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Abstract

The aim of this paper is to approximate a stochastic integral with
respect to a fractional Brownian motion using wavelet approximation
and fractional integration. The approximation of the stochastic inte-
gral is illustrated through some examples.
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1 Introduction

The aim of this paper is to approximate a stochastic integral of the type
t∫

0

S(u)dB(u), where (B(t))t∈[0,1] is a fractional Brownian motion and S is a

stochastic process. For this we use an optimal wavelet approximation of the
fractional Brownian motion (B(t))t∈[0,1] following the ideas from [8], [2], [1].
According to the papers [9] and [10] of M. Zähle we can represent the stochas-
tic integral with respect to fractional Brownian motion by using fractional
integrals. The new achievements of this paper are the results contained in
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Theorem 4.1 and in the approximation results stated in Corollary 5.1, Corol-
lary 5.2 and Corollary 5.3. In order to illustrate our approach we give as an
example the Ornstein-Uhlenbeck process. Another example is the solution of
a linear stochastic equation, which is known to have explicit solution. The ap-
proximation method can be applied also for stochastic differential equations
driven by fractional noise, which do not have explicit solution (see Corollary
5.3). The authors use optimal wavelet approximation in order to develop ef-
ficient computer simulations, because the method given in this paper can be
applied to simulate the solutions of stochastic differential equations driven by
fractional noise as follows: first one approximates the fractional noise, then
one uses a numerical scheme (e.g. implicit or explicit Euler scheme, or Mil-
stein approximation etc.) to get approximations of the solution and finally
one proves the a.s. convergence of the approximations to the solution (as in
[7], where a trigonometric series approximation for the fractional Brownian
motion is used).

2 Wavelet Approximation for B

Let (B(t))t∈[0,1] be an one dimensional fractional Brownian motion with Hurst
index H ∈ (0, 1), i.e. a Gaussian random process, which has zero mean,
continuous sample paths and covariance function

E
(
B(s)B(t)

)
=

1

2

(
t2H + s2H − |s− t|2H

)
.

Note that if H = 1
2
, then the fractional Brownian motion is the ordinary

standard Brownian motion. The fractional Brownian motion B has on any
finite interval [0, T ] Hölder continuous paths with exponent γ ∈ (0, H) (see
[3]). Note that, if H 6= 1

2
, then B is not a semimartingale, so the classical

stochastic integration does not work. But the Hölder continuity of B will en-

sure the existence of the integrals

T∫
0

S(u)dB(u), defined in terms of fractional

integration (see Section 3).
We use the following optimal wavelet approximation of the fractional

Brownian motion (B(t))t∈[0,1] with Hurst index H investigated in [8] and [2]:

B(t) =
∞∑

j=−∞

∞∑
k=−∞

2−jH(Ψ(2jt− k)−Ψ(−k))εj,k, (1)
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where Ψ is the mother function of the wavelets approximation, and εj,k are
independent identically distributed N(0, 1) random variables.

As in [8] and [2] we consider the following assumptions for Ψ: Ψ ∈ C1(R)
and there exists a constant c > 0 such that

|Ψ(t)| ≤ c

(2 + |t|)2
and |Ψ′(t)| ≤ c

(2 + |t|)3
for all t ∈ R. (2)

We consider the following high frequency component of the wavelet rep-
resentation in (1)

V1(t) =
∞∑

j=0

∞∑
k=−∞

2−jH(Ψ(2jt− k)−Ψ(−k))εj,k

and the low frequency component

V2(t) =
−1∑

j=−∞

∞∑
k=−∞

2−jH(Ψ(2jt− k)−Ψ(−k))εj,k.

Obviously,
B(t) = V1(t) + V2(t) for each t ∈ [0, 1].

Let N ∈ N. In the following we use two approximation components, corre-
sponding to the components V1, respectively V2, namely

BN
1 (t) =

N∑
j=0

∑
|k|≤ 2N+4

(N−j+1)2

2−jH(Ψ(2jt− k)−Ψ(−k))εj,k

and

BN
2 (t) =

−1∑
j=−2[N/2]

∑
|k|≤2[N/2]

2−jH(Ψ(2jt− k)−Ψ(−k))εj,k.

