and in which the faucet can be rotated
the flow column impacts the bottom. For quantitative me
surements our basic assumption is in accordance with
previous studies considering valid the

R;qadbng ~1!

scaling relation for a given tap with fixed nozzle diamet
Formula ~1! means that for a given liquid the volume flo
rate,q, and the drop height,d, of the incident jet are the mos
important parameters governing theR radius of the HJ. On
the other hand, the most important liquid parameter is
kinematic viscosity,n, while the density seems to play n
important role. We will also check this hypothesis.

We used two experimental setups. Thefirst setup~Fig. 2!
was designed to studyR as a function of the geometry of th
plate, volume flow rate, and the height of the incident j
Water comes out from a tap into a plastic tube and falls o
Plexiglas™ plate whose heightd with respect to the exit of
the tube can be varied. The flow rate of water,q, is measured
simply as the amount of liquid falling on the plate. It
shown to be constant and can be regulated from the tap
order not to disturb the hydraulic jump, the plates were la
~at least three times the radius of the hydraulic jump! and had
free boundaries. The Plexiglas plate was firmly attached
support in order to prevent any vibrations. Under the pl
and protected by a glass plate, a sheet of millimetric pa
was inserted, allowing us to measure the radius of the cir
lar hydraulic jump. Measurements for various flow rat
were done, repeatedly increasing or decreasing the vol
flow rate, without any sign of hysteresis. From this reprod
ibility we could deduce that the surface state of the plate w
not changing during the experiments. Thesecond experimen
tal setup~Fig. 3! was used to study the scaling ofR as a
function of the densityr and kinematic viscosityn of the
liquid. The liquid in question~methyl alcohol, ammonia, oil,
and double-distilled water! is placed in a reservoir and run
through a vertical tube with a tap, to fall on the horizon
Plexiglas plate. The liquid is recollected under the plate. T
measurements are made using a convenient level of the
uid in the reservoir and a convenient drop height. The fl
rate is previously determined for the chosen configurati
We use the scaling from the first experiment to rescale

Fig. 2. Schematic experimental setup for studying the influence of
boundary conditions, flow rate~q!, and drop height~d! on the radius of the
circular hydraulic jump.
724Y. Brechet and Z. Ne´da
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jump on the sameq andd parameters; thus we can study t
effects of viscosity and density. The viscosities and densi
of the liquids are taken from physical tables.

III. EXPERIMENTAL RESULTS

The precision of our measurements is influenced mo
by the width of the jump region and is estimated roughly
be 4 mm.

A. Influence of the geometry and size of the plate

The flow rate was fixed atq538.24 ml/s, and the drop
height at d542 cm. We considered five different plate
Their characteristic sizes and geometries, together with
obtained radiiR of the HJ, are presented in Table I.

The horizontality of the plates, and the constancy of
volume flow rate, was verified for each measurement.

These results suggest that the effect of the size and ge
etry of the Plexiglas plate is small, when we use open bou
aries.

If we used dish-like geometry, however, the height of t
fluid layer after the jump would be increased, and the rad
of the HJ would be appreciably reduced. As revealed
recent experiments,10–13for high viscosity liquids, stationary
polygonal patterns form, breaking the axial symmetry. W
conclude thus, that the boundary conditions on a perfe
flat plate do not influence the radius of the HJ, but verti
obstacles imposed on the downstream flow will reduce
value ofR and in some conditions also the circular aspect
the HJ can be destroyed.

Fig. 3. Schematic experimental setup for studying the influence of the
uid’s density and viscosity on the radius of the circular hydraulic jump.

Table I. Geometry and sizes of the considered Plexiglas plates.

Geometry of the plate Characteristic size~cm! R ~cm!

Square 15 5.1
Square 20 5.0
Square 30 5.2
Disc 10 ~radius! 5.1
Equilateral triangle 30 4.9
725 Am. J. Phys., Vol. 67, No. 8, August 1999
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B. Influence of the volume flow rate and height of the fall

Figures 4 and 5 show the influence of the volume flo
rate,q, and the drop height,d, on the position of the hydrau
lic jump.

