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The theory of metric spaces is a very useful tool in applied mathematics. However,
by some practical problems this theory can not be applied. For this reason the concept
of probabilistic metric space was introduced in 1942 by Menger [7]. It was developed
by numerous authors, as it can be realized upon consulting the list of references in
[2], as well as those in [10]. Menger proposed to replace the distance d(x, y) by a
distribution function Fx,y whose value Fx,y(t), for any real number t, is interpreted
as the probability that the distance between x and y is less than t. The study of
contraction mappings for probabilistic metric spaces was initiated by Sehgal [12],[13],
Sherwood [16] and Bharucha-Reid [14]. Radu in [8] and [9] introduced other types of
contractions in probabilistic metric spaces. The notion of E-space was introduced by
Sherwood [16] in 1969 as a generalization of Menger space for random variables. For
new results and applications of probabilistic analysis one can consult Constantin and
Istrăţescu’s book [2]. New results in fixed point theory in probabilistic metric spaces
can be find in [4] and in Hadzic’s book [3].

Hutchinson and Rüschendorf [5] showed that the Brownian motion can be char-
acterized as a fixed point of a special stochastic process. They proved a fixed point
theorem using a first moment condition. Our goal is to generalize this idea and to
replace the first moment condition by a more less restrictive hypothesis. Using a gen-
eralization of the notion of E-space to the so called ΛE-space we will prove a new fixed
point theorem. As application Brownian bridge-type stochastic fractal interpolation
functions will be constructed.

In the first section we recall the notions of probabilistic metric space and E-space.
The next section contains the definition and some properties of ΛE-space. The main
result of this paper is the fixed point theorem in section 3. The last section contain an
application of our main theorem to the stochastic fractal interpolation.
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1 Probabilistic metric spaces

Let R denote the set of real numbers and R+ := {x ∈ R : x ≥ 0}.
A mapping F : R → [0, 1] is called a distribution function if it is non-decreasing

and left continuous.
By ∆ we shall denote the set of all distribution functions F. Let ∆ be ordered by

the relation ”≤”, i.e. F ≤ G if and only if F (t) ≤ G(t) for all real t. Also F < G if
and only if F ≤ G but F 6= G.
We set ∆+ := {F ∈ ∆ : F (0) = 0}.

Let H denote the Heviside distribution function defined by

H(x) =

{
0, x ≤ 0,
1, x > 0.

(1.1)

Let X be a nonempty set. For a mapping F : X ×X → ∆+ and x, y ∈ X we shall
denote F(x, y) by Fx,y, and the value of Fx,y at t ∈ R by Fx,y(t), respectively.

The pair (X,F) is a probabilistic metric space (briefly PM space) if X is a
nonempty set and F : X ×X → ∆+ is a mapping satisfying the following conditions:

10 Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;
20 Fx,y(t) = 1, for every t > 0, if and only if x = y;
30 if Fx,y(s) = 1 and Fy,z(t) = 1 then Fx,z(s+ t) = 1.
A mapping T : [0, 1]× [0, 1] → [0, 1] is called a t-norm if the following conditions

are satisfied:
40 T (a, 1) = a for every a ∈ [0, 1];
50 T (a, b) = T (b, a) for every a, b ∈ [0, 1];
60 if a ≥ c and b ≥ d then T (a, b) ≥ T (c, d);
70 T (a, T (b, c)) = T (T (a, b), c) for every a, b, c ∈ [0, 1].
We list here the simplest:
T1(a, b) = max{a+ b− 1, 0},
T2(a, b) = ab,
T3(a, b) = Min(a, b) = min{a, b},
A Menger space is a triplet (X,F , T ), where (X,F) is a probabilistic metric

space, T is a t-norm, and instead of 30 we have the stronger condition:
80 Fx,y(s+ t) ≥ T (Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ∈ R+.
If the t-norm T satisfies the condition

sup{T (a, a) : a ∈ [0, 1[} = 1,

then the (t, ε) -topology is metrizable (see [11]).
In 1966, V.M. Sehgal [13] introduced the notion of a contraction mapping in prob-

abilistic metric spaces.
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The mapping f : X → X is said to be a contraction if there exists r ∈]0, 1[ such
that

