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Response in kinetic Ising model to oscillating magnetic fields
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Abstract

Ising models obeying Glauber dynamics in a temporally oscillating magnetic field are analyzed. In the context of stochastic
resonance, the response in the magnetization is calculated by means of both a mean-field theory with linear-response
approximation, and the time-dependent Ginzburg-Landau equation. Analytic results for the temperature and frequency
dependent response, including the resonance temperature, compare favorably with simulation data. (© 1998 Elsevier Science

B.V.

PACS: 64.60.Ht; 05.40.+j; 05.50.4q

i. Iniroduciion

The Ising model with Glauber dynamics in an
oscillating magnetic field was recently considered
with Monte Carlo (MC) simulations in Refs. [1,2].
The phenomenon of stochastic resonance (see, e.g.,
Ref. [3]) was explored by viewing the Ising model
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the oscillating field and “noises” which are taken to be
thermal fluctuations. The phenomenon was revealed
by a characteristic peak in the correlation function
C(T) between the magnetic field and the magneti-
zation M (¢) versus the temperature 7" of the system.
The resonance temperature 7; (the temperature at
which f’(T\ has a mmnmnm\ was QVQmeQﬁ(‘ﬂ"V

computed as a function of the driving penod, lattlce
size and driving amplitude, both for two-dimensional
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(2D) [1] and three-dimensional (3D) [2] systems.
The one-dimensional (1D) case was analyzed by
Brey and Prados [4] within linear response theory.
The present work is a natural continuation of those
studies, considering analytically the 2D and 3D cases.
We will present two approaches. The mean-field the-
ory with linear response approximation will be dis-
cussed first. Then in 2D where the mean-field theory
is not as good as in other dimensions, a more refined
time-dependent Ginzburg-Landau (TDGL) approach
will be presented, with significant improvements.
Recently, kinetic Ising systems in oscillating exter-
nal fieids have aiso been examined both experimen-
tally and theoretically in Ref. [5]. The focus was

on nrnnprhpe below the zero-field critical nn1nr such
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as the frequency dependence of the probablhty dis-
tributions for the hysteresis-loop area and the resi-
dence time. The latter quantity for small systems in
moderately weak fields suggests further evidences of

bl.Ublldbub resonaince. VCly lcu::uuy', llllllC blLC cucub
versus driving frequency have been analyzed as a dy-

0375-9601/98/$ - see front matter © 1998 Elsevier Science B.V. All rights reserved.

PII S0375-9601(98300525-8



506 K. Leung, Z. Néda/Physics Letters A 246 (1998) 505-510

namical critical phenomena {6]. In contrast to these
works, ours is focused on the temperature dependence
above the zero-field critical point.

Stochastic resonance is conventionally studied
by means of the signal-to-noise ratio (see, e.g.,
Ref. [3]). For small magnetic field, this quantity has
been obtained for the Ising model from the power
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in higher dimensions by simulations and mean-field
approaches [8]. The general result is that this ratio
exhibits a peak at a definite temperature above T,
weakly dependent on the driving frequency.

2. Mean-field theory and linear-response
approximation

Our startmg point is the master equation for the
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—w(o — o) P(o;1)], (D

where P(o;t) is the joint probability of finding the
spin configuration ¢ at time ¢, and the w are the tran-
sition rates between two configurations which differ
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function is chosen as

1
1 + e~ BlE(e)—E(a")]’

w(o - o) =

with 8 = 1/T (hereafter the Boltzmann constant k
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where h(t) = Asin(wt) and ) = denotes a summa-
tion over nearest neighbors in a square or cubic lattice.

Let us denote the configuration o by the values of

the spins S1, S2, . . ., Sy, with system volume given by

V= 7\Td d is the cnahn] dimension of the svstem and
Spatiai GImensior system anc

N is its linear size. Since S; = +1, it is easy to rewrite
(1) as

d
—P(S81,85,...,8v:t
T (51, % vit)

|4
=—‘ZW_](S]) P(S],Sz,___,SV;t)
j=1
1%
+Zw](—sj) P(SlaSZ,---,—Sj,...,SV;t)
j=1
(3)
with
w;(8;) = L[1 — §;tanh(E;/T) 1,
=JZSk+h, (4)

where the last sum runs over the z nearest neighbors of
the spin §;, with z = 2d. Multiplying both sides of (3)
by S; and performing an ensemble average (denoted
by { )), after some simple mathematical tricks, we

getine basic cquauun for the Glauber Uyl’ldml(/b

d
dr”

Invoking the mean-field approximation, we replace E;
by Jz{S) + h to get

A

(81) = —(Sp) + (tanh(E;/T)). (5

/

(A
\C

N

where TMF = Jz is the mean-field critical temperature.
In the absence of %, the magnetization is given by the
stationary solution of the well-known equation,

