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Abstract 

Finite 3D Ising ferromagnets are studied in periodic magnetic fields by computer simulations, considering the classical 
heat-bath dynamics. The phenomenon of stochastic resonance is found. The characteristic peak obtained for the correlation 
function between the external oscillating magnetic field and magnetization versus the temperature of the system is computed 
for various external fields and lattice sizes. 

PACS: 05.4O.+j; 75.10.-b; 02.7O.Lq 

1. Introduction 

It is well known [ l-41, that periodically modulated 
bistable systems in the presence of noise exhibit the 
phenomenon of stochastic resonance (SR) . The basis 
of this phenomenon is that the correlation u between 
the modulation signal and the response of the system 

presents an extremum for a given noise intensity. 
Evidence for SR was found in analog simulations 

with proper electronic circuits [ 3,5,6], laser systems 

operating in multistable conditions [ 71, electron para- 

magnetic resonance [ 8,9], in a free standing magne- 
toelastic ribbon [ IO] and in globally coupled two-state 
systems [ I I ,I 21. Theoretical aspects of the problem 

were reviewed in Ref. [ 41. 
Considering a special and practically important 

case of coupled two-state systems, we recently re- 
ported on the possibility of obtaining SR in finite 
two-dimensional Ising systems [ 131. In Ref. [ 131, in 
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contrast with all other earlier works we did not con- 

sider any external stochastic force, only the thermal 
fluctuations in the system. The problem was stud- 
ied by computer simulations considering a heat-bath 
dynamics. 

The present paper intends to complete the earlier 
one [ 131, studying the important three-dimensional 

(3D) case. 

2. The problem 

To detect SR we need a system in a double well po- 

tential, governed by a stochastic force. In the meantime 
the two minima of the double well potential must be 

modulated periodically and in antiphase. One can im- 

mediately recognize that ferromagnetic Ising systems 
in oscillating magnetic fields satisfy all these condi- 
tions: 

- At zero thermodynamic temperature the free- 
energy versus magnetization curve has the double 
well form; 
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- An external periodic magnetic field B(r) modu- 
lates the two minima in antiphase; 

- The effect of a positive temperature can be viewed 
as a stochastic driving force; 

- The magnetization as a function of time (M(t) = 
Cj S,? ) can be considered as the response function of 
the system. 

Due to the fact that in the proposed system the noise 
intensity (thermal fluctuations) is temperature depen- 
dent, the characteristic maximum for SR must be de- 
tected at a resonance temperature (Tr) in the plot of 
the correlation u (CT = 1 (B(t) M( r)) 1) versus the tem- 
perature (T) . 

The Hamiltonian of our problem is 

H=-JxS,“S; +,uBB(t)xSf, (1) 
i.j i 

where the sum is over all nearest neighbours, St; = 
fl, pB is the Bohr magneton and B(t) the external 
magnetic field. We consider B(t) in a harmonic form, 

B(t) = Asin(2~t/P). (2) 

We mention that recently 3D Ising systems in oscil- 
lating magnetic fields have already been considered 
by computer simulations [ 141. However in Ref. [ 141 
the authors study the hysteretic response of the system 
and no evidence for SR is discussed. 

We will study the proposed system ( 1) from the 
viewpoint of SR. 

3. The computer simulation method 

To study the time evolution of the proposed system 
( 1) first we considered a computer simulation to heat- 
bath dynamics. The time scale was chosen in a con- 
venient way, setting the unit-time interval equal with 
the average characteristic time (7) necessary for the 
flip of a spin. We have taken this time interval r as 
constant, and thus independent of the temperature. Al- 
though this assumption is just a working hypothesis 
we expect it to give useful qualitative results. The spin 
flips were realized with the probabilities of the heat- 
bath dynamics, choosing the spins randomly at each 
moment. 

The simulations were performed on cubic lattices 
with W = N x N x N spins, considering a value of N 

up to 50. One simulation step was defined as W tri- 
als of changing spin orientations, and corresponds to a 
time interval r. The period (P) of the oscillating mag- 
netic field will be also given in these r units. The am- 
plitude A of the magnetic field is considered already 
multiplied by ,uB/k, and thus will have the dimen- 
sionality of the temperature (k is the Boltzmann con- 
stant) . The temperature will be considered in arbitrary 
units, and the critical temperature of the infinite sys- 
tem (Tc RZ 4.4445/k) will be set to 100 units. Starting 
the system from a random configuration we considered 
10000 simulation steps to approach the dynamic equi- 
librium. The correlation function between the driving 
field B( t) and the magnetic response M(t) , 

(+ = I(B(t)M(t))l = ; e B(t;)M(t;) , (3) 
i-l 

was studied after this during 10000 extra iterations. 
(The averaging in (3) is as a function of time, and 
tj = ri.) 