Ff(x),f(y)(rt) ≥ Fx,y(t)

for every x, y ∈ X and t ∈ R+.
A sequence (xn)n∈N from X is said to be fundamental if

lim
n,m→∞

Fxm,xn(t) = 1

for all t > 0.
The element x ∈ X is called limit of the sequence (xn)n∈N, and we write limn→∞ xn =

x or xn → x, if limn→∞ Fx,xn(t) = 1 for all t > 0.
A probabilistic metric (Menger) space is said to be complete if every fundamental

sequence in that space is convergent.
For example, if (X, d) is a metric space, then the metric d induces a mapping

F : X ×X → ∆+, where F(x, y) = Fx,y is defined by

Fx,y(t) = H(t− d(x, y)), t ∈ R.

Moreover (X,F ,Min) is a Menger space. Bharucha-Reid and Sehgal show that (X,F ,Min)
is complete if the metric d is complete (see [14]). The space (X,F ,Min) thus obtained
is called the induced Menger space.

The notion of E-space was introduced by Sherwood [16] in 1969. Next we recall
this definition and we show that if (X, d) is a complete metric space then the E-space
is also complete.

Let (Ω,K, P ) be a probability space and let (Y, ρ) be a metric space.
The ordered pair (E ,F) is an E-space over the metric space (Y, ρ) (briefly, an

E-space) if the elements of E are random variables from Ω into Y and F is the mapping
from E × E into ∆+ defined via F(x, y) = Fx,y, where

Fx,y(t) = P ({ω ∈ Ω| ρ(x(ω), y(ω)) < t})

for every t ∈ R.
If F satisfies the condition

F(x, y) 6= H, if x 6= y,

then (E ,F) is said to be a canonical E-space. Sherwood [16] proved that every
canonical E-space is a Menger space under T = Tm, where Tm(a, b) = max{a+b−1, 0}.
In the following we suppose that E is a canonical E-space.

The convergence in an E-space is exactly the probability convergence.
The E-space (E ,F) is said to be complete if the Menger space (E ,F , Tm) is com-

plete.
If we start with a complete metric space (X, d) then we obtain a complete E-space.
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Proposition 1.1 ([6]) If (X, d) is a complete metric space then the E-space (E ,F) is
also complete.

2 ΛE-spaces

Let Λ be a nonempty set and, for λ ∈ Λ, let (Y λ, dλ) be metric space. Denote Eλ the
set of random variables from Ω into Y λ and let

Fλ : Eλ × Eλ → ∆+

be defined via Fλ(x, y) := F λ
x,y, where

F λ
x,y(t) := P ({ω ∈ Ω|dλ(xλ(ω), yλ(ω)) < t})

for all t ∈ R. Denote
Fx,y(t) := inf

λ∈Λ
F λ

x,y(t)

and
F(x, y) := Fx,y.

The ordered pair (Eλ,Fλ) is an E-space over the metric space Y λ.
Let Y :=

∏
λ∈Λ Y

λ, e ∈ Y and define

E := {x ∈
∏
λ∈Λ

Eλ| lim
t→∞

inf
λ∈Λ

P ({ω ∈ Ω|dλ(xλ(ω), eλ(ω)) < t}) = 1}.

Remark. E is the set of bounded random functions. The convergence in E is
similar to the uniform convergence in metric space.

The triplet (E ,F , T ) is called ΛE-space.
In the following let T := Tm.

Proposition 2.1 (E ,F , T ) is a Menger space.

Proof.: Conditions 1o and 2o are satisfied by definition. Since F λ
x,y satisfies 8o

for all λ ∈ Λ, we can write

F λ
x,y(t+ s) ≥ T (F λ

x,z(t), F
λ
z,y(s)) ≥

≥ inf
λ

max(F λ
x,z(t) + F λ

z,y(s)− 1, 0) ≥

≥ max(inf
λ
F λ

x,z(t) + inf
λ
F λ

z,y(s)− 1, 0) =

= T (Fx,z(t), Fz,y(s))
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for all t, s ∈ R+. Taking the infimum over λ we obtain the triangle inequality:

Fx,y(t+ s) = inf
λ∈Λ

F λ
x,y(t+ s) ≥ T (Fx,z(t), Fz,y(s))

for all t, s ∈ R+.

