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Abstract 

king models obeying Glauber dynamics in a temporally oscillating magnetic field are analyzed. In the context of stochastic 
resonance, the response in the magnetization is calculated by means of both a mean-field theory with linear-response 
approximation, and the time-dependent Ginzburg-Landau equation. Analytic results for the temperature and frequency 
dependent response, including the resonance temperature, compare favorably with simulation data. @ 1998 Elsevier Science 
B.V. 

PACS: 64.6O.Ht; 05.4O.+j; 05SO.+q 

1. Introduction 

The Ising model with Glauber dynamics in an 
oscillating magnetic field was recently considered 
with Monte Carlo (MC) simulations in Refs. [ 1,2]. 
The phenomenon of stochastic resonance (see, e.g., 
Ref. [3]) was explored by viewing the Ising model 
as a system of coupled two-state oscillators, driven by 
the oscillating field and “noises” which are taken to be 
thermal fluctuations. The phenomenon was revealed 
by a characteristic peak in the correlation function 
C(T) between the magnetic field and the magneti- 
zation M(t) versus the temperature T of the system. 

The resonance temperature Tr (the temperature at 
which C(T) has a maximum) was systematically 
computed as a function of the driving period, lattice 
size and driving amplitude, both for two-dimensional 
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(2D) [ 1 ] and three-dimensiona (3D) [ 21 systems. 
The one-dimensional (1D) case was analyzed by 
Brey and Prados [4] within linear response theory. 

The present work is a natural continuation of those 
studies, considering analytically the 2D and 3D cases. 
We will present two approaches. The mean-field the- 
ory with linear response approximation will be dis- 
cussed first. Then in 2D where the mean-field theory 
is not as good as in other dimensions, a more refined 
time-dependent Ginzburg-Landau (TDGL) approach 
will be presented, with significant improvements. 

Recently, kinetic Ising systems in oscillating exter- 
nal fields have also been examined both experimen- 

tally and theoretically in Ref. [5]. The focus was 
on properties below the zero-field critical point, such 
as the frequency dependence of the probability dis- 
tributions for the hysteresis-loop area and the resi- 
dence time. The latter quantity for small systems in 
moderately weak fields suggests further evidences of 
stochastic resonance. Very recently, finite-size effects 
versus driving frequency have been analyzed as a dy- 

0375-9601/98/$ - see front matter @ 1998 Elsevier Science B.V. All rights reserved. 
PI1 SO375-9601(98)00525-8 



506 K. Leung, Z. N&a/Physics Letters A 246 (1998) 505-510 

namical critical phenomena [6]. In contrast to these 
works, ours is focused on the temperature dependence 
above the zero-field critical point. 

Stochastic resonance is conventionally studied 
by means of the signal-to-noise ratio (see, e.g., 
Ref. [ 31) . For small magnetic field, this quantity has 
been obtained for the Ising model from the power 
spectrum of the magnetization, exactly in 1D [ 71 and 
in higher dimensions by simulations and mean-field 
approaches [ 8 1. The general result is that this ratio 
exhibits a peak at a definite temperature above T,, 
weakly dependent on the driving frequency. 

2. Mean-field theory and linear-response 
approximation 

Our starting point is the master equation for the 
kinetic Ising model obeying Glauber dynamics [ 93, 

P(u; t + 1) - P(cr; t) = C[w(a’ -+ a) P(cr’; t> 

-W(C’d)P(~;t),:’ (1) 

where P(o; t) is the joint probability of finding the 
spin configuration u at time t, and the w are the tran- 
sition rates between two configurations which differ 
by one spin flip. For the heat-bath algorithm, the rate 
function is chosen as 

W((T. -+ a’) = 
1 

1 + e-P[E(fl)-E(~‘)l ’ 

with p = l/T (hereafter the Boltzmann constant k = 
1) , and E( (T) is the energy of u in a magnetic field h, 

E(U)=-JCSjSj-h(t)CSi, (2) 
nn i 

where h(t) = A sin( wt) and C,, denotes a summa- 
tion over nearest neighbors in a square or cubic lattice. 

