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FRACTIONAL BROWNIAN MOTION USING CONTRACTION
METHOD IN PROBABILISTIC METRIC SPACES

A. SOÓS

Abstract. In this paper we show how the random scaling law can be

generalized such that the fractional Brownian motion satisfies it. Using

the contraction method in probabilistic metric spaces, we give existence

and uniqueness conditions for fractional Brownian motion.

The fractional Brownian motion (fBm) has been introduced in 1968 by Man-

delbrot and Van Ness. For any H in [0, 1] we denote by {BH
t : t ∈ [0, 1]} the fractional

Brownian motion of index H (Hurst parameter), and it is the centered Gaussian pro-

cess whose covariance kernel is given by

RH(s, t) = E(BH
s BH

t ) :=
VH

2
(
s2H + t2H − |t− s|2H

)
,

where

VH :=
Γ(2− 2H)cos(πH)

πH(1− 2H)
.

The theoretical study of the fractional Brownian motion was originally motivated by

new problems in mathematical finance and telecommunication networks. In engineer-

ing applications of stochastic processes it is often used to model the input of system.

These real inputs exhibit long-range dependence: the behavior of a real process after

a given time t does not only depend on the situation at time t but also on the whole

history of the process up to time t.

Another property of the fBm encountered in applications is the self similarity:

the behavior of fBm is stochastically the same, up to a space-scaling, i.e. the process
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A. SOÓS

{Xαt, t ∈ [0, 1]} has the same law as the process {αHXt, t ∈ [0, 1]}, where H ∈]0, 1[

and α > 0.

Since RH is a positive definite operator, the Bochner-Milos theorem en-

sures that, for any value of H ∈ [0, 1], there exists a unique probability measure

on C0([0, 1]; R) such that the canonical process is a fBm.

Using fractal theory methods Hutchinson and Rüschendorf [2] have obtained

the classical Brownian motion (H = 1
2 ) as the invariant set for an iterated function

system.

A first theory of selfsimilar fractal sets and measures was developed in

Hutchinson [1]. Falconer, Graf, Mouldin and Williams, and Arbeiter randomized

each step in the approximation process to obtain self-similar random fractal sets and

measures. Recently Hutchinson and Rüschendorf [3] gave a simple proof for the ex-

istence and uniqueness of random fractal sets, measures and fractal functions using

probability metrics defined by expectation.

In this paper we use probabilistic metric spaces techniques in order to prove

that the fBm can be characterized as the fixed point of a scaling law.

1. Invariant sets in E-spaces

Let X be a nonempty set. We denote by ∆+ denote the set of all distribution

functions F with F (0) = 0. A Menger space is a triplet (X,F , T ), where F : X×X →

∆+ is a mapping with the following properties:

10. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;

20. Fx,y(t) = 1, for every t > 0, if and only if x = y;

30. Fx,y(s + t) ≥ T (Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ∈ R+,

and T is a t-norm.

A mapping T : [0, 1]× [0, 1] → [0, 1] is called a t-norm if the following condi-

tions are satisfied:

40. T (a, 1) = a for every a ∈ [0, 1];

50. T (a, b) = T (b, a) for every a, b ∈ [0, 1]

60. if a ≥ c and b ≥ d then T (a, b) ≥ T (c, d);
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FRACTIONAL BROWNIAN MOTION

70. T (a, T (b, c)) = T (T (a, b), c) for every a, b, c ∈ [0, 1].

The mapping f : X → X is said to be a contraction if there exists r ∈]0, 1[

such that

Ff(x),f(y)(rt) ≥ Fx,y(t)

for every x, y ∈ X and t ∈ R+.

A sequence (xn)n∈N from X is said to be Cauchy if

lim
n,m→∞

Fxm,xn(t) = 1 for all t > 0.

The element x ∈ X is called limit of the sequence (xn)n∈N if limn→∞ Fx,xn
(t) = 1

for all t > 0. A probabilistic metric (Menger) space is said to be complete if every

Cauchy sequence in this space is convergent.