The correlation (a) was studied as a function of (i) 
the temperature (T), (ii) the lattice size (N), (iii) 
the amplitude of the magnetic field (A), and (iv) the 
period of the oscillating magnetic field (P) . 

4. Results 

Our simulation results are summarized in Figs. l-4. 
In Fig. 1 we present a characteristic result for the 

shape of the u versus T curve. One will observe that 
in accordance with the predicted phenomenon of SR, 
at a given T,, u presents a maximum. The tail of this 
resonance peak is nicely described by a power law 
(bottom). Analysing the scaling exponents for dif- 
ferent simulations (different P, A and N values) we 
conclude that it lies in the interval (- 1.7)-( -2.35). 

Fig. 2 presents the shape of the resonance peak for 
several values of the modulation amplitude A. Our 
simulations (Fig. 2) predict that the resonance tem- 
perature is almost independent of the modulation am- 
plitude, exhibiting only a very slight variation as a 
function of it (i.e. for higher amplitudes T is shifted 
in the direction of smaller values). In contrast with 
this, the height of the peak depends sensitively on the 
values of the modulation amplitude. 
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Fig. I. Characteristic peak for the SR phenomenon obtained Fig. 3. Dependence of the resonance temperature (Tr) versus the 

by our computer simulations. The bottom picture illustrates the lattice size (N). Results for three different modulation periods 

I(P(r)M(r))l - I I .I 81T-1.7’ power law behaviour of the tail (P) are presented (Tc - 100 and A - IO). 
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Fig. 2. Results for the shape of the SR peak considering several 

values of the modulation amplitude A (m = M/W, N - 20, 
TC - 100 and P = 50). 

As we concluded also in Ref. [ 131, for small lattices 
the Tr resonance temperature is strongly dependent on 
the lattice size (N), and in the limit of relatively big 
lattices (N x 20) tends to a constant limiting value. 
Our results are plotted in Fig. 3 for three different 
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Fig. 4. Dependence of the resonance temperature In( Tr - TC) 

versus the modulation period (P). The best fit line indicates the 

exponential law Tr - TC = 4.061 e-0.02p (A = IO, N - 20). 

modulation periods P. From this figure we also learn 
that the resonance temperature T, is dependent on the 
modulation period P. So we studied the dependence 
of T, versus P. The results are given in Fig. 4. The 
simulation predicts that for long periods the T, reso- 
nance temperature tends to the critical temperature T, 
of the system. This dependence can be described by 
an exponential law, 
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We mention here that the step-like form of the results 
is due to the fact that to detect T, the temperature was 
varied in steps of five units (T, = 100 units). 

5. Conclusions 

The first conclusion would be that our computer 
simulations suggest that the phenomenon of SR should 
be detected when one studies finite ferromagnetic sys- 
tems in oscillating magnetic fields. The characteris- 
tic peak of SR is obtained by studying the correlation 

g = IP(r)M(O)l as a function of temperature. For 
a given resonance temperature T,, this correlation (T 
exhibits a maximum. 

Fixing the frequency, for small lattices ( W < 4000) 
the T, resonance temperature depends on the lat- 
tice sizes and tends to a limiting value for relatively 
large (W > 4000) lattices. The resonance temper- 
ature proved to be dependent also on the period of 
the magnetic field, and in the limit of large periods 
converges exponentially to the critical temperature of 
the system. Because in real experimental conditions 
we are in the very long period limit (the time unit in 
simulations is set by r, the characteristic time for the 
flip of a spin), we expect T, to be detected at T,. We 
also concluded that the T, resonance temperature is 
not significantly influenced by the amplitude A of the 
oscillating magnetic field, the value A determining 
mainly the height of the resonance peak. 

The results obtained in the 3D case are qualitatively 
the same as our earlier results [ 131 for the 2D square 
lattice. 

The obtained phenomenon could be interesting both 
from the theoretical viewpoint of statistical physics 
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and for applications in magnetism. An experimental 
investigation of the problem would also be important. 
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