Proposition 2.2 If (Y λ, dλ) are complete metric spaces for all λ ∈ Λ, then (E ,F , T )
is a complete Menger space.

Proof.: Let (xn)n∈N be a Cauchy sequence of elements of E , i.e.

lim
n,m→∞

Fxn,xm(t) = lim
n,m→∞

inf
λ∈Λ

P ({ω ∈ Ω|dλ(xλ
n(ω), xλ

m(ω)) < t}) = 1 (2.2)

for all t > 0 and

lim
t→∞

inf
λ∈Λ

P ({ω ∈ Ω|dλ(xλ
n(ω), eλ(ω)) < t}) = 1. (2.3)

Since, for λ ∈ Λ

P ({ω ∈ Ω|dλ(xλ
n(ω), xλ

m(ω)) < t}) ≥ Fxn,xm(t),

it follows that for ε > 0, exists nε ∈ N such that, if n > nε and m > nε then

P ({ω ∈ Ω|dλ(xλ
n(ω), xλ

m(ω)) < t}) > 1− ε.

So, (xλ
n)n∈N is a Cauchy sequence in the E-space (Eλ,Fλ). According to Proposition

1.1 (Eλ,Fλ) is complete for all λ ∈ Λ. Denote xλ := limn→∞ x
λ
n, and x := (xλ|λ ∈ Λ).

Now we have to show that
(i) limn→∞ Fxn,x(t) = 1 for all t > 0,
and
(ii) x ∈ E .
By the relation (2.2) for all t > 0 and ε > 0 there exists nε ∈ N such that for

n,m > nε and λ ∈ Λ

P ({ω ∈ Ω|dλ(xλ
n(ω), xλ

m(ω)) <
t

2
}) > 1− ε

2
.

Since
P ({ω ∈ Ω|dλ(xλ

n(ω), xλ(ω)) < t}) ≥

≥ P ({ω ∈ Ω|dλ(xλ
n(ω), xλ

m(ω)) <
t

2
}) + P ({ω ∈ Ω|dλ(xλ

m(ω), xλ(ω)) <
t

2
})− 1 > 1− ε
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we have
inf
λ∈Λ

F λ
xn,x(t) > 1− ε

for all t > 0 and ε > 0. So

lim
n→∞

Fxn,x(t) = 1, for all t > 0.

In order to show (ii) we use relation (2.3). For ε > 0 there exists tε > 0 such that
for all t ≥ tε the following inequalities hold

Fx,e(2t) ≥ T (Fxn,x(t), Fxn,e(t)) ≥ T (Fxn,x(1), Fxn,e(t)) >

> 1− ε

2
+ Fxn,e(t)− 1 > 1− ε.

3 The main result

The main result of this paper is the following fixed point theorem:

Theorem 3.1 Let (E ,F , T ) be a complete ΛE- space, and let f : E → E be a contrac-
tion with ratio r. Suppose there exists z ∈ E and a real number γ such that

sup
λ∈Λ

P ({ω ∈ Ω| dλ(zλ(ω), f(zλ)(ω)) ≥ t}) ≤ γ

t
for all t > 0.

Then there exists a unique x0 ∈ E such that f(x0) = x0.

Proof.: Let a0 = z and an = f(an−1) for n ≥ 1.
First we show that (an)n∈N is a fundamental sequence in (E ,F , T ).
Let fn = f ◦ · · · ◦ f n-times.
Since an+k = fn(ak) and an = fn(a0), we have

