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Abstract

The aim of this paper is to approximate the solution of a stochastic
differential equation driven by fractional Brownian motion using a series
expansion for the noise. We prove that the solution of the approximating
equations converge in probability to the solution of the given equation.
We illustrate the approximation through an example from mathematical
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1 Introduction

We consider the following stochastic differential equation driven by fractional
Brownian motion

X(t) = X0 +

t∫
0

F (X(s), s)ds +

t∫
0

G(X(s), s)dB(s), t ∈ [t0]. (1)

We assume that with probability 1 we have F ∈ C(Rn×[0, T ], Rn), G ∈ C1(Rn×
[0, T ], Rn) and for each t ∈ [0, T ] the functions F (·, t), ∂G(·, t)

∂x
,
∂G(·, t)

∂t
are

locally Lipschitz.
The fractional Brownian motion

(
B(t)

)
t∈[0,1]

with Hurst index H ∈ (0, 1)

we approximate using the series expansion given in [5]. Let Jν be the Bessel
function of first type of order ν and let x1 < x2 < . . . be the positive, real zeros
of J−H , while y1 < y2 < . . . are the positive, real zeros of J1−H . We consider
(Xn)n∈N and (Yn)n∈N to be two independent sequences of centered Gaussian
random variables such that for each n ∈ N we have

VarXn =
2c2

H

x2H
n J2

1−H(xn)
, VarYn =

2c2
H

y2H
n J2

−H(yn)
,

where

c2
H =

sin(πH)
π

Γ(1 + 2H).

In [5] it is proved that a fractional Brownian motion
(
B(t)

)
t∈[0,1]

with Hurst

index H ∈ (0, 1) can be written as

B(t) =
∞∑

n=1

sin(xnt)
xn

Xn +
∞∑

n=1

1 − cos(ynt)
yn

Yn, t ∈ [0, 1].
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The equation (1) we approximate for each N ∈ N through

XN (t) = X0 +

t∫
0

F (XN (s), s)ds +

t∫
0

G(XN (s), s)dBN (s), (2)

(3)

where

BN (t) =
N∑

n=1

sin(xnt)
xn

Xn +
N∑

n=1

1 − cos(ynt)
yn

Yn, t ∈ [0, 1], N ∈ N.

We will show that the equation (2) has a local solution, which converges in
probability to the solution of (1) in the interval, where the solutions exist. We
illustrate the approximation through the model for the price of risky assets from
mathematical finance. The figures are generated by a Matlab program.

Investigations concerning stochastic differential equations driven by a frac-
tional Brownian motion or more general fractional process have been done by
L. Coutin and L. Decreusefond [2], L. Coutin and Z. Qian [3], M.L. Kleptsyna,
P.E. Kloeden and V.V. Anh [7], F. Klingenhöfer and M. Zähle [8], M. Zähle
[15], [16], M. Errami and F. Russo [6] and many others. These studies were mo-
tivated by the problems occurring in mathematical finance, telecommunication
networks, biology, hydrology etc. The main difficulty raised by the fractional
Brownian motion and the processes related to it, is that they are not Markovian,
even more, they are not semimartingales. Hence a new approach to stochas-
tic fractional calculus was developed. There exist several ways to define the
stochastic integral, pathwise and related techniques, Dirichlet forms, anticipat-
ing techniques using Malliavin calculus and Skorohod integration (e.g. [1], [14],
[10],[4]). In this paper we use the approach of M. Zähle [14], based on the ideas
of Lebesgue-Stieltjes integrals and fractional calculus [12].

2 Series Expansion for Fractional Brownian Mo-

tion B

A Gaussian random process
(
B(t)

)
t≥0

is called fractional Brownian motion

with Hurst index H ∈ (0, 1), if it has zero mean, continuous sample paths
and covariance function

E
(
B(s)B(t)

)
=

1
2

(
t2H + s2H − |s − t|2H

)
.