From Figs. 4 and 5 we see that the radius of the hydra
jump is an increasing function ofq. It seems also to increas
slightly with increasing drop height, but no definite concl
sion concerning this latter dependence can be made du
the experimental scatter. Neglecting the dependence od,
and fitting together all experimental results as a function oq
~Fig. 5!, we obtain the scaling law:

R;q0.703. ~2!

C. Influence of liquid density and viscosity

In order to study this dependence we used four differ
liquids: double-distilled water, methyl alcohol, automob
engine oil~Shell!, and ammonia. The relative dynamic vi
cosity (m r), relative density (r r), and relative kinematic vis-
cosity (n r), of these liquids, at room temperature and w
respect to the water, are presented in Table II.

-Fig. 4. Experimental results for the variation of the radiusR of the HJ as a
function of the height of the fall~d!. Results for different volume flow rates
~q!.

Fig. 5. Experimental results for the variation of the radiusR of the HJ as a
function of the volume flow rate~q!. Results for different falling heights~d!.
The best fit scaling index@considering all the experimental points for dif
ferent ~d! values# is 0.703. The fit is indicated by the continuous curve.
725Y. Brechet and Z. Ne´da
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We fixed the drop height atd534 cm, and measured bot
the flow rate,q, and the radius,R, of the HJ for a given level
of the liquid in the reservoir. The results are shown in Ta
III.

By using Eq.~1!, we rescaled all the results to a flow ra
of q0560 ml/s. The dependence ofR on n r is plotted in Fig.
6.

As can be seen from Fig. 6, the dependence ofR on the
viscosityn r can be nicely fitted by the power law

R;n r
20.295. ~3!

The dependence on density does not show a monotonic
havior and no scaling law could be determined.

IV. THEORETICAL APPROACH

Many attempts have been made in the literature to de
the scaling laws for the radiusR of the circular hydraulic
jump as a function of the physical parameters governing
phenomenon.14–19,21–26

Due to the fact that most current theoretical works are v
technical, and thus inaccessible to nonspecialists, one ai
our paper is to approach the phenomenon on the leve
elementary fluid dynamics.

In the following we will present some simple theoretic
approaches to the phenomenon. First we will present
theory of the circular hydraulic jump for ideal fluids, an
then consider the real problem of viscous fluids.

Although our derivation will remain mostly on the level o
elementary hydrodynamics, our results are in good ag
ment with all the accepted ones.

A. Ideal fluids

Our notation is outlined in Fig. 7:q is the volume flow
rate,u the speed, anda the diameter of the jet at the conta
point with the horizontal plate,h, v, andH, V the height and
speed of the liquid layer just before and after the hydrau
jump, respectively. We denote the density of the liquid byr,
the gravitational acceleration byg, and the radius of the hy
draulic jump byR.

With ideal ~nonviscous! fluids, we will have no velocity
gradient inside the liquid layer in the vertical direction. In t
neighborhood ofR, if we take two cylindrical sections of the

Table III. Measured volume flow rateq and radiusR of the HJ for the
considered liquids. (d534 cm).

Liquid q ~ml/s! R ~cm!

Oil 57 1
Water 60 7.4
Alcohol 48 7.1
Ammonia 37 8.8

Table II. The liquids used, their relative dynamic viscosity (m r), relative
density (r r), and relative kinematic viscosity (n r).

Liquid m r r r n r

Oil 880 0.945 931
Water 1 1 1
Alcohol 0.6 0.8 0.75
Ammonia 0.155 0.617 0.2512
726 Am. J. Phys., Vol. 67, No. 8, August 1999
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flow ~one before and the other right after the jump!, the
condition for conservation of momentum can be written a

dp

dt
52pRrHV222pRrhv25F12F2 , ~4!

where

F152pRrgE
0

h

x dx5rgpRh2,

~5!

F252pRrgE
0

H

x dx5rgpRH2.

We make the simplifying assumption

h!H, ~6!

which by the continuity equation

2pRvh52pRVH, ~7!

leads us to

V!v. ~8!

Accepting~6! and ~8!, momentum conservation~4! gives

rv2h' 1
2rgH2. ~9!