(8)o = tanh[TMF(S)o/T1. (7)

I"UI bllldll ﬂ\l), we llld.y use the hl ea‘l‘ -Ic pr nse uie-
ory in (6) by first writing (S)(¢) = (S)o + AS(¢) and
considering the h/T < 1 and AS/T <« 1 limits. Per-
forming the Taylor expansion and keeping only the
first-order terms, Eq. (6) becomes :

d . AS A o .
a;AS T + (1 (8)o) sin(wt), (8)
where

1
TMEE TR TY (1 - (8)2)

is the relaxation time. The solution can be found easily,

€))

AS(t) = ASp sin(wt — Our), (10)
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with the phase shift and amplitude given by

Our = arctan( wTvr) (11)
A 1
ASp==(1—(8)3) —————.

0 T( ( )0) W
The correlation function between the total magneti-

zation M = V{S) and the external field A(¢) can be
computed,

(12)

2w

C =MD h(t)zg;i f AS(2) h(t) dt
0

VA?

= o (1= () (13)

2.2
1+ w*ryg

Here the overline denotes a temporal average over a
period P = 277/w. In the T > TMF domain, (S)o = 0,
thus C becomes

T —T™
(T — TYF)2 + 0272

Croqwr = 3VA® (14)

3. Time-dependent Ginzburg-Landau approach

Before comparing (13) to simulations, we present
an alternative, continuum approach to compute C. For
an Ising system with non-conservative order param-
eter (model A [10]), the time-dependent Ginzburg—
Landau (TDGL) equation for the local magnetization
density ¢ (r,t) takes the following form,

i SH
7= T +¢ (15)
Hz/dr (%(V¢)2+%u¢2+4£!¢4), (16)

where H is the coarse grained Hamiltonian. For our
present purpose, the white noise {(r,t) which ac-
counts for the effect of thermal fluctuations is irrele-
vant. Conventionally, parameters I", u and g in (16)
are understood to be obtained by coarse graining the
microscopic dynamics (1). For critical properties, the
sole important temperature dependence in these pa-
rameters lies in u o< T —TZ%, giving rise to the sponta-
neous symmetry breaking below the critical tempera-
ture 7L, For our purposes of comparing with simula-
tions, more precise dependences on T are required. To

this end, we outline here a refined mean-field approach
in the continuum limit. The same approach has been
successfully applied to the two-species driven diffu-
sive systems [11]. This approximation is expected to
be good outside the critical region. However, this turns
out to be not a serious handicap because the presence
of an oscillating field prevents the system from build-
ing up critical correlations.

In a mean-field approximation, the joint probabil-
ities in (1) are factorized into singlet probabilities
p(r;t) for finding the spin up at site r at time . Since
a spin flip depends on a total of z -+ 1 spins in (1), the
factorization effectively produces a series expansion
of H in powers of ¢ up to ¢?*!. This is followed by
the continuum limit, i.e., expansions in the derivatives
such as

J LYot
p(xil,y;t)ﬁp(x,y;t)i—lt(%—l
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For long-distance behavior, we stop at the order as
shown, consistent with (16). By identifying p as (¢ +
1) /2 and collecting terms according to powers of ¢,
we obtain from (1) a kinetic equation for ¢ after some
algebra. For h = 0, we find precisely the deterministic
part of (15) with

+4

= J(—2We +2W_4 — Wg + W_g), (17)

1
u= o (6Wot 12Ws—4W_st5Ws—3W_5),  (18)

3
g= ﬁ(——6Wo—4W4+4W—4+5W8+W'3)’ (19)

where W,, = 1/(1+e") contains the desired explicit
T dependence. The coefficient for ¢»> happens to van-
ish for heat-bath rates. When a small uniform field &
is applied, to O(%) we have finally the deterministic
kinetic equation

a('b =TI v2 1 3

o = T Vbt up+ ged® —ph),  (20)
where u = B(3W2 + 4AW,W_4 + WW_g) /2T Tt is
useful to note that I", g and u in (20) are positive
definite for all T, whereas u has one zero at TSV =
3.0901J =~ 1.3618T,, where T, = —2J/In(v/2 — 1) ~
2.2692J is exact. This is an improvement over TMF =
4J from the last section. Moreover, we reproduce the
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first few terms of the high-temperature series expan-
sions of thermodynamic quantities such as the suscep-
tibility and the relaxation time. In the 8 — 0 limit,
we recover the mean-field results of the last section:
um1/BJ—4,I~ BJ, g~ 48(BJ)% and u ~ 1/J.