Note that if H = 1
2 , then the fractional Brownian motion is the ordinary stan-

dard Brownian motion.
The fractional Brownian motion B has on any finite interval [0, T ] Hölder

continuous paths with exponent γ ∈ (0, H) (see [4]). Moreover, the quadratic
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variation on [a, b] ⊆ [0, T ] is

lim
|Δn|→0

n∑
i=1

(
B(tni ) − B(tni−1)

)2

=

⎧⎨
⎩

∞ if H < 1
2 ,

b − a if H = 1
2 ,

0 if H > 1
2 ,

(4)

where Δn = (a = tn0 < . . . < tnn = b) is a partition of [a, b] with |Δn| =
max

1≤i≤n
(tni − tni−1).

If H �= 1
2 , then the convergence in (4) holds with probability 1 uniformly in

the set of all partitions of [a, b], while for H = 1
2 the convergence in (4) holds in

mean square uniformly in the set of all partitions of [a, b]. Note that, if H �= 1
2 ,

then B is not a semimartingale, so the classical stochastic integration does not
work. But the Hölder continuity of B will ensure the existence of integrals

T∫
0

G(u)dB(u),

defined in terms of fractional integration (see Section 4) as investigated in [14]
and [16].

For ν �= −1,−2, . . . the Bessel function Jν of the first type of order ν
is defined on the region {z ∈ C : | arg z| < π} as the absolutely convergent sum

Jν(z) =
∞∑

k=0

(−1)k

Γ(k + 1)Γ(ν + k + 1)

(z

2

)ν+2k

.

It is known that for ν > −1 the function Jν has a countable number of real,
positive simple zeros (see [13], Chapter 15). Let x1 < x2 < . . . be the positive,
real zeros of J−H and let y1 < y2 < . . . be the positive, real zeros of J1−H .

Let (Xn)n∈N and (Yn)n∈N be two independent sequences of independent
Gaussian random variables such that for each n ∈ N we have

E(Xn) = E(Yn) = 0

and

VarXn =
2c2

H

x2H
n J2

1−H(xn)
, VarYn =

2c2
H

y2H
n J2

−H(yn)
,

where

c2
H =

sin(πH)
π

Γ(1 + 2H).

In [5] Theorem 4.5 it is proved that the random process
(
B(t)

)
t∈[0,1]

given

by

B(t) =
∞∑

n=1

sin(xnt)
xn

Xn +
∞∑

n=1

1 − cos(ynt)
yn

Yn, t ∈ [0, 1]
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Figure 1: Bessel functions: J−H (with ’·’), J1−H (with ’-’ ), H = 0.65
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Figure 2: Approximation BN of fractional Brownian motion

is well defined and both series converge absolutely and uniformly in t ∈ [0, 1].
The process B is a fractional Brownian motion with Hurst index H .

For each N ∈ N we define the process

BN (t) =
N∑

n=1

sin(xnt)
xn

Xn +
N∑

n=1

1 − cos(ynt)
yn

Yn, t ∈ [0, 1], (5)

then using the above mentioned result from [5] we have

P ( lim
N→∞

sup
t∈[0,1]

|B(t) − BN (t)| = 0) = 1. (6)

In the sequel we need the following result:
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Theorem 2.1 For all N ∈ N the approximating processes (BN (t))t∈[0,1] are
with probability 1 Lipschitz continuous.

Let N ∈ N be fixed. We write

|BN (t)−BN (s)| ≤
N∑

n=1

∣∣∣∣ sin(xnt) − sin(xns)
xn

Xn

∣∣∣∣ +
N∑

n=1

∣∣∣∣cos(xns) − cos(xnt)
xn

Yn

∣∣∣∣ .

But the functions sin and cos are Lipschitz continuous, therefore

|BN (t) − BN (s)| ≤ |t − s|
N∑

n=1

(
|Xn| + |Yn|

)
= CN |t − s|foralls, t ∈ [0, 1],

where CN =
N∑

n=1

(
|Xn| + |Yn|

)
< ∞ is a random variable.

3 Fractional Integrals and Derivatives

Let a, b ∈ R, a < b and f, g : R → R. We use notions and results about
fractional calculus, from [12] and [14]:

f(a+) := lim
δ↘0

f(a + δ), f(b−) := lim
δ↘0

f(b − δ),

fa+(x) = I(a,b)(f(x) − f(a+)), gb−(x) = I(a,b)(g(x) − g(b−)).