Fig. 6. Experimental results for the variation of the radiusR of the HJ as a
function of viscosity shown on a log–log plot. The best fit line indicates
scaling index20.295.

Fig. 7. Notation for the ideal fluid approximation.
726Y. Brechet and Z. Ne´da
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An elementary application of Bernoulli’s theorem show
that the radial velocity of the liquid before the hydrau
jump is uniformly equal to the velocityu5A2gd of the in-
cident jet:

v5u. ~10!

From ~10! and the mass conservation equations,

2pRvh5
p

4
a2u5q, ~11!

we get

v5
4q

pa2 , ~12!

h5
q

2pRv
5

a2

8R
. ~13!

Inserting these in the approximate relation~9!, we get the
radius of the hydraulic jump:

R5
4q2

p2a2gH2 . ~14!

The diametera is determined by the volume flow rate,q,
the nozzle diameter,A, of the tap, and the drop height,d. By
using the continuity equation inside the vertical jet and c
sidering the acceleration of the liquid in the jet asg, we get

a5S p2gd

8q2 1
1

A4D 21/4

. ~15!

We should mention here that for real viscous fluids the ab
formula has proved to be inadequate,7 but it is justified in our
nonviscous fluid approximation. For small heights and h
volume flow rates (gd/q2!1/A4), the a'A approximation
is sufficient; however, this limit is not always applicable
typical experimental conditions. Accepting formula~15! with
the above remarks, finally we get

R5

4q2Ap2gd

8q2 1
1

A4

p2gH2 . ~16!

This very first theoretical description already gives int
esting results. We see that the radius of the jump is stron
dependent on the jet’s volume flow rate,q, and the imposed
downstream boundary conditions which influenceH. The ra-
dius depends slightly on the heightd and it is independent o
the density of the liquid.

Neglecting the viscosity is of course a rough approxim
tion. In the following, by means of elementary fluid dynam
ics we will try to approach also the realistic case of visco
liquids.

B. Viscous fluids

We will present three approaches to the problem, of d
ferent levels of complexity, all leading to the same scal
law of R as a function of the relevant physical paramete
The physical picture underlying our approximation is the o
proposed by Godwin,26 and it is based on the important ro
played by the viscous boundary layer.28 What happens a
small r is that the jet spreads sideways with a velocity:

v05A2gd ~17!
727 Am. J. Phys., Vol. 67, No. 8, August 1999
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in a laminar fashion as though it were nonviscous, except
a boundary layer near the surface of the plate. The thickn
of this boundary layer can be shown to be approximately

d5Anr

v0
5A nr

A2gd
. ~18!

The flow inside the boundary layer can be described a
viscous laminar flow, and the flow above it as a laminar flo
with velocity v0 . Godwin26 conjectured that the HJ occur
when the boundary layer reaches the total height of the fl
film and obtained good agreement with experiments for
viscosity dependence of the jump radius.

Our first two approaches are based on Godwin’s con
ture. We will show that not only the right viscosity depe
dence, but also a good approximation of the dependenc
volume flow rate, can be achieved. In our last approach
will go even further and show that one can derive the sa
scaling law by analyzing the stability of the flow after th
boundary layer is fully developed~i.e., reaches the fluid film
surface!. Using an analogy with flow in a diverging channe
we identify the HJ with the instability that can appear in su
cases.

1. First approach

This theory is a very simple one and it is a first genera
zation of formula~14! to viscous flows. Making the approxi
mation that the boundary layer is a very small part of t
liquid film thickness right upto the HJ, we use the nonv
cous result and formula~9!, writing

R5
4q2

2p2a2v̄h
, ~19!

wherev̄ is the average fluid velocity at the given radius. W
have v̄'v0 close to the impact point of the jet, andv̄ is
always smaller thanv0 as the boundary layer develops.
particular, at the site of the jump we will always havev̄
,v0 , and replacingv̄ by v0 , ~19! will give us a lower bound
for R:

R.
4q2

2p2v0
2h

. ~20!

This is an inequality, but one can still hope that the scal
relationship we are looking for will be preserved. Using E
~12! we can now write:

R.
q2

pr 2

4
2pvh

5
q

2pvh
. ~21!

