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Abstract. Cross sections for inner-shell and outer-shell excitations of lithium atoms in collisions
with fast charged projectiles have been calculated. For these excitation processes, the relative
importance of the first- and second-order mechanisms, the dependence of the cross sections on the
sign of the projectile charge, as well as the effect of electron correlations in the initial and final state
have been investigated. The calculated results are compared with experimental data. Correlations
are found to be essential in explaining the large ratio between cross sections for an excitation to
the 1s(2s2p 3P) 2Pa and the 1s(2s2p 1P) 2Pb states.

The role of electron correlations in one- and two-electron transitions has mainly been
investigated for helium during the last decade [1–5]. In the case of this target, it was found
that the cross sections for double ionization and ionization–excitation with antiprotons or
electrons, respectively, are larger by a factor of about two, over a wide range of velocities,
compared with the cross sections from equivelocity proton impact [6,7]. This enhancement of
the cross sections, dependent upon the charge of the projectile, has been discussed in several
papers [8–12]. It seems to arise from the interference between the first-order and second-order
processes and was found to be strongly sensitive to electron correlations. For double excitations
of helium, in contrast, there is no such clear experimental evidence of the dependence of
the cross sections on the sign of the projectile charge, since older experiments [13] have
rather large errors and refined data [14] are only available for protons. Thus, while the Born
approximation with uncorrelated wavefunctions yields generally good results for one-electron
transitions, second-order processes and electron correlations are important to describe two-
electron transitions.

In the present letter, we investigate similar excitation processes for the more complex
lithium atom. Although we consider both outer- and inner-shell excitations, we will mainly
focus on the creation of inner-shell holes which lead to autoionizing states. Such autoionizing
states of lithium have been identified for a long time in various Auger spectra [15, 16]. The
absolute cross sections for these autoionizing states, however, have been measured only recently
by Tanis et al [17–19] for single and double K-shell vacancy production. Below, we compare
our results with these experimental cross sections and, in particular, investigate the effect of
electron correlations on these transitions. We also study the dependence of the cross sections
on the sign of the projectile charge.

Our calculations were carried out within the semiclassical approximation of a well defined
impact parameter. In this approximation, the projectile moves along a classical, straight-line
trajectory. Then, the time-dependent Schrödinger equation needs to be considered only for the
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electron system. We apply perturbation theory through second order for which the first- and
second-order transition amplitudes are given by

a(1) = −i

∫ +∞

−∞
dt ei(Ef −Ei)t 〈f |V (t)|i〉 (1)

a(2) = −
∑

k

∫ +∞

−∞
dt ei(Ef −Ek)t 〈f |V (t)|k〉

∫ t

−∞
dt ′ ei(Ek−Ei)t

′ 〈k|V (t ′)|i〉. (2)

Here i represents the initial state, k the intermediate and f the final state of the electronic
system, Ei , Ek and Ef are the corresponding energies, and V (t) represents the time-dependent
projectile–electron interaction. In order to describe the initial and final states, we use correlated
(multiconfiguration) wavefunctions as recently described for a two-electron system in [5].
Though the generalization of these formulae is also straightforward for three-electron systems
like the lithium atom, the expressions are more complex in detail, since the spin-dependent
part of the wavefunctions cannot be separated for more than two electrons. In this case we
start directly from a representation of the atomic states in terms of Slater determinants

i =
∑

i

ci det |φai
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(r2)φci
(r3)|
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f =
∑

j

dj det |φ′
aj

(r1)φ
′
bj

(r2)φ
′
cj

(r3)|

= 1√
3!

∑
j

dj

∑
P ′

(−1)P
′
P ′φ′

ai
(r1)φ

′
bi
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and use the techniques known for many-electron atoms. In equations (3) and (4), the one-
electron functions φ and φ′ denote different sets of spin-orbitals in the initial and final states,
and P and P ′ respectively denote the permutation of these orbitals. In the present computations,
different basis sets for the initial and final states have been applied in order to improve the
representation of these states and, at the same time, to keep the expansion feasible. Variational
calculations have been applied to obtain the expansion coefficients ci and dj of the Slater
determinants. As the second-order amplitude, however, includes a summation over a complete
set of intermediate states, we restricted this summation to those determinants which just differ
from the initial and final configuration by a single replacement of electrons. Although this
computational scheme neglects correlations in the intermediate states it seems to be justified
for fast collisions [4].

By taking into account the fact that the perturbation is a sum of three individual projectile–
electron interactions

V (t) =
3∑

l=1

Vl(t), (5)

the first-order amplitude (1) can be written in terms of overlap integrals and one-electron
amplitudes as

a(1) = − i

3!
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Similarly, the second-order amplitude is given by

a(2) = − i
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Here, we neglected the terms containing two interactions with the same electron, because the
second-order process of a single electron is insignificant for fast collisions.