Note that for α > 0 we have (−1)α = eiπα.
For f ∈ L1(a, b) and α > 0 the left- and right-sided fractional Rieman-

Liouville integral of f of order α on (a, b) is given for a.e. x by

Iα
a+f(x) =

1
Γ(α)

x∫
a

(x − y)α−1f(y)dy

and

Iα
b−f(x) =

(−1)−α

Γ(α)

b∫
x

(y − x)α−1f(y)dy.

For p > 1 let Iα
a+(Lp(a, b)), be the class of functions f which have the rep-

resentation f = Iα
a+Φ, where Φ ∈ Lp(a, b), and let Iα

b−(Lp(a, b)) be the class
of functions g which have the representation g = Iα

b−ϕ, where ϕ ∈ Lp(a, b).
If 0 < α < 1, then the function Φ, respectively ϕ, in the representations
above agree a.s. with the left-sided and respectively right-sided fractional
derivative of f of order α (in the Weyl representation)

Φ(x) = Dα
a+f(x) =

1
Γ(1 − α)

⎛
⎝ f(x)

(x − a)α
+ α

x∫
a

f(x) − f(y)
(x − y)α+1

dy

⎞
⎠ I(a,b)(x)
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and

ϕ(x) = Dα
b−g(x) =

(−1)α

Γ(1 − α)

⎛
⎝ g(x)

(b − x)α
+ α

b∫
x

g(x) − g(y)
(y − x)α+1

dy

⎞
⎠ I(a,b)(x).

The convergence at the singularity y = x holds in the Lp-sense. Recall that

Iα
a+(Dα

a+f) = f for f ∈ Iα
a+(Lp(a, b)), Iα

b−(Dα
b−g) = g for g ∈ Iα

b−(Lp(a, b))

and
Dα

a+(Iα
a+f) = f, Dα

b−(Iα
b−g) = g for f, g ∈ L1(a, b).

For completeness we denote

D0
a+f(x) = f(x), D0

b−g(x) = g(x), D1
a+f(x) = f ′(x), D1

b−g(x) = g′(x).

Let 0 ≤ α ≤ 1. The fractional integral of f with respect to g is defined as

b∫
a

f(x)dg(x) = (−1)α

b∫
a

Dα
a+fa+(x)D1−α

b− gb−(x)dx (7)

+f(a+)(g(b−)− g(a+))

if fa+ ∈ Iα
a+(Lp(a, b)), gb− ∈ I1−α

b− (Lq(a, b)) for 1
p + 1

q ≤ 1.
In our investigations we will take p = q = 2. If 0 ≤ α < 1

2 , then the integral
in (7) can be written as

b∫
a

f(x)dg(x) = (−1)α

b∫
a

Dα
a+f(x)D1−α

b− gb−(x)dx (8)

if f ∈ Iα
a+(L2(a, b)), f(a+) exists, gb− ∈ I1−α

b− (L2(a, b)) (see [14]).

4 The Stochastic Integral

Without loss of generality we consider 0 < T ≤ 1, because for arbitrary T > 0
we can rescale the time variable using the H-self similar property of the frac-
tional Brownian motion meaning that

(
B(ct)

)
t≥0

and
(
cHB(t)

)
t≥0

are equal

in distribution for every c > 0.

We will define the

T∫
0

G(u)dB(u) Ito integral instead of

t∫
0

G(u)dB(u) and use

t∫
0

G(u)dB(u) =

T∫
0

I[0,t](u)G(u)dB(u) for t ∈ [0, T ]
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(by Theorem 2.5, p. 345, in [14]).
We consider α > 1 − H . It follows by (8) that

T∫
0

G(u)dB(u) = (−1)α

T∫
0

Dα
0+G(u)D1−α

T− BT−(u)du (9)

for G ∈ Iα
0+(L2(0, T )), where G(0+) exists and BT− ∈ I1−α

T− (L2(0, T )).
The condition G ∈ Iα

0+(L2(0, T )) (with probability 1) means that G ∈
L2(0, T ) and

Iε(x) =

x−ε∫
0

G(x) − G(y)
(x − y)α+1

dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0.
The condition BT− ∈ I1−α

T− (L2(0, T )) means BT− ∈ L2(0, T ) and

Jε(x) =

T∫
x+ε

B(x) − B(y)
(y − x)2−α

dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0 This condition for B is fulfilled for α > 1 − H ,
since the fractional Brownian motion B is a.s. Hölder continuous with exponent
γ ∈ (0, H) (see [4]).