Let us denote the configuration cr by the values of 
thespins&,&,..., &, with system volume given by 
V = Nd. d is the spatial dimension of the system and 
N is its linear size. Since Si = f 1, it is easy to rewrite 

(1) as 

-$P(SI, s2,. . . , sv; t> 

V 

=- CwjCSj) PCS19 S2,. 

j=l 

+ ewjC_Sj) P(SlvS2,. 

j=l 

with 

-Sj,. . . , SV; t) 

(3) 

Wj(Sj) = I[1 -Sjtanh(Ej/T)], 

Ej= Jk&+h, (4) 
k=l 

where the last sum runs over the z nearest neighbors of 
the spin Sj, with z = 2d. Multiplying both sides of (3) 
by Sl and performing an ensemble average (denoted 
by ( )), after some simple mathematical tricks, we 
get the basic equation for the Glauber dynamics, 

$(sl) = -(SI) + (tarWE@)). (5) 

Invoking the mean-field approximation, we replace El 
by Jz (S) + h to get 

$(S)=-(S) +tanh[(h+TFF(S))/Tl, (6) 

where TcMF = Jz is the mean-field critical temperature. 
In the absence of h, the magnetization is given by the 
stationary solution of the well-known equation, 

(S)u = tanh[TCMF(S)a/Tl. (7) 

For small h(t), we may use the linear-response the- 
ory in (6) by first writing (S)(t) = (S)O + AS(t) and 
considering the h/T < 1 and AS/T < 1 limits. Per- 
forming the Taylor expansion and keeping only the 
first-order terms, Eq. (6) becomes 

iAs= -+J + G(l - (S):) sin(wr), 

where 

1 

7MF = 1 - (TpF/T) (1 - (S);) 
(9) 

is the relaxation time. The solution can be found easily, 

AS(t) = ASa sin( wt - ~‘MF), (10) 
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with the phase shift and amplitude given by 

&F = arctam WrMF), (11) 

ASO = $( 1 - (S);) 
v&77* 

(12) 

The correlation function between the total magneti- 
zation M = V(S) and the external field h(t) can be 
computed, 

27r/w 

c = M(f) h(t) f g J AS(t) h(t) dt 

0 

(13) 

Here the overline denotes a temporal average over a 
period P = 21~10~. In the T > TyF domain, (S)O = 0, 
thus C becomes 

Cpq4F = z ’ VA2 
T-TMF 

(T - TpF)l+ &T2’ 
(14) 

3. Time-dependent Ginzburg-Landau approach 

Before comparing ( 13) to simulations, we present 
an alternative, continuum approach to compute C. For 
an Ising system with non-conservative order param- 
eter (model A [ lo]), the time-dependent Ginzburg- 
Landau (TDGL) equation for the local magnetization 
density 4 (r, t) takes the following form, 

(1-v 

x = Jdr (;mv2 + $4’ + $4”) , (16) 

where ‘FI is the coarse grained Hamiltonian. For our 
present purpose, the white noise C(r, t) which ac- 
counts for the effect of thermal fluctuations is irrele- 
vant. Conventionally, parameters r, u and g in ( 16) 
are understood to be obtained by coarse graining the 
microscopic dynamics ( 1). For critical properties, the 
sole important temperature dependence in these pa- 
rameters lies in u cx T - TL, giving rise to the sponta- 
neous symmetry breaking below the critical tempera- 
ture TGL. For our purposes of comparing with simula- 
tions, ‘more precise dependences on T are required. To 

this end, we outline here a refined mean-field approach 
in the continuum limit. The same approach has been 
successfully applied to the two-species driven diffu- 
sive systems [ 11 I. This approximation is expected to 
be good outside the critical region. However, this turns 
out to be not a serious handicap because the presence 
of an oscillating field prevents the system from build- 
ing up critical correlations. 

In a mean-field approximation, the joint probabil- 
ities in (1) are factorized into singlet probabilities 
p (r; t) for finding the spin up at site r at time t. Since 
a spin flip depends on a total of z + 1 spins in ( 1) , the 
factorization effectively produces a series expansion 
of 7i in powers of 4 up to @+I. This is followed by 
the continuum limit, i.e., expansions in the derivatives 
such as 

p(x* l,y;t) -+p(x,y;t) f @(xa;Yi’) 

+ p%kY;t) + 
2 ax2 **. 