The notion of E-space was introduced by Sherwood [7] in 1969. Let (Ω,K, P )

be a probability space and let (Y, ρ) be a metric space. The ordered pair (E ,F) is an

E-space over the metric space (Y, ρ) if the elements of E are random variables from Ω

into Y and F : E × E → ∆+ defined by F(x, y) = Fx,y, where

Fx,y(t) = P ({ω ∈ Ω| d(x(ω), y(ω)) < t})

for every t ∈ R. The E-space (E ,F) is said to be complete if the Menger space

(E ,F , Tm) is complete, where Tm(x, y) = max{x + y − 1, 0}.

In the sequel we will use the following result proved in [4]:

Theorem 1.1. Let (E ,F) be a complete E- space, N ∈ N∗, and let f1, ..., fN : E → E

be contractions with ratio r1, ...rN , respectively. Suppose that there exists an element

z ∈ E and a real number γ such that

P ({ω ∈ Ω|ρ(z(ω), fi(z(ω)) ≥ t}) ≤ γ

t
, (1)

for all i ∈ {1, .., N} and for all t > 0. Then there exists a unique nonempty closed

bounded and compact subset K of E such that

f1(K) ∪ ... ∪ fN (K) = K.
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Corollary 1.1. Let (E ,F) be a complete E- space, and let f : E → E be a contraction

with ratio r. Suppose that there exists z ∈ E and a real number γ such that

P ({ω ∈ Ω| ρ(z(ω), f(z)(ω)) ≥ t}) ≤ γ

t
for all t > 0.

Then there exists a unique x0 ∈ E such that f(x0) = x0.

2. Scaling law and Brownian motion

Denote by (X, d) a complete separable metric space. Let g : I → X, where

I ⊂ R is a closed bounded interval, N ∈ N and let I = I1∪ I2∪ · · ·∪ IN be a partition

of I into disjoint subintervals. Let Φi : I → Ii be increasing Lipschitz maps with

pi = LipΦi. If gi : Ii → X, for i ∈ {1, ..., N} define tigi : I → X by

(tigi) (x) = gj(x) for x ∈ Ij .

A scaling law S is an N-tuple (S1, ...., SN ), N ≥ 2, of Lipschitz maps Si : X → X.

Denote ri = LipSi.

A random scaling law S = (S1, S2, ..., SN ) is a random variable whose values

are scaling laws. We write S = distS for the probability distribution determined by

S and d= for the equality in distribution.

Let S = (S1, ..., SN ) be a random scaling law and let G = (Gt)t∈I be a

stochastic process or a random function with state space X. The trajectory of the

process G is the function g : I → X. The trajectory of the random function Sg is

defined up to probability distribution by

Sg
d= tiSi ◦ g(i) ◦ Φ−1

i ,

where S, g(1), ..., g(N) are pairwise independent and g(i) d= g, for i ∈ {1, ..., N}. We say

that g or G satisfies the scaling law S, or is a random fractal function, if

Sg
d= g,

The fBm can be characterized as the fixed point of a scaling law. Next we

will contruct this scaling law.
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Let (Ω,K, P ) be a probability space. The fBm with Hurst exponent H is a

stochastic process Bα = (Bα
t )t∈R characterised by BH

0 (ω) = 0 a.s. and

BH(t + h)−BH(t) d=N(0, hH), for t > 0 andh > 0,

where N(0, hH) denotes the normal distribution with mean 0 and variance h2H .

For each H > 0, let BH : [0, 1] → R denote the constrained fBm given by

BH(0) = 0 a.s. and BH(1) = 1 a.s.

For a fixed p ∈ R consider the fBm BH
∣∣∣BH( 1

2 )=p constrained by BH( 1
2 ) = p.

Let S1, S2 : R → R be the unique affine transformations characterized by

S1(0) = 0, S1(1) = S2(0) = p, S2(1) = 1. If r1 = LipS1 = |p|, r2 = LipS2 = |1− p|,

then

BH |BH( 1
2 )=p(t)

d= S1 ◦B
H

2r2
1 (2t), t ∈ [0,

1
2
].

Similarly

BH |BH( 1
2 )=p(t)

d= S2 ◦B
H

2r2
1 (2t− 1), t ∈ [

1
2
, 1].