We will use (8) for the integrals with respect the approximating processes(
BN (t)

)
t∈[0,T ]

. Observe that BN,T− ∈ I1−α
T− (L2(0, T )), which follows from the

Lipschitz continuity property in Theorem 2.1. We have

T∫
0

G(u)dBN (u) = (−1)α

T∫
0

Dα
0+G(u)D1−α

T− BN,T−(u)du (10)

for G ∈ Iα
0+(L2(0, T )), where G(0+) exists.

Let
(
Z(t)

)
t∈[0,T ]

be a cádlág process. Its generalized quadratic varia-

tion process
(
[Z](t)

)
t∈[0,T ]

is defined as

[Z](t) = lim
ε↘0

ε

1∫
0

t∫
0

1
u

(Zt−(s + u) − Zt−(s))2dsdu + (Z(t) − Z(t−))2,

if the limit exists uniformly in probability (see [11], also in [16] Section 5).
In particular, if B is a fractional Brownian motion with Hurst index H ∈

(1
2 , 1) and BN is an approximation of B as given in (5), it is easy to verify that

[B](t) = 0 and [BN ](t) = 0 for each t ∈ [0, T ], (11)
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because B is locally Hölder continuous and BN is Lipschitz continuous. The
Ito formula for change of variable for fractional integrals is given in the next
theorem.

Theorem 4.1 ([16], Theorem 5.8, p. 170) Let
(
Z(t)

)
t∈[0,T ]

be a continu-

ous process with generalized quadratic variation [Z]. Let Q : R × [0, T ] → R

be a random function such that a.s. we have Q ∈ C1(R × [0, T ]) and ∂2Q
∂x2 ∈

C(R × [0, T ]). Then, for t0, t ∈ [0, T ] we have

Q(Z(t), t) − Q(Z(t0), t0) =

t∫
t0

∂Q

∂x
(Z(s), s)dZ(s) +

t∫
t0

∂Q

∂t
(Z(s), s)ds

+

t∫
t0

∂2Q

∂2x
(Z(s), s)d[Z]s.

Let 1 − H < α < 1
2 and let G ∈ Iα

0+(L2(0, T )) such that G(0+) exists. We
define the processes

Z(t) =

t∫
0

G(s)dB(s) and ZN (t) =

t∫
0

G(s)dBN (s), t ∈ (0, T ].

Then by Theorem 5.6, p. 167 in [16] it follows that

[Z](t) = 0 and [ZN ](t) = 0.

Using Theorem 4.1, it follows that, if Q : R × [0, T ] → R is a random function
such that a.s. we have Q ∈ C1(R × [0, T ]) and ∂2Q

∂x2 ∈ C(R × [0, T ]), then for
t0, t ∈ [0, T ] we have

Q(Z(t), t) − Q(Z(t0), t0) =

t∫
t0

∂Q

∂x
(Z(s), s)G(s)dB(s) (12)

+

t∫
t0

∂Q

∂t
(Z(s), s)ds

and

Q(ZN (t), t) − Q(ZN (t0), t0) =

t∫
t0

∂Q

∂x
(ZN(s), s)G(s)dBN (s) (13)

+

t∫
t0

∂Q

∂t
(ZN (s), s)ds.
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5 Stochastic Differential Equations Driven by
Fractional Brownian Motion

Let
(
B(t)

)
t≥0

be a fractional Brownian motion with Hurst parameter H such

that H > 1
2 . We investigate stochastic differential equations of the form

dX(t) = F (X(t), t)dt + G(X(t), t)dB(t), (14)
X(t0) = X0,

where t0 ∈ (0, T ], X0 is a random vector in Rn and the random functions F and
G satisfy with probability 1 the following conditions:

(C1) F ∈ C(Rn × [0, T ], Rn), G ∈ C1(Rn × [0, T ], Rn);

(C2) for each t ∈ [0, T ] the functions F (·, t), ∂G(·, t)
∂xi

,
∂G(·, t)