The excitation cross section is obtained as an integral of the square of the amplitude over
the impact parameter

σ = 2π

∫
B dB |a(1) + a(2)|2 . (8)

Since the first-order amplitude a(1) is proportional to Zp the charge of the projectile, and a(2)

is proportional to Z2
p, an interference term which is proportional to Z3

p may arise in the total
cross section [8]. This term causes the dependence of the cross sections on the sign of the
projectile charge, however, it gives rise to a significant contribution only if the time-ordered
part of the second-order amplitude [20] has the same order of magnitude as the first-order
amplitude. Therefore, if this is not the case, the cross section does not depend significantly on
the sign of the projectile charge.

To obtain insight into the effect of electron correlations on the cross sections (taken into
account by the use of multiconfiguration wavefunctions in the initial and the final states),
we carried out calculations in three different approximations: (1) using single-configuration
(Hartree–Fock) wavefunctions (SC); (2) using multiconfiguration wavefunctions with a limited
orbital basis up to the principal quantum numbern = 2 (MC2); and (3) using multiconfiguration
wavefunctions with an orbital basis up to n = 3 (MC3). For the given excitations of lithium
atoms, this already results in the approximation MC2 in a wavefunction expansion of 38
determinants for the ground state and of 52 and 46 determinants for the odd- and even-parity
excited states, respectively. In the approximation MC3, the corresponding expansions then
include 646, 798 and 950 determinants. Due to the occurance of open shells, most of the
states must be described by a linear combination of several determinants even in the single-
configuration approximation, a serious difficulty which rapidly increases if more open shells
get involved.

We first applied our method to study outer-shell excitations of lithium by fast proton
and antiproton impact (or by electrons with equivalent velocities). Figure 1 represents our
calculated cross sections for the excitation of the lowest-lying 1s22p 2P state using the three
different approximations along with the recommended values of Wutte et al [21] and some
theoretical [22] and experimental [23] data for proton projectiles. In this case, the first-order
dipole excitation process clearly dominates the second-order mechanism and, thus, the total
cross sections as obtained for positive and negative projectiles are practically the same. For
these outer-shell excitations, the use of multi-configuration wavefunctions considering orbitals
up to n = 2 has insignificant effect and the inclusion of configurations up to n = 3 has increased
the cross sections only slightly.

This situation changes significantly if we consider inner-shell excitations. In these cases
the use of correlated wavefunctions for representing the initial and final states may dramatically
change the values of the cross sections for some of the excited states.

Experimentally, the most recent and complete data for the excitation of the autoionizing
states of lithium atoms [18,19] are available for 95 MeV u−1 Ar18+ projectiles. For this reason,
below we present our results for the inner-shell excitation particularly for collisions with this
projectile.
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Figure 1. Cross sections for the excitation of lithium atoms to the 1s22p state by proton impact
as a function of the projectile energy. Our results are calculated in single-configuration (SC) and
multiconfiguration (MC2 and MC3) approximations and are compared with other theoretical [22]
and experimental [23] data, as well as with the recommended cross sections of Wutte et al [21].

The most remarkable effect of correlation arises for an excitation of the 1s(2s2p 3P) 2Pa

and 1s(2s2p 1P) 2Pb states. If no correlation is taken into account beyond a single-configuration
approach, these states are linear combinations of the Slater determinants
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where the numbers in parentheses denote the spin states of the electrons. The coefficients for
the determinants have been deduced by coupling successively the spins of the three electrons.
In these formulae we neglect the orbital momentum of the p electron and spin–orbit coupling,
but that would not change our conclusion. In contrast, the ground state in this approximation
is simply obtained from

1s22s 2S
(
+ 1

2

) = det
∣∣1s

(
+ 1

2

)
1s

(− 1
2

)
2s

(
+ 1

2

)∣∣ . (11)

When applying formula (6) for this special case of uncorrelated transition amplitudes to the
excited states above, we just take into account the direct 1s → 2p (dipole) transition and neglect
the indirect 2s→2p transition which is accompanied by a 1s→2s shake-up process. Moreover,
suppose that a spin–flip is forbidden for the individual electrons, only those determinants with
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Table 1. Mixing coefficients of the Slater determinants for the 1s(2s2p 3P) 2P and 1s(2s2p 1P) 2P
states, denoted by 2Pa and 2Pb respectively, as obtained from correlated (multiconfiguration) and
uncorrelated computations. To classify the individual determinants in the expansion we display
the signs of the (three) spins and the value of ml for the p electron, e.g. − + +(0) denotes
det

∣∣1s
(− 1

2

)
1s

(
+ 1

2

)
2p

(
0, + 1

2

)∣∣ .

