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Link-Cell Method for Evolutionary Multi-Modal
Optimization Application in Dynamic
Evolutionary Clustering

DAN DUMITRESCU, FERENC JARAI-SZABO and KAROLY SIMON

ABSTRACT. Evolutionary algorithis can be succeasfully used for solving multi-modal opti-
mizasion problems, Inspired from Computational Physics a Link-Cell-based method 1s proposed-
In order to obtain improved evalutionery multi-modal optimization models. Recently a new evo-
lstionary search and multi-modal optimization metakeuristics - called Genetic Chromodynamics
(GC) - has been proposed and used bo derive new evolutionary algorithms. Based on the GC
meteheuristics a new dynamic evolutionary clustering technique has been developed. The pro-
posed Link-Cell technique is combined with GC. In this way a new evolutionary multi-modal
pptimization model is obtained. This model is applied to GC-based dynamic clusteriag method
{QACDC) and a new Link-Cell-based GCDC algorithm is developed. Some numerical experiments
nre described,

L. INTRODUCTION

Evolutionary algorithms are usefil tools for solving complex optimization search
problems (see [3]). Many real world problems allow multiple solutions, which may
be optimal or almost optimal. In order to identify several optima, special evolu-
tionary models have been proposed (see [2, 3, 9)). New evolutionary algorithms
for solving multi-modal optimization prablems have been developed [4]. These al-
gorithms generally use sub-population raodels and are based on a local interaction
principle.

In order to promote local search and to obtain a general technique for im-
proving evolutionary multi-modal optimization algorithms, a Link-Cell method s
proposed. The main idea of this method is inspired from Computational Physies
|12). Link-cell methods are used especially in molecular dynamics simulations in
order to handla short-range interactions and in this way to reduce the complex-
fty of algorithms (see [1, 12]). The fundamental idea is that the simulation cell
Is partitioned inte a number of smaller sub-cells.” At each time-step a linked list
of all particles contained in each sub-cell is constructed. In this way short-range
interactions between particles can be easily calculated taking into account only
the particles which are in one sub-cell and inits first-order neighborhood.

Recently a new evolutionary search and multi-modal optimization metaheuris-
tow - called Genetic Chromodynamics (GC) 4] - has been proposed. This meta-
linuristics was used to derive new evolutionary algorithms for multi-model opti-
mization. Baged on GC metaheuristics a new evolutipnary dynamic clustering
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method has been proposed [5]. This GC-based dynamic clustering technique -
called GCDC - has been successfully used for solving some practical problems (see
5. 6]}.

Dynamic clustering is a typical multi-modal optimization problem. By clustr-
ing a data set is divided into regions. of high simiiarity, as defined by a.distapce
metric. In most instances, a prototypical vector identifies a cluster.. Hence, the
problem of cluster optimization is twofold: optimization of cluster centers and
determination of number of clusters. The latter aspect has often been neglected
in standard approaches (static clustering methods) (see (10, 11]), as these typi-
cally fix the number of clusters o priori. In case of practical problems the number
of existing clusters is generally unknown. Opposed to static, dynamic clustering
does not require ¢ priori specification of the number of clysters. Evolutionary
multi-rodal optimization models proved ta be useful tools for deriving dynamic
clustering algorithms. ‘

Proposed Link-Cell method is combined with the GC metaheuristics, for pro-
moting GC local search. The obtained model is applied to GCDC algorithm. The
Link-Cell technique is used for improving GCDC. The convergence of standard
GCDC technique is influenced by some parameters. Some adaptation mechanisms
for these parameters and some tentative to improve GCDC are known (see [7, &]).
Using the proposed Link-Cell technique new parameter adaptation algorithms are
derived for achieving a better performance. A new evolutionary algorithm for
dynamic clustering - called LCGCDC - is dbtained.

In Section 2 Link-Cell method is presented. There is described, how this method
could be used for obtaining improved evolutionary multi-modal eptimization mod-
els. The method is combined with the GC metaheuristics. The standard GC-based
clustering algorithin is presented in Section 3. The new Link-Cell-based GCDC
method is described in Section 4. Section 5 presents numerical experiments for
performance jpvestigation of the new clustering algorithm.

2. LINK-CELL-BASED EVOLUTIONARY MULTI-MODAL OPTIMIZATION

In certain situations we are interested not only in finding the global optima of
a problem, but also in identifying the set of all acceptable solutions. ‘Typical cases
are multi-modal function optimizations, covering and clustering problems.