For long-distance behavior, we stop at the order as 
shown, consistent with ( 16). By identifyingp as (4 + 
1) /2 and collecting terms according to powers of 4, 
we obtain from ( 1) a kinetic equation for 4 after some 

algebra. For h = 0, we find precisely the deterministic 
part of (15) with 

r=~(-2W4+2W-4-W8+W--8), (17) 

u = &(6W0+12W,4W_4+5W,-3W_~), (18) 

g= &(-6W~,-4W4+4W_4+5W~+W_~), (19) 

where W, E l/( 1 +enpJ) contains the desired explicit 
T dependence. The coefficient for @ happens to van- 
ish for heat-bath rates. When a small uniform field h 
is applied, to O(h) we have finally the deterministic 
kinetic equation 

a4 
- = -r(-V24 + u+ + A&’ - ph), 
at (20) 

where p = p(3W,2 + 4W4W_4 -I- WsW_s)/2r. It is 
useful to note that r, g and ,U in (20) are positive 
definite for all T, whereas u has one zero at CL M 
3.09015% 1.3618T,, whereT, = -2J/ln(fi- 1) z 
2.26923 is exact. This is an improvement over TcMF = 
45 from the last section. Moreover, we reproduce the 



508 K. Leung, Z. iWda/Physics Letters A 246 (1998) 505-510 

first few terms of the high-temperature series expan- 
sions of thermodynamic quantities such as the suscep- 
tibility and the relaxation time. In the p --+ 0 limit, 
we recover the mean-field results of the last section: 
UM l/pJ_4,r~:J,gx48(PJ>*,and~u l/J. 

For small h and T > TzL, the nonlinear term gsb3 
in (20) is negligible. The total magnetization M(t) = 
s dr 4( r, t) = $( 4 = 0, t) in response to an external 

field can then be computed easily, where 4 denotes 
the spatial Fourier transform of 4. It satisfies dM/dt = 
-TuM + T,&( q = 0, t). We readily find 

M(t) = d& sin(wt - 6%~)~ (21) 

where the phase shift is eoL = arctan( o/Tu). The 
correlation function with h is then given by 

cT>p = 
VA2r2pu 

2[(ru)*+d]' (22) 

Note that this coincides with the mean-field result 
( 14) in the high-temperature limit. 

For T < TL, the term proportional to g is needed to 
break the symmetry, leading to the spontaneous mag- 
netization m = ,/a (recall that g > 0 for all T, 
and u < 0 for T < TCGL.) Linearizing about m, we find 
precisely the same form of C as T > CL except that 
u is replaced by -2u in (22). 

Examining (20)) one may ask why one should ex- 
pect stochastic resonance above T, where the potential 
has a single well. Besides, C is computed without ever 
using the noise term s in ( 1.5). The resolution of these 
apparent contradictions with conventional stochastic 
resonance lies in the fact that thermal effects, regarded 
as the “noises” here, have been separated for mathe- 
matical convenience into a deterministic and a stochas- 
tic part in ( 15). Essentially, the deterministic part (the 
entropic effect) has been incorporated with the two- 
state nature of the spins, resulting in a single-well free 
energy functional, whereas l accounts for the remain- 
ing stochastic part. Hence, our analysis is based on a 
transformed description in which part of the noises are 
integrated with the double-well potential. We are not 
aware of a similar formulation in conventional studies 
of stochastic resonance. 
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Fig. 1. C(T)/V& versus temperature for P = 40 and A = O.O5T, 

for 2D in (a) and 3D in (b). Dots are MC simulation results in 

2D (N = 200), triangles are MC simulations in 3D (N = 40), the 

continuous line is from the TDGL approximation and the dashed 

line is the mean-field result. 

4. Discussion and comparison with simulations 

From the simulation data in Refs. [ 1,2], we learn 
that the system has a maximum response to external 
driving at a definite temperature T, which depends on 
the driving frequency. Hence T, can be designated as 
the resonance temperature. From the analytically de- 
termined correlation functions in ( 14) and (22), we 
find two peaks in C above and below the respective 
T,, and also C ( TC) = 0, as shown in Fig. 1. This 
double-peak structure in C is consistent with simula- 
tions for larger lattice sizes (up to N = 200 for 2D 
and N = 40 for 3D) and with smaller steps in T than 

reported in Refs. [ 1,2]. The reason for missing the 
peak below TC in OUT earlier simulations may be the 
use of small lattice sizes. Note that the peak below TC 
is much smaller than the one above and its position is 
less sensitive to the driving period. The reason for the 
overestimated theoretical values of the peaks below TC 
may the frustration of the system to order in the pres- 
ence of h(t). Such frustration probably arises from 
nucleation of droplets of the stable phase inside the 
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metastable phase [ 51. Such local excitations have not 
been taken into account in our calculations. Instead, a 
uniform response of the system about one of the two 
local minima below Tc has been assumed. 