Coefficients of the determinants correlated/uncorrelated

State (J, MJ ) − + +(0) − + −(+1) + − +(0) + − −(+1) + + −(0) − − +(+1)

2Pa
( 3

2 , 1
2

) −0.641/−0.667 −0.130/−0.236 0.178/0.333 0.448/0.471 0.470/0.333 −0.337/−0.236
2Pb

( 3
2 , 1

2

) −0.167/0 −0.451/−0.408 0.640/0.577 0.120/0 0.475/0.577 0.338/0.408

2Pa
( 1

2 , 1
2

)
0.460/0.471 −0.187/−0.333 −0.127/−0.236 0.643/0.667 −0.322/−0.236 −0.463/−0.333

2Pb
( 1

2 , 1
2

)
0.109/0 −0.638/−0.577 −0.453/−0.408 0.158/0 0.338/0.408 0.482/0.577

+ + −(+1) − + +(+1) + − +(+1)

2Pa
( 3

2 , 3
2

)
0.567/0.408 −0.793/−0.816 0.209/0.408

2Pb
( 3

2 , 3
2

) −0.579/−0.707 −0.202/0 0.787/0.707

the same spin-state of the 2s electron as in the initial state remain in the expansion of the final
states. Note that the one-electron amplitude then simply becomes

a1 a,b(1s → 2p) =
∫ +∞

−∞
dt ei(Ea,b−Ei)t 〈2p′|V1(t)|1s〉, (12)

while the corresponding amplitudes of the two excited states are

a(1) [1s(2s2p 3P) 2Pa] =
√

3

2
〈1s′|1s〉〈2s′|2s〉a1a(1s → 2p) (13)

a(1) [1s(2s2p 1P) 2Pb] =
√

1

2
〈1s′|1s〉〈2s′|2s〉a1b(1s → 2p), (14)

with Ea and Eb being the total energies of these excited states. Following this (uncorrelated)
single-configuration approximation, the ratio of the cross sections for excitation into the triplet
and the singlet states should always be around 3, because the small energy difference between
the two excited states leads to almost the same one-electron amplitude (they differ by 0.2%).
Experimentally, however, a ratio of 21 was found, much larger than that derived from such a
simple approximation [19].

The configuration interaction among these inner-shell excited levels of lithium clearly
changes the representation of the atomic states, i.e. the coefficients in the determinant expansion
relative to the single-configuration approximation. An improved, correlated computation,
which includes active sets of orbitals up to n = 2, leads to the coefficients displayed in
table 1; they have to be compared with the (uncorrelated) coefficients as obtained from the
pure coupling of the spins of the electrons (cf equations (9) and (10)) along with the orbital
momentum of the 2p electron. These changes in the coefficients also lead to quite a remarkable
modification of the ratio of the cross sections for excitations into the 2Pa and 2Pb states which
increases to more than 15. This ratio has to be compared with the experimental value of 21 as
listed in table 2. We also observed that the inclusion of the n = 3 orbitals into the active set
further lowers the total cross section for the two states close to its experimental value. These
correlations, however, still increase the ratio of the individual cross sections significantly to
almost double those of the experimental ones. Our results therefore suggest that even larger
wavefunction expansions are needed to obtain a satisfactory agreement with experiment. But
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Table 2. Cross sections (in 10−20 cm2) for the excitation of the 1s(2s2p 3P) 2P (2Pa) and
1s(2s2p 1P) 2P (2Pb) states of lithium by 95 MeV u−1 Ar18+ projectiles, calculated in three different
approximations and compared with experiment. SC denotes a single configuration approximation
neglecting the shake mechanism, while SCSh includes the shake mechanism. MC2 and MC3
denote multiconfiguration calculations at two different levels of complexity.

SC SCSh MC2 (n � 2) MC3 (n � 3) Exp. [19]

2Pa 981 838 1310 1222 950
2Pb 326 278 85.5 27.5 45
2Pa + 2Pb 1307 1116 1395 1249 995
2Pa/

2Pb 3.01 3.01 15.3 44.1 21

Table 3. Calculated cross sections (in 10−20 cm2) for the excitation of lithium by 95 MeV u−1

Ar18+ projectiles, using configuration interaction (MC3) wavefunctions in comparison with the
experimental data and results from a Born approximation [19].