We denote
BN(t) = BN

1 (t) + BN
2 (t) for each t ∈ [0, 1].

Using Theorem 2 and Theorem 3 from [2] we have the following result:

Theorem 2.1 The sequence (BN)N∈N converges to B almost surely in ω ∈ Ω
and uniformly in t ∈ [0, 1], i.e.

P
(

lim
N→∞

sup
t∈[0,1]

|BN(t)−B(t)| = 0
)

= 1.
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In the sequel we need the following result:

Theorem 2.2 For all N ∈ N the approximating processes (BN(t))t∈[0,1] are
with probability 1 Lipschitz continuous.

Proof: We write

|BN(s)−BN(t)| ≤ |BN
1 (s)−BN

1 (t)|+ |BN
2 (s)−BN

2 (t)|

≤
N∑

j=0

∑
|k|≤ 2N+4

(N−j+1)2

2−jH |Ψ(2js− k)−Ψ(2jt− k))||εj,k|

+
−1∑

j=−2[N/2]

∑
|k|≤2[N/2]

2−jH |Ψ(2js− k)−Ψ(2jt− k)||εj,k|.

Using the assumption (2) for Ψ and using that the set of indices of j and k
is bounded, it follows that there exists a cN > 0 (depending on ω) such that

|BN(s)−BN(t)| ≤ cN |s− t| for all s, t ∈ [0, 1] and all n ∈ N.

3 Fractional Integrals and Derivatives

Let a, b ∈ R, a < b and f, g : R → R. We use notions and results about
fractional calculus, from [9] and [4]:

fa+(x) = I(a,b)(f(x)− f(a+)), gb−(x) = I(a,b)(g(x)− g(b−)).

For f ∈ L1(a, b) and α > 0 the left- and the right-sided fractional Riemann-
Liouville integral of f of order α on (a, b) is given for a.e. x ∈ (a, b) by

Iα
a+f(x) =

1

Γ(α)

x∫
a

(x− y)α−1f(y)dy

and

Iα
b−f(x) =

(−1)−α

Γ(α)

b∫
x

(y − x)α−1f(y)dy.
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For p > 1 let Iα
a+(Lp(a, b)), be the class of functions f which have the repre-

sentation f = Iα
a+Φ, where Φ ∈ Lp(a, b), and let Iα

b−(Lp(a, b)) be the class of
functions g which have the representation g = Iα

b−ϕ, where ϕ ∈ Lp(a, b). If
0 < α < 1, then the function Φ, respectively ϕ, in the representations above
agree a.s. with the left-sided and respectively right-sided fractional derivative
of f of order α (in the Weyl representation)

Φ(x) = Dα
a+f(x) =

1

Γ(1− α)

 f(x)

(x− a)α
+ α

x∫
a

f(x)− f(y)

(x− y)α+1
dy

 I(a,b)(x)

and

ϕ(x) = Dα
b−g(x) =

(−1)α

Γ(1− α)

 g(x)

(b− x)α
+ α

b∫
x

g(x)− g(y)

(y − x)α+1
dy

 I(a,b)(x).

The convergence at the singularity y = x holds in the Lp-sense. Recall that

Iα
a+(Dα

a+f) = f for f ∈ Iα
a+(Lp(a, b)), Iα

b−(Dα
b−g) = g for g ∈ Iα

b−(Lp(a, b))
(3)

and
Dα

a+(Iα
a+f) = f, Dα

b−(Iα
b−g) = g for f, g ∈ L1(a, b).

For completeness we denote

D0
a+f(x) = f(x), D0

b−g(x) = g(x), D1
a+f(x) = f ′(x), D1

b−g(x) = g′(x).