Standard evolutionary algorithms quickly concentrate the search effort in the
most promising regions of search space. These algorithms tend 'to converge to a!
single solution, to the global optima of the problem: In order to identify more
optimum points, the evolutionary algorithm has to be endowed with additional
mechenisms aiming to favor and preserve population diversity. This may be ac-
complished by promoting local search and allowing evolutionary algorithms to
evolve sub-populations. Special evolutionary models for realizing these goals are
known (see [2, 3, 9]). .

Standard evolutionary multi-modal optimization models, like niching techniques,
in some particular situations cannot focus the search on each optimum and find the
optiinel solutions efficiently. Some of the séarch effort is wasted in recombination of
inter-optimum solutions. Combining two solutions from different sub-populations
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tiuy produce lethal solutions. Identification of the number of optlinal solutions
conld be a problemn, as well,

Racently a new evolutionary metaheuristics - called Genetic Chromodynamics
(€HC’) (4] - has been proposed to overcome the shortcomings of classical evolutionary
Buiti-modal optimization models.

2.1. Genetic Chromodynamics. Genetic Chromodynamics is & new kind of
#volutionary search and multi-modal optimization metabeuristics. GC-based meth-
ods use a variable-sized population, a stepping-stone search mechanism, a local
interaction principle and a new operator for merging very close individuals.

Corresponding to stepping-stone technrique each individual in the population has
the possibility to contribute to the next generation and thus to search progress.
According to local interaction principle only short-range interactions between so-
Jutions are allowed. o

To enhance GC, micropopulation models [4] can be used. Corresponding to
these models, for each individual a local interaction domain is considered. In-
dividuals within this domain represent a micropopulation. All solutions from a
mleropopulation are recombined. When the local domain of an individual is empty
the individual is mutated.

Within GC sub-populations co-evolve and eventually converge toward several
optima. The number of individuals in current population usually changes with
the generation. A merging operator is used for merging very close individtals, At
convergence, the number of sub-populations equals the number of optima. E(éf:h(
final sub-population hopefully contains a single individual representing an opplpa:,
a solution of the problem. ;

2.2. Link-Cell-Based Local Search for Evolutionary Multi-Modal Ope
timization. Inspired from Computational Physics a Link-Cell-based model is
proposed to obtain a general technique for improving evolutionary multi-modal
optimization elgorithms.

According to Link-Cell technique the search space is partitioned into smaller,
Interconnected sub-cells. At each generation {time-step) a list of all chromosomes
{particles) contained in each cell is constructed.

This Link-Cell model could be efficient for handling short-range interactions
hetween individuals. For a chromosome the k-th order neighborhood of the cell
rontaining the chromosome can be considered as interaction domain. In this way
sliort-range interactions between solutions can be easily calculated.

An adaptation mechanism for controlling the size of interaction domain (the
value of parameter &) can be used. Sub-population stabilization can be promoted
iy ndapting individuals interaction domains.

Evolutionary algorithms are generally influenced by some method parameters,
Tha Link-Cell technique could be efficient for deriving some new parameter adap-
tatlon techniques.

The proposed Link-Ceil method can be combined with any evolutionary multi-
modal optimization model. Combining Link-Cell technique with GC & new model
for evolutionary multi-modal optimization 18 obtained. This new model can be
ived for improving GC-based algorithms. :
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3. STANDARD GENETIC CHROMODYNAMICS-BASED DYNAMIC CLUSTERING

Based on GC metaheuristics recently a new dynamic clustering algorithm has
been proposed. The standard GCDC algorithm is described below.

3.1. Solution Representation and Fitness Assign.meni. Each cluster is rep-
resented by a prototype (cluster center). Each prototype is encoded into a chro-
mosome. S ‘

The idea of GCDC method is to determine sub-populations of evelving chro-
mosomes converging toward prototypes of real clusters.

The initial population is randomly generated and it contains a large number
of individuals. Fitness values of individuals are evaluated using suitable ﬁtness
functions. For instance Gaussian functions can be used (see (7, 8]).

3.2, Interaction Domain. For realizing the local interaction principle, an inter-
action domain (mating region) is considered for each individual in the population
{a chromosome representing a prototype).
To support sub-population stabilization an adaptation mechanism can be used
for controlling interaction domains (see [8]). Within this adaptation mechanism
the interaction range of each individual could be different. ‘

3.3. Population Model. For realizing the stepping-stone search principle at each
step of the generation process each chromosome is selected to produce an offspring
through crossover or mutation.

A micropopulation model is used. The crossover mate for an individual (dormi-
nant parent} is selected among the chromosormes in its interaction domain. Only
one offspring is generated. If there is no mate in the interaction domain of en
individual, then the mutation operator will be applied.

An offspring can replace only its dominant parent. The most fitted between
dominant parent and offspring is introduced in the new generation.