Let I = [0, 1], and define

Φ1 : I → [0,
1
2
], Φ1(s) =

s

2
, andΦ2 : I → [

1
2
, 1], Φ1(s) =

s + 1
2

.

It follows that

BH |BH( 1
2 )(t)

d= tiSi ◦B
H

2r2
i ◦ Φ−1

i (t), t ∈ [0, 1].

Now let pH be a random variable with distribution N(0, H
2 ). For each H > 0 let us

define the random scaling law SH = (SH
1 , SH

2 ) in the same manner that (S1, S2) was

previously defined from the point p.

Let rH
i = LipH

i for i = 1, 2 and let rα = max{rH
1 , rH

2 }. It follows for each

H > 0 that

BH d= tiS
H
i ◦B

H

2r2
i

(i)
◦ Φ−1

i ,

where S is first chosen as above, and then after conditioning on S, B
H

2r2
1
(1) d= B

H

2r2
1

and B
H

2r2
2
(2) d= B

H

2r2
2 are chosen independently of one another.
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Thus the family of constrained Brownian motion {BH |H > 0} satisfies the

family of scaling laws S = {SH |H > 0}.

3. Generalized scaling law

In this section we generelize the notion of random scaling law. Let pH be a

random variable in R with distribution N(0, H
2 ) and denote I = [a, b]. Let SH

1 , SH
2 :

R → R be the unique affine transformations characterized by SH
1 (a) = a, SH

1 (b) =

SH
2 (a) = pH , S2H(b) = b. Let Φi : I → Ii, i = 1, 2 be increasing Lipschitz maps,

such that I1 ∪ I2 = I and
◦
I1 ∩

◦
I2= ∅.

The generalized random scaling law is a family of scaling laws

S = {SH |H > 0}.

If fω,H(t) = fω(H, t) :]0,∞[×I → R is a stochastic process, then the stochastic

process (Sf)H is defined up to probability distribution by

(Sf)H d= tiS
H
i ◦ f

H

2r2
i

(i)
◦ Φ−1

i ,

where S is first chosen as before, and then after conditioning on S, f
H

2r2
1
(1) d= f

H

2r2
1 and

f
H

2r2
2
(2) d= f

H

2r2
2 are chosen independently of one another.

The family of stochastic processes or random functions fH satisfies the gen-

eralized scaling law S or is a fractal stochastic process if

(Sf)H d= fH .

Theorem 3.1. Denote by EH the set of random functions gH : Ω× I → R with the

following property: there exist hH ∈ EH and a positive number γ such that

P ({ω ∈ Ω| sup
H

H− 1
2

∫
I

|hH(x)|dx ≥ t}) ≤ γ

t

for all t > 0.

Then there exists a family of stochastic processes g∗ ∈ EH satisfying S.

Proof. Let f : Eα → Eα defined by

f(gH) = (Sg)H = tiS
H
i ◦ g

H

2r2
i

(i)
◦ Φ−1

i ,
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where S is first chosen as in the previous section, and then after conditioning on S,

g
H

2r2
i

(i) d= g
H

2r2
i , i = 1, 2 are chosen independently of one another.

We first claim that, if gH ∈ EH then f(gH) ∈ EH as well. For this, choose

g
H

2r2
i

(i) d= g
H

2r2
i , i = 1, 2, independently of one another and SH = (SH

1 , SH
2 ). Then, for

t > 0,

P ({ω ∈ Ω| sup
H

H− 1
2

∫
I

|(Sh)H(x)|dx ≥ t}) ≤

≤ P ({ω ∈ Ω|1
2

sup
H

H− 1
2

2∑
i=1

rH
i

∫
Ii

|h
α

2(rα
i

)2
(i)

(x)|dx ≥ t}) ≤ γ
√

2
t

.

To establish the contraction property let us consider gH
1 , gH

2 ∈ EH . Since

Ff(gH
1 ),f(gH

2 )(t) ≥ FgH
1 ,gH

2
(

t√
2
)

for all t > 0, f is a contraction. Then we can apply Corollary 1.1 and existence and

uniqueness follows.
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