Fan,an+k
(s) = Ffn(z),fn(ak)(s) ≥ inf

λ∈Λ
P ({ω ∈ Ω| rndλ(zλ(ω), aλ

k(ω)) < s}) =

≥ inf
λ∈Λ

P ({ω ∈ Ω| rndλ(zλ(ω), aλ
k(ω)) < s · (1 +

√
r + · · ·+

√
r

k−1
)(1−

√
r)}) ≥

≥ P ({ω ∈ Ω| rn[dλ(zλ(ω), f(zλ(ω))) + dλ(f(zλ(ω)), f2(z
λ(ω))) + · · ·+

+dλ(fk−1(z
λ(ω)), fk(z

λ(ω)))] < s · (1 +
√
r + · · ·+

√
r

k−1
)(1−

√
r)}) ≥

≥ inf
λ∈Λ

[P ({ω ∈ Ω| dλ(zλ(ω), f(zλ(ω))) <
s(1−

√
r)

rn
})+
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+P ({ω ∈ Ω| dλ(f(zλ(ω)), f2(z
λ(ω))) <

s(1−
√
r)
√
r

rn
}) + · · ·+

+P ({ω ∈ Ω| dλ(fk−1(z
λ(ω)), fk(z

λ(ω))) <
s(1−

√
r)
√
r

k−1

rn
})]− (k − 1) ≥

≥ inf
λ∈Λ

[P ({ω ∈ Ω| dλ(zλ(ω), f(zλ(ω))) <
s(1−

√
r)

rn
})+

+P ({ω ∈ Ω| rdλ(zλ(ω)), f(zλ(ω))) <
s(1−

√
r)
√
r

rn
}) + · · ·+

+P ({ω ∈ Ω| rk−1dλ(zλ(ω), f(zλ(ω))) <
s(1−

√
r)
√
r

k−1

rn
})]− (k − 1) =

= 1− sup
λ∈Λ

[P ({ω ∈ Ω| dλ(zλ(ω), f(zλ(ω))) ≥ s(1−
√
r)

rn
})+

+P ({ω ∈ Ω| dλ(zλ(ω), f(zλ(ω))) ≥ s(1−
√
r)
√
r

rn+1
}) + · · ·+

+P ({ω ∈ Ω| dλ(zλ(ω), f(zλ(ω))) <
s(1−

√
r)
√
r

k−1

rn+k−1
})] ≥

≥ 1− γ · rn

(
1

s(1−
√
r)

+
r1/2

s(1−
√
r)

+ ...+
r(k−1)/2

s(1−
√
r)

)
>

> 1− γ
rn

s(1−
√
r)2

.

Since

lim
n→∞

(
1− γ

rn

s(1−
√
r)2

)
= 1,

we have, for t > 0,

lim
n→∞

Fan,an+k
(t) = 1,

uniformly with respect to k. The space (E ,F , T ) being complete, (an) is convergent.
Let x0 be its limit.

Next we show that x0 is a fixed point of f.
For we have

Fan,f(x0)(
t

2
) ≥ Fan−1,x0(

t

2
) for all t > 0.

Using 80 it follows

Fx0,f(x0)(t) ≥ T (Fx0,an(
t

2
), Fan,f(x0)(

t

2
)) ≥ T (Fx0,an(

t

2
), Fan−1,x0(

t

2
)).
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Since limn→∞ an = x0, we have

Fx0,f(x0)(t) = 1 for all t > 0,

therefore
f(x0) = x0.

For the uniqueness we suppose that there exists an other element x′ ∈ E such that
f(x′) = x′. For n ∈ N and t > 0, we have

Fx0,x′(t) = Ffn(x0),fn(x′)(t) ≥ Fx0,x′

(
t

rn

)
.

Since limn→∞ r
n = 0, we have

Fx0,x′(t) = 1 for all t > 0,

therefore x0 = x′.

4 Application: stochastic fractal interpolation

In [5] Hutchinson and Rüschendorf showed that the Brownian bridge can be character-
ized as the fixed point of a ”scaling” function. Indeed, let (Ω,K, P ) be a probability
space and let Λ = R+, the set of positive real numbers. Define the Brownian bridge as
the stochastic process (Xλ

t )t∈R+ with the following properties:

P ({ω ∈ Ω| t 7→ Xλ(t, ω) is continuous}) = 1,

and, for every t ≥ 0 and every h > 0,

Xλ(t+ h)−Xλ(t)
d
=N(0, λh),

thus

P ({ω ∈ Ω|Xλ(t+ h, ω)−Xλ(t, ω) < x}) =
1√

2πhλ

∫ x

−∞
e−

t2

2λ2h2 dt.