State First order second order Present theory Exp. [19] Theory [19]

(1s2s2) 2S 22.2 1.35 23.6 12.7 21
1s(2s2p 3P) 2Pa 1222 — 1222 950 —
1s(2s2p 1P) 2Pb 27.5 — 27.5 45 —
2Pa + 2Pb 1249 — 1249 995 972
(1s2p2) 2D 0.20 11 12.5 9.49 18.3
(1s2s 3S)3s 2S 5.95 3.32 9.22 — —
1s2s3p 2P 138a — 138a 173 166
(1s2s 3S)3d 2D 2.02 2.45 4.54 — —
(1s2s 1S)3s 2S 1.65 0.07 1.74 — —
1s2s4p 2P 42a — 42a 66 82
(1s2p2) 2S 20.9 0.87 21.9 28.1 4.8
1s2s5p 2P 20.9a — 20.9a — —

a Calculated in a single-configuration approximation.

the presently applied expansions already show, however, that the sum of the cross sections
appears less sensitive to the electron correlations than their ratio does.

Table 3 presents our results for the inner-shell excitation of lithium by 95 MeV u−1 Ar18+

projectiles. In order to specify the importance of the first- and second-order mechanisms, their
individual contributions are listed separately. Excluding the np excited states with n � 3,
our final results are obtained within the approximation MC3. Our theoretical cross sections
show good agreement with the experimental data. Relative to the theoretical data from the
Born approximation by Tanis et al [19] (i.e. by applying single-configuration wavefunctions),
the largest difference arises for the excitation of the (1s2p2) 2S state, most likely owing to the
strong configuration interaction of this configuration with the (1s2s2) 2S one. Excepting this,
and the already discussed case of the 1s2s2p 2P states, the inclusion of electron correlations in
the calculations does not cause very important modifications to the cross sections.

In order to investigate the dependence of the inner-shell excitation cross sections on the
energy and on the charge sign of the projectile, we have also performed the calculations for
proton and antiproton projectiles, although there are no available experimental data to compare
with.

Figure 2 displays results for the excitation to the 1s2s2p 2P states. Since the first-order
process dominates the overall excitation into these states, the cross sections do not depend
much on the sign of the projectile charge. The ratio of the cross sections to the two states
becomes less influenced by electron correlations as the projectile energies increase.
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Figure 2. Cross sections for the excitation of the 1s(2s2p 3P) 2Pa and 1s(2s2p 1P) 2Pb states of
lithium by proton impact, as a function of the projectile energy, calculated in single configuration
(SC) and configuration interaction (MC3) approximations.
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Figure 3. Cross sections for the excitation of the (1s2s2) 2S and (1s2p2) 2S states of lithium by
proton and antiproton impact, as a function of the projectile energy.

Figures 3–5 display the energy dependence of the cross sections for the excitation of the
(1s2s2) 2S, (1s2p2) 2S, (1s2s 3S)3s 2S, (1s2s 1S)3s 2S, (1s2p2) 2D and (1s2s 3S)3d 2D states.
Note that the interference between the first and second-order amplitudes may lead to higher
cross sections for antiprotons in some cases (cf (1s2s2) 2S, (1s2s 3S)3s 2S, (1s2p2) 2D), while
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Figure 4. As figure 3, but for excitation of the (1s2s 3S)3s 2S and (1s2s 1S)3s 2S states.
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Figure 5. As figure 3, but for excitation of the (1s2p2) 2D and (1s2s 3S)3d 2D states.

they are lower than for protons in other cases (cf (1s2p2) 2S, (1s2s1S)3s 2S, (1s2s 3S)3d 2D).
Experimental investigations on the double ionization and the ionization–excitation for helium
[6, 7] and for the hydrogen molecule [24] showed that cross sections for negative projectiles
are typically higher than those for positive projectiles with equal velocity over a wide velocity
range. Theoretical calculations, however, suggest that for some two-electron transitions in
helium—where no experimental data are available—this should not be always the case [25,26].
It therefore seems that for inner-shell excitations of lithium also, the sign of the interference
contribution to the cross section depends on the final excited state.
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It is interesting to remark upon the different behaviour of the cross sections as a function
of the projectile energy for the excited states represented in figure 5. While for the (1s2p2) 2D
state the second-order mechanism dominates and the cross section decreases as 1/E2

p, the
first-order contributions are dominant for excitations to the (1s2s 3S)3d 2D state for which the
cross section decreases roughly proportional to 1/Ep; here, Ep denotes the projectile energy.

We conclude that our calculated cross sections for the inner-shell excitation of lithium are
in satisfactory agreement with experimental data [19]. The large ratio of the cross sections for
the excitation to the 1s(2s2p 3P) 2Pa and 1s(2s2p 1P) 2Pb states is due to electron correlations
which were taken into account by allowing configuration mixing in the final excited states.
For the first time, we also investigated the dependence of the cross sections on the sign of the
projectile charge in the case of a complex system like lithium.

One of the authors (LN) has been supported by CNCSIS (Romania), Domus Hungarica and
Bergen Computational Physics Laboratory.
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