∂t
are locally Lips-

chitz for each i ∈ {1, . . . , n}.
We consider the pathwise auxiliary partial differential equation on Rn×R×[0, T ]

∂K

∂z
(y, z, t) = G(K(y, z, t), t), (15)

K(Y0, Z0, t0) = X0,

where Y0 is an arbitrary random vector in Rn and Z0 an arbitrary random
variable in R. From the theory of differential equations it follows that with
probability 1 there exists a local solution K ∈ C1(Rn × [0, T ], Rn) in a neigh-
bourhood V of (Y0, Z0, t0) with partial derivatives being Lipschitz in the variable
y and

det
(

Ki

∂yj
(y, z, t)

)
1≤i,j≤n

�= 0.

We have for (x, y, t) ∈ V

∂2K

∂z2
(y, z, t) =

n∑
j=1

∂G

∂xj
(K(y, z, t), t)Gj(K(y, z, t), t).

We also consider the pathwise differential equation (in matrix representation)
on [0, T ]

dY (t) =
(

K

∂y
(Y (t), B(t), t)

)−1 [
F (K(Y (t), B(t), t), t) − ∂K

∂t
(Y (t), B(t), t)

]
dt

Y (t0) = Y0,

which has a unique local solution on a maximal interval (t10, t
2
0) ⊆ [0, T ] with

t0 ∈ (t10, t
2
0) (see Theorem 7.1 from Appendix).

10



Applying the Ito formula, see Theorem 4.1 and relation (12), to the random
function Q(z, t) = K(Y (t), z, t) (in fact, successively for K1, . . . , Kn) and the
fractional Brownian motion B we obtain

K(Y (t), B(t), t) − K(Y (t0), B(t0), t0)

=
n∑

j=1

t∫
t0

∂K

∂yj
(Y (s), B(s), s)dY j(s) +

t∫
t0

∂K

∂z
(Y (s), B(s), s)dB(s)

+

t∫
t0

∂K

∂t
(Y (s), B(s), s)ds

=
n∑

j=1

t∫
t0

∂K

∂yj
(Y (s), B(s), s)dY j(s) +

t∫
t0

G(K(Y (s), B(s), s), s)dB(s)

+

t∫
t0

∂K

∂t
(Y (s), B(s), s)ds

=

t∫
t0

F (K(Y (s), B(s), s), s)ds +

t∫
t0

G(K(Y (s), B(s), s), s)dB(s).

Therefore,
X(t) := K(Y (t), B(t), t)

satisfies

X(t) = X0 +

t∫
t0

F (X(s), s)ds +

t∫
t0

G(X(s), s)dB(s).

Instead of the process
(
B(t)

)
t∈[0,1]

we consider its approximations
(
BN (t)

)
t∈[0,1]

given in (5). For each N ∈ N we consider the pathwise differential equation (in
matrix representation)

dYN (t) =
(

∂K

∂y
(YN (t), BN (t), t)

)−1 [
F (K(YN (t), BN (t), t), t)

−∂K

∂t
(YN (t), BN (t), t)

]
dt

YN (t0) = Y0,

which has a unique local solution YN on a maximal interval (t1, t2) ⊂ (t10, t
2
0)

of existence which contains t0 (see Theorem 7.2 from Appendix). Applying
the Ito formula, see Theorem 4.1 and (13), to the random function Q(z, t) =
K(YN (t), z, t) (in fact, successively for K1, . . . , Kn) and the process BN we
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obtain

K(YN (t), BN (t), t) − K(YN (t0), BN (t0), t0)

=
n∑

j=1

t∫
t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫
t0

∂K

∂z
(YN (s), BN (s), s)dBN (s)

+

t∫
t0

∂K

∂t
(YN (s), BN (s), s)ds

=
n∑

j=1

t∫
t0

∂K

∂yj
(YN (s), BN (s), s)dY j

N (s) +

t∫
t0

G(K(YN (s), BN (s), s), s)dBN (s)

+

t∫
t0

∂K

∂t
(YN (s), BN (s), s)ds

=

t∫
t0

F (K(YN (s), BN (s), s), s)ds +

t∫
t0

G(K(YN (s), BN (s), s), s)dBN (s).