N(a, b) denote the normal distribution with mean a and variance b.
We suppose

Xλ(0, ω) = 0 a.s. and Xλ(1, ω) = 1 a.s..
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Denote I = [0, 1], and define the functions

Φ1 : I → [0,
1

2
], Φ1(s) =

s

2
,

and

Φ2 : I → [
1

2
, 1], Φ1(s) =

s+ 1

2
.

Let λ ∈ Λ and denote pλ the random point with distribution N(0, λ
2
).

Let ϕλ
1 , ϕ

λ
2 : R × Λ → R be the affine transformations characterized by ϕλ

1(0, λ) =
0, ϕλ

1(1, λ) = ϕλ
2(0, λ) = pλ, ϕλ

2(1, λ) = 1 for all λ ∈ Λ. Denote rλ
1 = Lipϕλ

1 =
|pλ|, rλ

2 = Lipϕλ
2 = |1− pλ|. For ϕλ

1 , ϕ
λ
2 we obtain

ϕλ
1(a, λ) = pλa and ϕλ

2(a, λ) = (1− pλ)a+ pλ.

Denote L the set of functions from R× Λ to R,

L := {u : R× Λ → R}.

Let ψ1, ψ2 : L → L be mappings satisfying the following property:

ψi(u)(a, λ) = u(a,
λ

2r2
i

), i = 1, 2.

Let
Sλ

i = ϕλ
i ◦ ψi.

Using the definition of the process, we have

Xλ|Xλ( 1
2
)=pλ(t)

d
= Sλ

1 ◦Xλ(2t), t ∈ [0,
1

2
].

Similarly

Xλ|Xλ( 1
2
)=pλ(t)

d
= Sλ

2 ◦Xλ(2t− 1), t ∈ [
1

2
, 1].

This relations can be written as follows

Xλ|Xλ( 1
2
)=pλ(t)

d
= tiS

λ
i ◦Xλ ◦ Φ−1

i (t), t ∈ [0, 1].

For each λ > 0, we have

Xλ d
= tiS

λ
i ◦Xλ(i) ◦ Φ−1

i ,

where Xλ(i) d
= Xλ are chosen independently of one another.
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Let Y λ = L1([0, 1]) and dλ the Euclidean metric in R, for all λ ∈ Λ. In this case
Eλ is the space of real random variables and E is their product space. By Theorem
2.2 (E ,F , T ) is a complete ΛE- space. Consider the function f : E → E , defined by
f := (fλ|λ ∈ Λ) where

fλ(X) := tiS
λ
i ◦Xλ(i) ◦ Φ−1

i

for all X ∈ E . If X0 is a fixed point of f then, for all λ ∈ Λ,

Xλ
0

d
= fλ(Xλ

0 ).

Hutchinson and Rüschendorf [5] proved that, if the set of all functions Z ∈ E such
that

sup
λ∈Λ

λ−
1
2Eω

∫
I

|Z(t, λ, ω)|dt <∞

there exists a fixed point of f . Motivated by this result, we consider the following
problem.

Let Λ be a nonempty set and let 0 = t0 < t1 < ... < tN = 1, ti ∈ R, i ∈ {0, ..., N}
be N + 1 given points. Consider N bijections

Φi : I → [ti−1, ti] = Ii

for i ∈ {1, ..., N}, with Lipschitz constant αi.
Let Y λ := L1(I) and let β(λ) > 0 for all λ ∈ Λ. For u, v ∈ Y λ, define

dλ(u, v) := β(λ)

(∫
I

|u(a)− v(a)|da
)
.

Let E be defined as in previous section with e = 0.
For all λ ∈ Λ and i ∈ {1, ..., N} define the random function ϕλ

i : R → R, ϕλ
i ∈

Lip(<1), and rλ
i denote its Lipschitz constant. Let γi : Λ → R be real functions.