Let 0 ≤ α ≤ 1. The fractional integral of f with respect to g is defined as

b∫
a

f(x)dg(x) = (−1)α

b∫
a

Dα
a+fa+(x)D1−α

b− gb−(x)dx (4)

+f(a+)(g(b−)− g(a+))

if fa+ ∈ Iα
a+(Lp(a, b)), gb− ∈ I1−α

b− (Lq(a, b)) for 1
p

+ 1
q
≤ 1 (see [9]).

4 Approximation of the Stochastic Integral

Without loss of generality we consider fractional integrals over [0, T ], where
0 < T ≤ 1, because for arbitrary T > 0 we can rescale the time variable
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such that we obtain a fractional Brownian motion on [0, 1] (we use the H-self
similar property).

Since B has continuous trajectories and B(0) = 0, it follows by (4) that

T∫
0

S(u)dB(u) = (−1)α

T∫
0

Dα
0+S0+(u)D1−α

T− BT−(u)du + S(0+)B(T ) (5)

for S0+ ∈ Iα
0+(L2(0, T )) and BT− ∈ I1−α

T− (L2(0, T )).
The condition S0+ ∈ Iα

0+(L2(0, T )) (with probability 1) means that S0+ ∈
L2(0, T ) and

Iε(x) =

x−ε∫
0

S(x)− S(y)

(x− y)α+1
dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0.
The condition BT− ∈ I1−α

T− (L2(0, T )) means BT− ∈ L2(0, T ) and

Jε(x) =

T∫
x+ε

B(x)−B(y)

(y − x)2−α
dy for x ∈ (0, T )

converges in L2(0, T ) as ε ↘ 0. This condition for B is fulfilled for α >
1−H, since the Brownian motion B is a.s. Hölder continuous with exponent
γ ∈ (0, H).

It is easy to verify that

D1−α
T− BT−(u) = D1−α

T− B(u)− (−1)1−α

Γ(α)
· B(T )

(T − u)1−α
I(0,T )(u).

Then using (3) and (5) it follows that

T∫
0

S(u)dB(u) = (−1)α

T∫
0

Dα
0+S0+(u)D1−α

T− B(u)du + S(T−)B(T ). (6)

We will use (6) for the integrals with respect the approximating pro-
cesses. Observe that BN ∈ I1−α

T− (L2(0, T )), which follows from the Lipschitz
continuity property in Theorem 2.2. Then we write

T∫
0

S(u)dBN(u) = (−1)α

T∫
0

Dα
0+S0+(u)D1−α

T− BN(u)du + S(T−)BN(T ). (7)
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We write the difference of the stochastic integrals from (6) and (7)

T∫
0

S(u)dB(u)−
T∫

0

S(u)dBN(u) = (8)

= (−1)α

T∫
0

Dα
0+S0+(u)

(
D1−α

T− B(u)−D1−α
T− BN(u)

)
du

+S(T−)(B(T )−BN(T )).

From the uniform convergence property in Theorem 2.1 we have for a.e.
ω ∈ Ω

lim
N→∞

S(T−)(B(T )−BN(T )) = 0.

Using the definition of fractional derivatives we write

T∫
0

Dα
0+S0+(u)

(
D1−α

T− B(u)−D1−α
T− BN(u)

)
du =

=

T∫
0

Dα
0+S0+(u)

(−1)1−α

Γ(α)

(
B(u)−BN(u)

(T − u)1−α

+(1− α)

T∫
u

B(u)−BN(u)− (B(y)−BN(y))

(y − u)2−α
dy

)
du.

Denote

F (u) = Dα
0+S0+(u)

(−1)1−α

Γ(α)
.

We prove now that for a.e. ω ∈ Ω

lim
N→∞

T∫
0

F (u)

(
B(u)−BN(u)

(T − u)1−α

+(1− α)

T∫
u

B(u)−BN(u)− (B(y)−BN(y))

(y − u)2−α
dy

)
du = 0.
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From the uniform convergence property in Theorem 2.1 we have∣∣∣∣F (u)
B(u)−BN(u)

(T − u)1−α

∣∣∣∣ ≤ |F (u)|
(T − u)1−α

ε (9)

for all u ∈ [0, T ) and N sufficiently large and ε > 0 arbitrary fixed. We
assume that F (i.e. S) satisfies the condition

T∫
0

|F (u)|
(T − u)1−α

du < ∞.