Therefore,
XN (t) := K(YN (t), BN (t), t)

satisfies

XN(t) = X0 +

t∫
t0

F (XN (s), s)ds +

t∫
t0

G(XN (s), s)dBN (s), t ∈ (t1, t2).

By Theorem 7.2 it follows that we have the following pathwise property

lim
N→∞

sup
t∈(t1,t2)

‖YN (t) − Y (t)‖ = 0.

Then the continuity properties of K and (6) imply that for a.e. ω ∈ Ω it holds

lim
N→∞

sup
t∈(t1,t2)

‖XN(t) − X(t)‖ = 0.

By this we have proved the main result of our paper:

Theorem 5.1 Let B be a fractional Brownian motion approximated through
the processes BN given in (5) and (6). Let F, G : Rn × [0, T ] → Rn be random
functions satisfying with probability 1 the conditions (C1) and (C2). Let t0 ∈
(0, T ] be fixed. Then, each of the stochastic equations

X(t) = X0 +

t∫
t0

F (X(s), s)ds +

t∫
t0

G(X(s), s)dB(s),

12



XN(t) = X0 +

t∫
t0

F (XN (s), s)ds +

t∫
t0

G(XN (s), s)dBN (s), N ∈ N

admits almost surely a unique local solution on a common interval (t1, t2) (which
is independent of N and contains t0). Moreover, we have the following approx-
imation result

P ( lim
N→∞

sup
t∈(t1,t2)

‖XN(t) − X(t)‖ = 0) = 1.

6 Application

We consider the one dimensional stochastic linear equation from finance math-
ematics, modeling the price S of a stock

S(t) = S0 +

t∫
0

μ(s)S(s)ds +

t∫
0

σ(s)S(s)dB(s),

where (B(t))t∈[0,T ] is a fractional Brownian motion with Hurst index H > 1
2 , μ

is the interest rate and σ the dispersion function.
It is known (see [8], p. 1022) that this equation has the following unique

solution

S(t) = S0 exp

⎧⎨
⎩

t∫
0

μ(u)du +

t∫
0

σ(u)dB(u)

⎫⎬
⎭ for all t ∈ [0, T ].

By the methods of the above section we approximate B through the processes
BN , via (5) and (6) and consider

SN(t) = S0 exp

⎧⎨
⎩

t∫
0

μ(u)du +

t∫
0

σ(u)dBN (u)

⎫⎬
⎭ for all t ∈ [0, T ].

Using Theorem 5.1 it follows that

P ( lim
N→∞

sup
t∈[0,T ]

‖SN(t) − S(t)‖ = 0) = 1.

In the special case when μ and σ are constants, we have that the price of a
stock is

S(t) = S0e
μt+σB(t)

and we can simulate it by computer using

SN (t) = S0e
μt+σBN (t)

as given in Figure 3.
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Figure 3: Approximated solution SN

7 Appendix

We prove the existence of the local solution of a deterministic equation with
locally Lipschitz function (in the version we need in our paper). We adapt the
ideas from the proof of Theorem 1.4 in [9]. We give the proof here in order to
make the proof of Theorem 7.2 more understandable.

In what follows ‖ · ‖ denotes the norm in Rn.

Theorem 7.1 Let A : Rn × [0,∞) → Rn be such that for each u ∈ Rn the
function A(u, ·) is continuous and for any c, T > 0 we have

‖A(x, t) − A(y, t)‖ ≤ L(c, T )‖x− y‖
for all x, y ∈ Rn with ‖x‖ ≤ c, ‖y‖ ≤ c and t ∈ [0, T ], where L(c, T ) > 0 is the
locally Lipschitz constant. We consider the equation

U(t) = U0 +

t∫
t0

A(U(s), s)ds, (16)

where U0 ∈ Rn and t0 > 0 fixed. Then equation (16) has a local solution, i.e.
there exists a maximal interval (t1, t2) ∈ [0,∞) containing t0 and a function
U : Rn × (t1, t2) → Rn such that (16) is satisfied for each t ∈ (t1, t2).

For any τ > 0 let M(τ) = max
t∈[0,τ+1]

‖A(0, t)‖. We consider

δ = min
{

1,
‖U0‖

2‖U0‖L(2‖U0‖, t0 + 1) + M(t0)
, t0

}
.