Following Godwin’s conjecture about the position of the H

h5AnR

v0
, ~22!

we get immediately

R.S g21/4

25/4p D 2/3

q2/3d21/6n21/3. ~23!

Assuming that this inequality has the same scaling as
original equality, we have

R;q2/3d21/6n21/3. ~24!
727Y. Brechet and Z. Ne´da
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2. Second approach

This is a more accurate approximation, although the
drodynamics involved is still elementary. It is also based
Godwin’s conjecture and gives the same scaling law for
position of the jump as our previous approximation. In co
trast with the first approach considered, we now get an eq
ity for R, which is more useful than the lower bond~23!.

The outline of our method is the following:

• We determine the velocity profilev(x,h), and flow profile
h(r ), in a viscous laminar flow where the boundary lay
is fully developed.~The velocity profile will be needed in
order to determine the flow profile!.

• We use Godwin’s conjecture and identifyR from the
h(R)5d equality, presuming that the shape of the boun
ary layer evolution is continuous atR.
a. Velocity profile in a viscous free surface laminar flo

with cylindrical symmetry. The problem has cylindrica
symmetry and thus the current position in the plane of
pact will be given by the distancer to the impact point. The
notation used in the model is shown in Fig. 8. We will d
note the velocity profile byv(x), the height of liquid at a
distancer from the impact position byh(r ), and the volume
flow rate byq.

For a real fluid the velocity profile of a free-surface flow
generally self-similar, i.e., satisfying the condition:

v~x!5v~h! f S x

hD . ~25!

In the above equation the value ofh can ber dependent, but
the form of the functionf is independent ofr. The velocity
profile must also satisfy the boundary conditions:

v~0!50, ~26!

dv
dxU

h

50. ~27!

There are of course many functions satisfying the conditi
~25!–~27!, and we will consider in the following the simples
possible one, which is a second-order polynomial in the v
ablex/h:

v~x!5v~h!F2
x

h
2S x

hD 2G . ~28!

The flow speed at the free surfacev(h) can be found by
inserting~28! in the continuity equation

Fig. 8. Notation for the viscous fluid approximation.
728 Am. J. Phys., Vol. 67, No. 8, August 1999
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q52pr E
0

h

v~x!dx, ~29!

to yield:

v~x!5
3q

4prh3 ~2hx2x2! . ~30!

b. Flow profile in a viscous free-surface laminar flow wi
cylindrical symmetry. In order to get the flow profileh(r ),
we now study the energy balance. The energy dissipatio
a volume element situated betweenr and r 1dr with height
betweenx andx1dx can be expressed both as the dissip
tion associated with viscosity and as the divergence of
kinetic energy fluxJ. The energy dissipation rate in our vo
ume element can be written as

d2Wd5~2pm!r S ]v
]xD 2

dx dr. ~31!

The kinetic energy flux flowing into our volume element
given by

dJ5prrv~x!2v~x!dx. ~32!

Integrating the quantities in Eqs.~31! and ~32! gives the
dissipation ratedWd betweenr and r 1dr, and the kinetic
energy fluxJ(r ) through a cylindrical surface of heighth(r )
and radiusr, respectively,

dWd5~2pm!r dr E
0

hS dv
dxD

2

dx5
3

2p

mq2

h3r
dr, ~33!

J5E
0

h

dJ5
27

140p2

rq3

h2r 2 . ~34!

The energy balance relation isJ(r 1dr)2J(r )1dWd

50, which leads to

dJ

dr
1

dWd

dr
50. ~35!

Performing the differentiation in~35! leads to the analyti-
cally solvable differential equation

h

r S h8

h
1

1

r D5b, ~36!

where

b5
35pm

9rq
. ~37!

The solution of the above equation is

h~r !5
b

3
r 21

C

r
, ~38!

with C an integration constant.
Let us underline two important facts:

• As we already mentioned, the quadratic form of the velo
ity profile was chosen somewhat arbitrarily. There a
many possible functions satisfying the imposed bound
conditions and Eq.~25!. One can just presume that th
chosen form approximates the reality. If we use the sa
~26!–~27! assumption forf and now make use of the mo
mentum conservation principle to determine the flow p
file we would get the same differential equation~35!, but
the coefficientb would differ by a factor of 54/35 from the
728Y. Brechet and Z. Ne´da
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one obtained by our energetic arguments. This differe
is a sign that the functionf is not really parabolic; howeve
we think it is an acceptable first approximation.