Consider the mappings ψi : L → L such that

ψi(u)(a, λ) := u(a, γi(λ)),

and Sλ
i be defined as above, i.e. Sλ

i := ϕλ
i ◦ψi. Suppose for λ ∈ Λ there exists δ(λ) > 0

such that the following Lipschitz condition will be satisfied:

inf
λ
P ({ω ∈ Ω|δ(λ)

∫
I

|u(a, γi(λ), ω)− v(a, γi(λ), ω)|da < s}) ≥

≥ inf
λ
P ({ω ∈ Ω|β(λ)

∫
I

|u(a, λ, ω)− v(a, λ, ω)|da < s})
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for all u, v ∈ E .
Let pλ

i be given random variable (i ∈ {0, ..., N}). Suppose the next interpolation
properties are fulfilled:

for u ∈ E , λ ∈ Λ and i ∈ {1, ..., N − 1}

ϕλ
1(u(0, λ, ω)) = pλ

0(ω) a.s. (4.4)

ϕλ
i+1(u(0, λ, ω)) = ϕλ

i (u(1, λ, ω)) = pλ
i (ω) a.s. (4.5)

ϕλ
N(u(1, λ, ω)) = pλ

N(ω) a.s. (4.6)

If x ∈ E then the random function f(x) is defined by

fλ(x) = tiS
λ
i ◦ x ◦ Φ−1

i , (4.7)

Theorem 4.1 Suppose

ess sup
ω

sup
λ∈Λ

N∑
i=1

rλ
i (ω)αiβ(λ)

δ(λ)
< 1 (4.8)

and there exists a real number γ such that

sup
λ∈Λ

P ({ω ∈ Ω|
∑

αi|ϕλ
i (0)| ≥ t}) ≤ γ

t
for all t > 0. (4.9)

Then there exists a random fractal interpolation function x∗ ∈ E such that

f(x∗) = x∗

and
x∗(ti, λ, ω) = pλ

i (ω) a.s., i ∈ {0, ..., N}, λ ∈ Λ. (4.10)

Proof.: For the random functions x, z : I × Λ × Ω → R, i ∈ {1, ..., n} let as
define

Fx,z(t) := inf
λ
P ({ω ∈ Ω|β(λ)

(∫
I

|x(a, λ, ω)− z(a, λ, ω)|da
)
< t}).

Assuming this has been done, in order to show that f is a contraction map we
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compute

Ff(x),f(z)(t) = inf
λ∈Λ

P ({ω ∈ Ω|dλ(f(x), f(z)) < t}) =

= inf
λ∈Λ

P ({ω ∈ Ω|β(λ)(
N∑

i=1

∫
Ii

|ϕλ
i (ψi(x(Φ

−1
i (a), λ, ω))− ϕλ

i (ψi(z(Φ
−1
i (a), λ, ω))|da) < t}) ≥

≥ inf
λ∈Λ

P ({ω ∈ Ω|β(λ)(
N∑

i=1

rλ
i (ω)αi

∫
I

|ψi(x(a, λ, ω))− ψi(z(a, λ, ω))|da) < t}) ≥

≥ inf
λ∈Λ

P ({ω ∈ Ω|

(
N∑

i=1

αir
λ
i (ω)β(λ)

δ(λ)

)
δ(λ)

(∫
I

|ψi(x(a, λ, ω))− ψi(z(a, λ, ω))|da
)
< t}) ≥

≥ inf
λ∈Λ

P ({ω ∈ Ω|r
(∫

I

β(λ)|x(a, λ, ω)− z(a, λ, ω)|da
)
< t}).

So we have

Ff(x),f(z)(t) ≥ Fx,z(
t

r
).

Using Theorem 3.1 for the contraction f there exists a fractal interpolation function
x∗.

Next we have to show the interpolation property of x∗. For i ∈ {1, ..., N} we have
the following equalities

x∗(ti, λ, ω) = f(x∗(ti, λ, ω)) = Sλ
i (x∗(tN , λ, ω)) = pλ

i (ω).

This fractal interpolation function x∗ can be considered a generalized Brownian
motion.

Remark: If
sup
λ∈Λ

β(λ)Eω

∑
αi|ϕλ

i (0)| <∞

then, by Tchebysev inequality, (4.9) is fulfilled.
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