An effect of crossover operation is that chromosomes in the same sub-population
partially overlap after a certain number of iterations, When the distance between
two chromosomes is smaller than a considered value e {merging radius) the chro-
mosomes are merged. In this way the size of the population decreases during
the search process. Final population contains as many mdwnduals as the optimal
cluster number.

3.4. Search Operators. Within GCDC any type of known search operators cén

be used. For instance the crossover operation can be a convex combination of the
perent genes. A randomly generated number for each gene can be considered as
combination coefficient.

An additive perturbation of genes with a randomly chosen value from a normal

distribution N(0,c), where ¢ is a control parameter called mﬂtétwn step gize cdn

be considered as mutation operator.

3.5. Termination. If no more changes occur in the populatlon through a fixed

number of iterations, then the search process stpps. The individuals within last

population are considered as prototypes of naturally existing clusters.

D
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4. LiNk-CeLL-Basen GCDC

The proposec] Link-Cell method (see Section 2) is applied to GCDC. The
method is used for improving GCDC by promoting local search and deriving new
jmruneter adaptation techniques.

4.1, Link-Cell Division. According to the Link-Cell technique the search space
{8 purtitioned into sinall interconnected cells. In the proposed clustering technigue
the cimension of a cell is computed usmg the minimum distance between input
sninples (data points).

The initial population is randomly generated. In addition a ch.romosome for
ench cell can be considered for achieving a better exploration.

For & chromosome the k-th order neighborhood of the cell containing the chro-’
thosome is considered as interaction: domain. An adaptation technique is used for
controlling interaction domains.

4.2. Interaction Domain Adaptation. Sub-population stabilization can be pro-
tnoted by adapting individuals interaction domains. At last stages of search process
the dimension of the interaction dormain of a chromosome would be close to the
dinmeter of corresponding cluster. For achieving this goal, at beginning a small
Interaction domain is considered for each prototype. This interaction domain is
extended during the search progress.

Initially, as interaction range the first-order neighborhood of the prototype. i;;
eonsidered. At each generation interaction domains of all individuals are recalcu-.
lated using the algorithm described below.

For a chromosome L; the current interaction domain D; is evaluated. Lét
N; be the set of points in Dy, The next-order neighborhood of the individual is
cousidered as an extended interaction domain D}‘. Let N} be the set of pointa ln

If the interaction dommain of the individual is empty (N; = @), then it will be
sxtonded. As new interaction domain the next-order neighborhood D will be
mnﬂidued If there are data points in Dy, then the set N * will be evaluated. If
N{\N; is empty, then the previous interaction domain D will not be modified.
Elrse, the extended interaction domain )Dj will be consxdered as new interaction
domnain for the individual.
The interaction domain adaptation (IDA) algorithm can be described as follows:
begin IDA for chromosome L
Calculate N; (the set of pomts in Dy);
Calculate N‘ (the set of points in D});
I (N; =0) then D; =Dy,
else if (N;\Nj ié @) then Dj = D;,
end IDA for chromosome L;

4.4. Dynamical Fitness Function. The set of input samples X = {zy,....z,}
Ia conaidered. Cluster structure corresponding to this input date set is given by
n ant of prototypes L = {L,, ..., L.}, represented by chromosomes. Fitness of a
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chromasorne L; is calculated using the following Gaussian fitness function:

m_ J=i-iy i

(1) (L= e 7

i=1

Parameters of corresponding normal distribution are L; and ;.

An adaptation mechanism is wsed for controlling parameter ;7,7 = 1,...,m.
Variance parameter 7; is recomputed for each individual L .

A dependence between variance «; and interaction domain of L; is introduced.
In this way a dynamical adaptation of the fitness function is realized. At each gen-
eration the variance corresponding to the new interaction domain is recomputed.
For each prototype L; the parameter «y; is computed using the mean distance
between the points in interaction domain D;.

If the interaction domsain of L; is empty, then the variance is cormputed using
the diameter of the domain D;.

Using this dynamical fitness agsignment technigue a more accurate detection of
cluster prototypes is expected.

4.4, Setting and Adapting Parameters. Variation operators described in Sec-
tion 3 are used. Adaptation mechanism for controlling mutation step is considered.
A method for setting merging distance parameter is also proposed.

The mutation step size is computed using the diameter of the interaction do-
main. Corresponding to this technique & mutated offspring belongs to the interac-
tion domain of its parent. This mechanism could be efficient; for preventing optima
extinction.

Two chromosomes will be merged if they are within the same cell. In this way,
cell dimension may also serve for computing merging distance.