We define the mapping A : C([t0 − δ, t0 + δ], Rn) → C([t0 − δ, t0 + δ], Rn)

(AU)(t) := U0 +

t∫
t0

A(U(s), s)ds, t ∈ [t0 − δ, t0 + δ].
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We prove that A maps the ball B(0, R) of radius R = 2‖U0‖ centered at 0
of the space C([t0 − δ, t0 + δ], Rn) into itself. For U ∈ B(0, R) and for each
t ∈ [t0 − δ, t0 + δ] we have the following estimates

‖A(U)(t)‖ ≤ ‖U0‖ +

∣∣∣∣∣∣
t∫

t0

‖A(U(s), s) − A(0, s)‖ + ‖A(0, s)‖
)
ds

∣∣∣∣∣∣
≤ ‖U0‖ + (L(R, t0 + 1)R + M(t0))|t − t0| ≤ 2‖U0‖ = R.

Therefore, AU ∈ B(0, R). It is easy to verify that for each U, V ∈ B(0, R) and
each t ∈ [t0 − δ, t0 + δ] we have

‖A(U)(t) −A(V )(t)‖ ≤ L(R, t0 + 1)|t − t0| sup
t∈[t0−δ,t0+δ]

‖U(t) − V (t)‖.

For each N ∈ N we denote

AN = A ◦ . . . ◦ A︸ ︷︷ ︸
N times

.

From the definition of A it then follows for each N ∈ N and each t ∈ [t0−δ, t0+δ]
that

‖AN (U)(t) −AN (V )(t)‖ ≤
(
L(R, t0 + 1)|t − t0|

)N

N !
sup

t∈[t0−δ,t0+δ]

‖U(t) − V (t)‖.

Hence

sup
t∈[t0−δ,t0+δ]

‖AN(U)(t)−AN (V )(t)‖ ≤
(
L(R, t0 + 1)δ

)N

N !
sup

t∈[t0−δ,t0+δ]

‖U(t)−V (t)‖.

For N large enough we have

(
L(R, t0 + 1)δ

)N

N !
< 1. By a well known extension

of the contraction principle it follows that A has a unique fixed point in B(0, R).
We have proved that there exists a solution U defined on the interval [t0 −

δ, t0 + δ] satisfying (16). This solution can be extended to the interval [t0 −
δ∗, t0 + δ∗] (δ∗ > δ), where on [t0 − δ, t0 + δ] we have the above solution U and
for t ≥ t0 + δ we use the above method to find a local solution for

U(t) = U(t0 + δ) +

t∫
t0+δ

A(U(s), s)ds,

and also for t ≤ t0 − δ we use the above method to find a local solution for

U(t) = U(t0 − δ) +

t∫
t0−δ

A(U(s), s)ds.
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Moreover, δ∗ depends only on δ, ‖U(t0 + δ)‖, ‖U(t0 − δ)‖, M(t0 + δ), M(t0 − δ).
Hence, there exists a maximal interval (t1, t2) containing t0 for the existence of
the local solution U .

Theorem 7.2 Let A : Rn+1 × [0, T ] → Rn be such that for each (x, u) ∈ Rn+1

the function A(x, u, ·) is continuous and we have

‖A(x, u, t) − A(y, v, t)‖ ≤ L(c)(‖x − y‖ + |u − v|)
for all x, y ∈ Rn with ‖x‖ ≤ c, ‖y‖ ≤ c, |u| ≤ c, |v| ≤ c and each t ∈ [0, T ], where
L(c) > 0 is the locally Lipschitz constant. Let U0 ∈ Rn and t0 ∈ (0, T ] fixed.
Assume that (vN )N∈N is a sequence from C[0, T ] which converges uniformly to
v ∈ C[0, T ], i.e.

lim
N→∞

sup
t∈[0,T ]

|vN (t) − v(t)| = 0.