For example, if sup
u∈[0,T ]

|F (u)| < ∞, then the condition above holds. Therefore

by using Theorem 2.1 and the dominated convergence theorem we get

lim
N→∞

T∫
0

F (u)
B(u)−BN(u)

(T − u)1−α
du = 0 for a.e. ω ∈ Ω.

It is known that B is a.s. Hölder continuous with exponent γ ∈ (0, H)
(see [3]). By construction, the approximations BN have the same property
of Hölder continuity with exponent γ ∈ (0, H) (moreover they are Lipschitz
continuous, see Theorem 2.2). Therefore, the difference B−BN has the same
property.

For α ∈ (1−H, 1) and for γ ∈ (0, H) chosen such that 1− α < γ, there
exists η ∈ (0, 1) such that ηγ − 1 + α > 0. For a.e. ω ∈ Ω we have

|B(u)−BN(u)− (B(y)−BN(y))|
|y − u|γ

≤ δ (10)

for every u, y ∈ [0, T ], where δ is a random variable with finite moments. We
have by the uniform convergence property in Theorem 2.1 and by (10)∣∣∣∣B(u)−BN(u)− (B(y)−BN(y))

(y − u)2−α

∣∣∣∣ ≤
≤ |B(u)−BN(u)− (B(y)−BN(y))|1−η

·
∣∣∣∣ |B(u)−BN(u)− (B(y)−BN(y))|

(y − u)γ

∣∣∣∣η (y − u)ηγ−2+α ≤

≤ ε1−ηδη(y − u)ηγ−2+α
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for all u, y ∈ [0, T ] and N sufficiently large. The integral

T∫
u

(y − u)ηγ−2+αdy =
(T − u)ηγ−1+α

ηγ − 1 + α

is finite, because ηγ − 1 + α > 0. Another condition imposed on F (i.e. on
S) is

T∫
0

|F (u)|
(T − u)1−ηγ−α

du < ∞.

This condition is satisfied if

T∫
0

|F (u)|du < ∞ and

T∫
0

|F (u)|
(T − u)1−α

du < ∞.

Then for a.e. ω ∈ Ω we have

lim
N→∞

T∫
0

F (u)

 T∫
u

B(u)−BN(u)− (B(y)−BN(y))

(y − u)2−α
dy

 du = 0.

These results prove the main result of our paper:

Theorem 4.1 Let α ∈ (1 − H, 1). We assume that the stochastic pro-
cess S satisfies a.s. the following conditions: (1) S0+ ∈ Iα

0+(L2(0, T )); (2)
T∫

0

|Dα
0+S0+(u)|du < ∞; (3)

T∫
0

|Dα
0+S0+(u)|

(T − u)1−α
du < ∞.

Then the following approximation holds with probability 1

lim
N→∞

t∫
0

S(u)dBN(u) =

t∫
0

S(u)dB(u) for all t ∈ [0, T ].

5 Applications

Let (B(t))t∈[0,1] be a fractional Brownian motion with Hurst index H and let
(BN(t))t∈[0,1] be the approximations defined in Section 2.
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A first application we give for the Ornstein-Uhlenbeck process

X(t) = X0 + a

t∫
0

X(s)ds + B(t), t ∈ [0, 1], (11)

where a ∈ R. The solution of (11) has the representation

X(t) = X0e
at +

t∫
0

ea(t−s)dB(s), t ∈ [0, 1].

Then the process X can be approximated by

XN(t) = X0e
at +

t∫
0

ea(t−s)dBN(s), t ∈ [0, 1], N ∈ N

and Theorem 4.1 implies that the following result holds:

Corollary 5.1 The sequence (XN)N∈N converges to X almost surely in ω
and uniformly in t, i.e.