After a final merging (see Section 4.5) individuals in the last population are
constdered as prototypes for the naturally existing clusters. Using obtained pro-
totypes the cluster membership is computed for all data samples.

4.5. Final Merging. According to the standard procedure if two chromosomes
are in the same cell, then they are merged. This merging condition seems to be
too strong for some particular situations. In some cases the distance between two
chromosomes may be very small in spite of they belong to different cells. For
preventing this drawback a final merging mechanism can be performed on the last
population,

Final merging is based on the following rules:

¢ if the interaction domains of two different individuals contain the same
sample points, then these individuals will be merged;

o two individuals will be merged, if each of them is in the interaction domain
of the another.

4.6. Post-Processing and Fine Tuning. Several numerical experiments re-
vealed, in some particular cases, a small difference between the number of nat-
urally existing clusters and the number of clusters may be detected by GCDC
technique, .
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FIGURE 1. Data set for clustering and the corresponding Link-
Cell division.

For Instance, in some cases three prototypes for two real clusters. This could
happen when there is only a small distance between these clusters. Lethal solutions
(empty clusters) could also remain in final population.

To overcome these shortcomings a post-processing technique is proposed. This
technique is based on the following rules:

(1) if & cluster can be expressed as the union of other clusters the chromosome
representing the prototype of this cluster will be eliminated from final
population;

(1) the prototype of an empty cluster is eliminated from final population.

After steps (i) and (ii) & fine tuning mechanism could be performed for moving
each detected prototype toward the mass center of the corresponding cluster. In
this way the naturally existing cluster structure can be detected.

5. NUMERICAL EXPERIMENTS

Two numerical experiments concerning the use of LCGCDC are described. In
firat experiment the convergence of LCGCDC is investigated. In second experiment
LCGCDC technique is compared with standard GCDC method.

5.1. Experiment 1. Convergence of the Link-Cell-Based GCDC Method.
Consider the deta set X = {z,,23,...,715}, Z; € [100,300] x [100, 300]. The data
set X and the corresponding link-cell division are depicted in Figure 1.

"The fitness landscape for a fixed value of variance parameter is depicted in Fig-
ure 2. The standard deviation of X is used for computing the veriance parameter.

The LCGCDC slgorithm involving dynamical fitness function and parameter
adaptation mechanism is used for clustering. The convergence of the algorithm Is
deplcted in Figure 3.
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Ficure 2. Fitness landscape using the Caussian fitness function.
Five peaks, corresponding to existing clusters, are detected.
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_ FIGURE 3. Convergence of the LCGCDC algorithm. Prototypes
obtained after 1, 10, 50 and 150 1terations respectively are de-
plcted.
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b.i. Experiment 2. Link-Cell-Based GCDC vs. Standard GCDC.. Twenty
tlifluront. date sets are considered. There are considerable differences between the
polnt distributions, cluster dimensions and distances between clusters among these
dntw sets. LCGCDC is compared with the stendard GCDC method.

Using standard GCDC the correct cluster number was obtained for sixteen data
pnts, For another four data sets a small difference between the algorithm output
anhd the number of real clusters has been observed.

Using LCGCDC without applying final merging and post-processing techniques
tho correct solution have been obtained for twelve data sets. For ancther data sets
some [llegal prototypes have been detected. By applying the final merging operator
four {ncorrect outputs have been corrected. In two cases three centers have been
potsidered for two closest cluster. The union of these clusters has been interpreted
: a separate cluster. In one case a lethal solution remained in final population.

y applying the post-processing techniques these small errors have been corrected.

The Link-Cell-based method has been able to determinate the correct cluster
nutber and structure in each situation. There were no essential differences be-
tween algorithms in the number of necessary iterations, but there was an essential
difference execution time. The LCGCDC method proved to be faster, Using th
innthod the short-range interactions can be easily and efficiently ca.lculat.ed with
a smaller computational power.

6. CONCLUSIONS

Propased Link-Cell technigue can be successfully used for improving evolution-
ary multi-modal optimization algorithms. By combining this technique with GC
metuheuristics a new evolutionary model for multi-modal optimization is obtained.
This new model is used to derive & new dynamic clustering algorithm.

Link-Cell technique promotes local search and allows new parameter adaptation
tuchniques.

LCGCDC clustering technique can be successfully used for solving clustering
problems in a dynamic mmanper. The algorithm is able to determinate the cor-
roct number of clusters. The naturally existing cluster structure can be correctly
detected by this new algorithm.

With Link-Cell technique short-range interactions can be easily calculated, and
Lhe: saarch process becomes faster. Numerical experiments proved that better per-
forinances and higher accuracy can be achieved by using Link-Cell-based methods.
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