• In writing the energy balance~35!, we have neglected bot
the gravitational potential energy and the surface tens
contributions. Neglecting the surface tension in the lami
flow regime is acceptable due to the fact that the heigh
the fluid layer is much smaller than the average radius
curvature of the free surface. Were we to consider det
in the free surface as the standing ripples around the
draulic jump, we would have certainly to take into accou
those capillarity effects. As far as gravitational effects a
concerned, they are certainly negligible in the laminar fl
regime since the height of the liquid layer varies slow
However, those effects are likely to be important bo
close to the impact point, and to determine the height
shape of the hydraulic jump.
c. The radius of the HJ.As we already emphasized, th

jump radius will be obtained from theh(R)5d(R) equality.
A problem which arises here is the form~38! of h(R) which
contains an undermined integration constant:C. However, in
the jump region the second term in~38! is supposed to be
smaller than the first one, and as a first approximation
might be neglected. One thus gets

b

3
R25A Rn

A2gd
, ~39!

which leads to

R5S 27g21/4

21/435p D 2/3

q2/3d21/6n21/3. ~40!

The scaling is in agreement with the previous approach,
we obtain a good numerical estimate for the radius of
jump as well~see the discussion part!.

3. Third approach

The drawbacks of the previous two approaches were
we used an unproved conjecture regarding the condition
the jump. With this third approach, we intend to determ
the scaling ofR as a function ofd, g, v, andq from basic
principles of hydrodynamics, without using Godwin’s co
jecture. We will only presume that the HJ occurs after
boundary layer reaches the free surface. We use the
profile given by Eq.~38!. Because we assumed that the HJ
after the point (r 0) where the boundary layer is fully deve
oped, the constantC in ~38! can be determined by imposin
smooth evolution of the boundary layer atr 0 . This means
that both theh(r ) and d(r ) functions and their derivative
must match atr 0 :

d~r 0!5A nr 0

A2gd
5

b

3
r 0

21
C

r 0
5h~r 0!, ~41!

dd~r 0!

dr
5

1

2
A n

r 0A2gd
5

2b

3
r 02

C

r 0
2 5

dh~r 0!

dr
. ~42!

It is straightforward to determine the values ofr 0 andC:

C5
27

140p&
qg21/2d21/2, ~43!
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r 05S 27g21/4

25/435p D 2/3

q2/3d21/6n21/3. ~44!

Knowing C, we have the flow profile~38!, which appears
to be like the one in a convergent, then divergent, chan
When the channel is convergent, the flow is stable. When
channel is diverging, instabilities can appear. Given tha
the region where we would expect the hydraulic jump t
flow profile is divergent, it seems reasonable to think that
appearance of these instabilities corresponds to the hydra
jump.

It is known from the literature29 that for a flow in a diverg-
ing channel instabilities might appear when the Reyno
number, Re, exceeds a critical value, Remax(u), which is de-
pendent on theu angle of the diverging channel. In the lim
u→0, Remax5K/u ~K a real number!, and the condition for
getting instabilities becomes:

Reu.K. ~45!

The K number is known for a flow between two divergin
plates,29 but this value should certainly not be used in o
free surface flow~which looks like half of the flow between
the two plates! with cylindrical symmetry. We will thus trea
K as an undetermined number.

The use of theu→0 limit is totally justified since the flow
profile is very slowly varying in the laminar flow regime.

Adapting this criterion to our situation:

Re5
h^v&

n
5

q

2prn
, ~46!

u'tg~u!5
dh

dr
5

2br

3
2

C

r 2 , ~47!

leads to the condition:

q

2prn S 2br

3
2

C

r 2D.K. ~48!

The radius of the hydraulic jump can now be identified
the smallest value ofr satisfying the condition~48!, and we
get the equation

35

27
2

qC

2pnR3 5K ~49!

for the radius,R, of the hydraulic jump. In the above equa
tion, K being the only undetermined constant, using the va
~43! for C we will get the scaling law

R;q2/3d21/6n21/3. ~50!