P
(

lim
N→∞

sup
t∈[0,1]

|X(t)−XN(t)| = 0
)

= 1.

Such kind of Ornstein-Uhlenbeck processes were used in [5] for the approx-
imation of Volterra type stochastic integrals, used in statistical parameter
estimation. The wavelet estimation used in the mentioned paper is based
also on the results in [1] and [8].

A second application is the linear stochastic differential equation of the
form

Y (t) = Y0 +

t∫
0

A(u)Y (u)du +

t∫
0

S(u)Y (u)dB(u),

where A and S are stochastic processes, A is almost surely bounded and S
satisfies the assumptions from Theorem 4.1. For example we can choose S
such that with probability 1 it has Lipschitz continuous (or more general
Hölder continuous with exponent less than H) trajectories, then condition
(1) in Theorem 4.1 is satisfied. If

P( sup
t∈[0,T ]

|Dα
0+S(t)| < ∞) = 1, with α > 1−H,
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then the conditions (2) and (3) in Theorem 4.1 are satisfied.
It is known that this equation has the following explicit solution (see [6])

Y (t) = Y0 exp


t∫

0

(
A(u)− 1

2
S2(u)

)
du +

t∫
0

S(u)dB(u)

 for all t ≥ 0.

By the methods of the above section we approximate the stochastic integral
by using fractional integration and consider

Y N(t) = Y0 exp


t∫

0

(
A(u)− 1

2
S2(u)

)
du +

t∫
0

S(u)dBN(u)

 t ≥ 0, N ∈ N.

Theorem 4.1 implies the following result:

Corollary 5.2 The sequence (Y N)N∈N converges to Y almost surely in ω
and uniformly in t, i.e.

P
(

lim
N→∞

sup
t∈[0,T ]

|Y (t)− Y N(t)| = 0
)

= 1.

This result can be used in numerical simulations of the solutions of
stochastic differential equations from mathematical finance (e.g. long range
dependencies in real stock market processes, [6]).

The approximation method can be applied also for stochastic differential
equations driven by fractional noise, which do not have explicit solution.
The method given in this paper is useful for simulations of the solutions of
stochastic differential equations driven by fractional noise as follows: first one
approximates the fractional noise, then one uses a numerical scheme to get
approximations of the solution and finally one proves the a.s. convergence
of the approximations to the solution (as in [7], where a trigonometric series
approximation for the fractional Brownian motion is used).

We consider

Z(t) = Z0 +

t∫
0

A(Z(s), s)dt +

t∫
0

S(Z(s), s)dB(s), t ≥ 0, (12)

where Z0 is a random vector in Rn and the random functions A and S satisfy
with probability 1 the following conditions:
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(C1) A ∈ C(Rn × [0, T ], Rn), S ∈ C1(Rn × [0, T ], Rn);

(C2) for each t ∈ [0, T ] the functions A(·, t), ∂S(·, t)
∂xi

,
∂S(·, t)

∂t
are locally

Lipschitz for each i ∈ {1, . . . , n}.

Now we write the approximating equations

ZN(t) = Z0 +

t∫
0

A(ZN(s), s)ds +

t∫
0

S(ZN(s), s)dBN(s), t ≥ 0, N ∈ N. (13)

Following the ideas from Section 7 in [10] each of the equations (12) and (13)
can be transformed (pathwise) into a random equation which has a unique
local solution on a common (random) interval (t0, t1) ⊆ [0, T ] (this interval
does not depend on N , see [7]). Estimating the difference |Z(t)−ZN(t)| and
using the Gronwall lemma and Theorem 2.1 we obtain the following result:

Corollary 5.3 The sequence (ZN)N∈N converges to Z almost surely in ω ∈ Ω
and uniformly in t, i.e.

P
(

lim
N→∞

sup
t∈(t0,t1)

|Z(t)− ZN(t)| = 0
)

= 1.

For details and proofs see the paper [7].
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