We consider the equations

UN (t) = U0 +

t∫
t0

A(UN (s), vN (s), s)ds, N ∈ N (17)

and

U(t) = U0 +

t∫
t0

A(U(s), v(s), s)ds. (18)

The equations (17) and (18) have local solutions, i.e. there exists a maximal
interval (t1, t2) ⊂ [0, T ] (which does not depend on N) containing t0 and func-
tions UN , U : Rn × (t1, t2) → Rn such that (17) and (18) are satisfied for each
t ∈ (t1, t2). Moreover,

lim
N→∞

sup
t∈(t1,t2)

‖UN (t) − U(t)‖ = 0.

For any τ > 0 let M = max
t∈[0,T ]

‖A(0, 0, t)‖. Since (vN )N∈N converges uni-

formly to v in C[0, T ], it follows that there exists m > 0 such that

sup
t∈[0,T ]

|vN (t)| + sup
t∈[0,T ]

|v(t)| ≤ m for each N ∈ N.

We consider

δ = min
{

1,
m

(‖U0‖ + 2m)L(‖U0‖ + m) + M
, t0, T − t0

}
.

We define the mapping FN : C([t0 − δ, t0 + δ], Rn) → C([t0 − δ, t0 + δ], Rn)

(FNY )(t) := U0 +

t∫
t0

A(Y (s), vN (s), s)ds, t ∈ [t0 − δ, t0 + δ].
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We prove that FN maps the ball B(0, R) of radius R = ‖U0‖ + m centered at
0 of the space C([t0 − δ, t0 + δ], Rn) into itself. For Y ∈ B(0, R) and for each
t ∈ [t0 − δ, t0 + δ] we have the following estimates

‖FN(Y )(t)‖ ≤ ‖U0‖ +

∣∣∣∣∣∣
t∫

t0

‖A(Y (s), vN (s), s) − A(0, 0, s)‖ + ‖A(0, 0, s)‖
)
ds

∣∣∣∣∣∣
≤ ‖U0‖ + (L(R)(R + m) + M)|t − t0| ≤ ‖U0‖ + m = R.

Therefore, FNY ∈ B(0, R). It is easy to verify that for each Y, Z ∈ B(0, R) and
each t ∈ [t0 − δ, t0 + δ] we have

‖FN(Y )(t) −FN(Z)(t)‖ ≤ L(R)|t − t0| sup
t∈[t0−δ,t0+δ]

‖Y (t) − Z(t)‖.

Using the contraction principle exactly as in the proof of Theorem 7.1, it follows
that FN has a unique fixed point in B(0, R), which is defined on [t0 − δ, t0 + δ].
This fixed point is the local solution UN of (17). We observe that this interval of
existence of the local solution UN does not depend on N , and UN ∈ B(0, R) for
each N ∈ N . Exactly in the same way we can prove that on the same interval
[t0 − δ, t0 + δ] there exists a solution U ∈ B(0, R) satisfying (18). Let (t1, t2) ⊂
(0, T ] be the maximal interval (which does not depend on N) containing t0 such
that (17) and (18) are satisfied for each t ∈ (t1, t2) and there exists R > 0
(independent of N) such that UN , U ∈ B(0, R). Then for large N we have

‖UN(t) − U(t)‖ ≤
∣∣∣∣∣∣

t∫
t0

‖A(UN (s), vN (s), s) − A(U(s), v(s), s)‖ds

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
t∫

t0

L(R)(‖UN(s) − U(s)‖ + ‖vN (s) − v(s)‖)ds

∣∣∣∣∣∣ .

By the Gronwall lemma we get

sup
t∈(t1,t2)

‖UN (t) − U(t)‖ ≤ sup
t∈(t1,t2)

‖vN (t) − v(t)‖eL(R)(t2−t1)

Therefore,
lim

N→∞
sup

t∈(t1,t2)

‖UN (t) − U(t)‖ = 0.
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[8] F. Klingenhöfer and M. Zähle, Ordinary Differential Equations with Fractal
Noise. Proc. Amer. Math. Soc. 127 (1999), 1021–1028.

[9] A. Pazy, Semigroups of Linear Operators and Applications to Partial Dif-
ferential Equations. Springer Verlag, New York (1983).

[10] F. Russo and P. Vallois, Forward, Backward and Symmetric Stochastic
Integration. Probab. Theory Related Fields 97 (1993), 403–421.

[11] F. Russo and P. Vallois, The Generalized Covariation Process and Itô For-
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