This is exactly the scaling law obtained in our previo
approximations. One can also realize that ther 0 radius~44!
has the same scaling properties, which explains why G
win’s conjecture works well.

V. DISCUSSION

We now compare our experimental and theoretical resu
and discuss them in connection with earlier results in
literature.

Our experimental results are in good agreement with th
in the literature. The scaling law forR as a function of the
flow rate~2!, the weak dependence as a function of the d
height,d, and the independence ofR on the geometry of the
horizontal plate, confirm the results of Watson24 and Craik
729Y. Brechet and Z. Ne´da
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Table IV. The scaling exponents for the radius of the HJ obtained by our approximations, the ones acce
the literature, and the experimentally obtained ones.

Physical quantity Exponent Our theory Bohret al. Godwin Our experiment

Flow rate~q! a 2/3 5/8 ¯ 0.703
Height ~d! b 21/6 0 ¯ '0
Viscosity ~n! g 21/3 23/8 21/3 20.295
he
b

ri-

-
lin

he
y
ll
th
b

ou

gr
o

ou
e

ow

e

in
a
ic
av
w
su

he
e
in

-

an
t

ice
e

e

oc.

n a

of
ng

.

he

-

id
fer

tal
p,’’

S.

s,
B

C.
lic

g,

-

y,

-
t. J.

ys.

the

the
ace

id
et al.7 The scaling of the jump radius as a function of t
viscosity is in agreement with the results obtained
Godwin.26

The theoretical results~16! obtained using the ideal fluid
approximation are only qualitatively confirmed by expe
ments. The strong dependence ofR on the flow rate,q, and
the weak variation as a function ofd are in qualitative agree
ment with our observations. However, the observed sca
of R as a function ofq ~1! is different from the one indicated
in ~16!, which would suggest roughly a quadratic law. T
dependence ofR on H, which is governed by the boundar
conditions imposed on the downstream flow, are partia
confirmed by the experiments. The size and geometry of
plate do not influence the radius of the HJ, but vertical o
stacles imposed on the downstream flow~which can increase
H considerably! will reduce the value ofR.

Theoretical results obtained by considering real, visc
liquids lead to the same scaling law forR ~50! in all of the
three approaches we used. These results are in good a
ment with both our experimental results and the results
more refined approximations~Bohr et al., Ref. 19!. In Table
IV we summarize the scaling exponents obtained with
approximations, the ones given in the literature, and the
perimentally obtained ones.

Formula~40!, which gives the value ofR explicitly, is an
acceptable approximation. For example with volume fl
rate q550 ml/s and drop heightd537.8 cm, ~40! gives R
'4 cm, a fairly reasonable estimate of the measured valu
R'5.5 cm.

VI. CONCLUSIONS

The circular hydraulic jump, a long-standing problem
fluid mechanics and an everyday life experiment, can be
proached with simple, undergraduate-level fluid mechan
Of course, in order to do so, some heuristic principles h
to be used. The results obtained are in good agreement
the latest and more refined theories. These theoretical re
can be verified experimentally with a very simple setup.

It appears that this problem is well suited to inspire t
taste for research in students. Further theoretical or exp
mental questions, that could be used as laboratory or sem
exercises, include determining the:

• shape and height of the jump
• thickness evolution of the fluid film in the laminar flow

~e.g., using laser interferometry!
• the influence of substrate~e.g., Teflon™ or paraffin coat

ing of the plate!
• influence of the angle of impact~e.g., inclining the plate!
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A NEW ANGLE ON RELATIVITY THEORY

Homework question. Charlie has just caught a lake trout 20 inches long. Zipping by in her motor
boat, the game warden sees the fish as 12 inches long. Uh-oh! The minimum legal length is 16
inches.
~a! How fast was the game warden going?
~b! Will Charlie have to pay a fine? Briefly, why?

Catherine’s answers.
~a! v50.8c.
~b! Charlie will not pay a fine because as soon as he is done measuring the fish, he will proudly
hold it perpendicular for his wife to take a photograph, where upon the warden will see she was
mistaken.
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