For small % and T > TEY, the nonlinear term g¢
in (20) is negligible. The total magnetization M () =
[dré(r,t) = $(g=0,1) in response to an external
field can then be computed easily, where ¢ denotes
the spatial Fourier transform of ¢. It satisfies M /ot =
—I'uM + I'uh(q=0,1). We readily find

VAT

v (Tu)? + w?

where the phase shift is g, = arctan(w/I'u). The
correlation function with / is then given by

M(t) = sin(wt — 0gL), (21)

VA2 uu

2[(Tu)?2 + 2]’ (22)

CT>TCGL =

Note that this coincides with the mean-field result
(14) in the high-temperature limit.

For T < TS, the term proportional to g is needed to
break the symmetry, leading to the spontaneous mag-
netization m = /—6u/g (recall that g > 0 for all T,
and u < 0 for T < T9L.) Linearizing about m, we find
precisely the same form of C as T > TS except that
u is replaced by —2u in (22).

Examining (20), one may ask why one should ex-
pect stochastic resonance above T, where the potential
has a single well. Besides, C is computed without ever
using the noise term ¢ in (15). The resolution of these
apparent contradictions with conventional stochastic
resonance lies in the fact that thermal effects, regarded
as the “noises” here, have been separated for mathe-
matical convenience into a deterministic and a stochas-
tic partin (15). Essentially, the deterministic part (the
entropic effect) has been incorporated with the two-
state nature of the spins, resulting in a single-well free
energy functional, whereas ¢ accounts for the remain-
ing stochastic part. Hence, our analysis is based on a
transformed description in which part of the noises are
integrated with the double-well potential. We are not
aware of a similar formulation in conventional studies
of stochastic resonance.
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Fig. 1. C(T)/VI. versus temperature for P = 40 and A = 0.057;
for 2D in {(a) and 3D in (b). Dots are MC simulation results in
2D (N = 200), triangles are MC simulations in 3D (N = 40), the
continuous line is from the TDGL approximation and the dashed
line is the mean-field result.

4. Discussion and comparison with simulations

From the simulation data in Refs. [1,2], we learn
that the system has a maximum response to external
driving at a definite temperature 7; which depends on
the driving frequency. Hence 7, can be designated as
the resonance temperature. From the analytically de-
termined correlation functions in (14) and (22), we
find two peaks in C above and below the respective
T,, and also C(T.) = 0, as shown in Fig. 1. This
double-peak structure in C is consistent with simula-
tions for larger lattice sizes (up to N = 200 for 2D
and N = 40 for 3D) and with smaller steps in 7" than
reported in Refs. [1,2]. The reason for missing the
peak below 7; in our earlier simulations may be the
use of small lattice sizes. Note that the peak below T
is much smaller than the one above and its position is
less sensitive to the driving period. The reason for the
overestimated theoretical values of the peaks below T
may the frustration of the system to order in the pres-
ence of A(?). Such frustration probably arises from
nucleation of droplets of the stable phase inside the



K. Leung, Z. Néda/Physics Letters A 246 (1998) 505-510 509

P I | Iy T R L PIL N

metastabie ‘puabc [Jj DULII lUbdl cxciations lldVU not
been taken into account in our calculations. Instead, a
uniform response of the system about one of the two
local minima below T; has been assumed.

We believe that this also explains the discrepancy at
T, where simulations show a small but finite C (7).
Finite-size effects are not of great concern here be-

cause. as mentioned abhove. the correlation lenath even
Cause, as mentioned avpeve, e Correiaucn :engill even

at T, is truncated by /. In simulations, we have checked
the convergence in C (T) for N > 50 in 2D.

Focusing on T > T from now on, the TDGL pre-
dictions for C(T) are more accurate than those of the
mean-field theory in general. They both converge to
the simulations in the tails at T > 7, (see Fig. 1).In
3D the mean-field theory is already acceptable except
for the peak position, which is affected by the inaccu-
racy of TMF,

Turning our attention to the amplitude dependence,
replotting the simulation data from Refs. [1,2] sug-

cacte that tha haioht af tha neak (T oc A2 in asree-
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ment with (14) and (22). For not too large frequen-
cies and small A, the theoretical proportionality con-
stant agrees well with simulations. For example, the
slope of C(T;)/VI, versus A?/T? for P = 50 in 2D
gives 0.92 from simulations { 1], §.96 from TDGL and
0.99 from mean-field approach. In 3D the same slope
is 0.88 from simulations [2], and 1.29 from mean-
field approach (In 3D the comparison are worse be-
cause T, is much closer now to 7;.) This proportion-
ality is a manifestation of the linear response of the
system to 4, which breaks down at large enough am-

nlitudes. OQur new simulations show that this happens
Pt ur new simuaaiions at s nappens

for A/T; > 0.15 in 2D for P = 40.