We believe that this also explains the discrepancy at 
T,, where simulations show a small but finite C(T) . 
Finite-size effects are not of great concern here be- 
cause, as mentioned above, the correlation length even 
at T, is truncated by h. In simulations, we have checked 
the convergence in C(T) for N 3 50 in 2D. 

10 I \ \ \ \ 
8 \ . 

Focusing on T > Tc from now on, the TDGL pre- 
dictions for C (T) are more accurate than those of the 
mean-field theory in general. They both converge to 
the simulations in the tails at T > Tc (see Fig. 1) . In 
3D the mean-field theory is already acceptable except 
for the peak position, which is affected by the inaccu- 
racy of TcMF. 
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Turning our attention to the amplitude dependence, 

replotting the simulation data from Refs. [ 1,2] sug- 
gests that the height of the peak C (T,) cc A*, in agree- 
ment with ( 14) and (22). For not too large frequen- 
cies and small A, the theoretical proportionality con- 
stant agrees well with simulations. For example, the 
slope of C(T,)/Vi”,‘, versus A*/Tz for P = 50 in 2D 
gives 0.92 from simulations [ 1],0.96 from TDGL and 
0.99 from mean-field approach. In 3D the same slope 
is 0.88 from simulations [ 21, and 1.29 from mean- 
field approach (In 3D the comparison are worse be- 
cause Tr is much closer now to Tc.) This proportion- 
ality is a manifestation of the linear response of the 
system to h, which breaks down at large enough am- 
plitudes. Our new simulations show that this happens 
for A/Tc > 0.15 in 2D for P = 40. 

; :-,,I 
1 ‘cl P 100 1000 

Fig. 2. Resonance temperature above TC versus driving period P 
for A = 0.05, on absolute scale T,/J in (a) and on relative scale 

T,/T, in (b). The long-dashed and short-dashed lines in (a) are 
the mean-field results for 3D and 2D respectively, in the rest the 

symbols mean the same as in Fig. 1. 

by Brey and Prados [4] in 1D where the above limit 
becomes Tr --) T, = 0. In the opposite limit P + 1 (in 
unit of Monte Carlo steps P 3 1) both the theory in 
ID [ 41 and our approximations in 2D and 3D suggest 
T, -+ const. Unfortunately, in Refs. [ 1,2] the wrong 
conclusion Tr + 00 was drawn in this limit. Similarly, 
the position of the peak below Tc also converges to Tc 
in the P -+ 00 limit. 

A quantity of significant interest is the resonance In passing, we also derive [ 81 the relationship be- 

temperature Tr( P) . It can be determined analytically tween the correlation function and the hysteresis-loop 

from (14) area A, 

and numerically from (22) for CL. These together 
with simulation results are presented in Fig. 2. The 
agreements are reasonable. As expected the mean-field 
approximation is quite good in 3D but in 2D the TDGL 
approximation is better. 

The results in Fig. 2 confirm the earlier observation 
in Refs. [ 1,2] that for P + 00 we get Tr --f Tc. 
This result is also consistent with the one obtained 

A= 2n-CtanB, (24) 

where 0 is the phase shift between h and M. This result 
has also been derived recently by Acharyya [ 121, and 
relates our results of C to that of A as observed in 
Ref. [5]. 

5. Conclusions 

Using mean-field with linear-response and TDGL 
approximations, the characteristics of the resonance 
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peaks observed in kinetic Ising models in oscillating 
magnetic fields [ 1,2] are reproduced. New simula- 
tions improve earlier results by confirming the analyt- 
ically predicted double peaks. Focusing mostly on the 
behavior above T, (where our approaches work bet- 
ter), we determine the dependence of the resonance 
temperature as a function of driving frequency and 
amplitude. We confirm the already predicted result in 
Refs. [ 1,2] that T, -+ T, for the limit of practically 
interesting driving frequencies (P --+ 00)) and cor- 
rected the wrong extrapolation in the opposite limit 
P + 1. We introduce a refined TDGL approach which 
improves significantly the mean-field results in 2D, 
but in 3D the mean-field approximation is already ac- 
ceptable. We have thus demonstrated that the stochas- 
tic resonance in kinetic Ising models above Tc can be 
understood by means of rather simple theoretical ap- 
proaches for small driving amplitudes. 
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