A quantity of significant interest is the resonance
temperature 7 (P). It can be determined analytically
from (14)

1
e (1 1- ). @)
\ V @iy

and numerically from (22) for TS, These together
with simulation results are presented in Fig. 2. The

agreements are reasonable. As expected the mean-field
annrayimatian ic anite anond in 2D hut in 2N tha TNGT

approximation is quite good in 3D but in 2D the TDGL
approximation is better.

The results in Fig. 2 confirim the earlier observation
in Refs. [1,2] that for P — oo we get T, — T,.
This result is also consistent with the one obtained
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Fig. 2. Resonance temperature above ¢ versus driving period P
for A = 0.05, on absolute scale 7;/J in (a) and on relative scale
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7}/7‘0 irl (b} lllc 1uug-uaaucu alu bllUll.‘udbllCu lllle lll \d} are
the mean-field results for 3D and 2D respectively, in the rest the
symbols mean the same as in Fig. 1.

by Brey and Prados [4] in 1D where the above limit
becomes 7, — T = 0. In the opposite limit P — 1 (in
unit of Monte Carlo steps P > 1) both the theory in
1D {4] and our approximations in 2D and 3D suggest
T; — const. Unfortunately, in Refs. [1,2] the wrong
conclusion 7; — oo was drawn in this limit. Similarly,
the position of the peak below T also converges to Tt
in the P — oo limit.

In passing, we also derive [8] the relationship be-
tween the correlation function and the hysteresis-loop

area A,

e ween s and M. Thisresult
has also becn derlved recently by Acharyya [12], and
relates our results of C to that of .4 as observed in

Ref. [5].

-
-
-

5. Conclusions

Using mean-field with linear-response and TDGL
approximations, the characteristics of the resonance



510 K. Leung, Z. Néda/Physics Letters A 246 (1998) 505-510

..‘l:_'l

eaks observed in kinetic Ising mo
magnetic fields [1,2] are reproduced. New simula-
tions improve earlier results by confirming the analyt-
ically predicted double peaks. Focusing mostly on the
behavior above T, (where our approaches work bet-
ter), we determine the dependence of the resonance
temperature as a function of driving frequency and

firm tha al d dictad 1¢ 3
amplitude. We confirm the already predicted result in

Refs. [1,2] that 7. — T for the limit of practically
interesting driving frequencies (P — oo), and cor-
rected the wrong extrapolation in the opposite limit
P — 1. We introduce a refined TDGL approach which
improves significantly the mean-field resuits in 2D,
but in 3D the mean-field approximation is already ac-
ceptable. We have thus demonstrated that the stochas-
tic resonance in kinetic Ising models above T, can be
understood by means of rather simple theoretical ap-
proaches for small driving amplitudes.

dels in oscillating

Acknowledgement

We are grateful to the NSC of ROC for their support
through the grant NSC87-2112-M-001-006.

References

[1] Z. Néda, Phys. Rev. E 51 (1995) 5315.

[2] Z. Néda, Phys. Lett. A 210 (1996) 125.

[3] L. Gammaitoni, P. Hanggi, P. Jung, F. Marchesoni, Rev.
Mod. Phys. 70 (1998) 223.

[4] J. Javier Brey, A. Prados, Phys. Lett. A 216 (1996) 240.

[5] S.W. Sides, R.A. Ramos, P.A. Rikvold, M.A. Novotny, J.
Appl. Phys. 81 (1997) 5597,

[6] S.W. Sides, P.A. Rikvold, M.A. Novotny, preprint cond-
mat/9803127.

17 Qohimancly Tatar IT Qlacart ine Qtanhootin dumareiae
1 L. STAImansKy-Geier, U, Sieweit, in: Stochastic dynaimics,

1L

eds. L. Schimansky-Geier, T. Poschel, Lecture notes in
Physics 484 (Spinger, Berlin, 1997) p. 245;
U. Siewert, L. Schimansky-Geier, preprini cond-mat/
9804305.

[8] K. Leung, Z. Néda, unpublished.

[9]1 R.J. Glauber, J. Math. Phys. 4 (1963) 294.

[10] P.C. Hohenberg, B.I. Halperin, Rev. Mod. Phys. 49 (1977)
435.

[11] K. Leung, Phys. Rev. Lett. 73 (1994) 2386;
K. Leung, RK.P. Zia, Phys. Rev. E 56 (1997) 308.

[12] M. Acharyya, preprint cond-mat/9712309;
M. Rao, H.R. Krishnamurty, R. Pandit, Phys. Rev. B 42
(1990) 856.

r7
L/



