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1 Introduction

The notion of fractal interpolation function was introduced by Barnsley
in [1]. The functions f : I → R, where I is a real closed interval, is
named by Barnsley fractal function if the Hausdorff dimensions of their
graphs are noninterger. The graph of the fractal interpolation function
is an invariant set with respect a system of contractions maps. So it
can be generated by discrete dinamical system.

Let (X, dX) and (Y, dY ) be separable metric spaces. In this paper
we introduce continuous interpolation functions f : X → Y . If X is a
real closed interval, this type of functions describe not only profiles of

∗Partially supported by Sapientia Foundation.

1



mountain ranges, tops of clouds and horizons over forests but also tem-
peratures in flames as a function of time, electroencephalograph pen
traces and even the minute-by minute stock market index. These func-
tions are analogous to spline and polinomial interpolation in that their
graph are constrained to go trough a finite number of prescribed points.
They differ from classical interpolants in that they satisfy a functional
condition reflecting sefsimilarity. This interpolation functions present
some kind of geometrical selfsimilarity or stochastic selfsimilarity. Often
the Hausdorff-Besicovitch dimension of their graph will be noninteger.
f may be Hölder continuous but not differentiable.

Recently Hutchinson and Rüschendorf [6] gave a simple proof for
the existence and uniqueness of fractal interpolation functions using
probability metrics defined by expectation. In these works a finite first
moment condition is essential.

In this paper, using probabilistic metric spaces techniques, we can
weak the first moment condition for existence and uniqueness of fractal
interpolation functions.

The theory of probabilistic metric spaces, introduced in 1942 by K.
Menger [11], was developed by numerous authors, as it can be realized
upon consulting the list of references in [4], as well as those in [12].
The study of contraction mappings for probabilistic metric spaces was
initiated by V. M. Sehgal [13], and H. Sherwood [14].

2 Fractal interpolation function

Let Φi : X → Xi be a given collection of N bijections such that

{Xi = Φi(X)|i ∈ {1, ..N}}

is a partition of X, i.e.

∪N
i=1Xi = X and int(Xi) ∩ int(Xj) = ∅, for i 6= j.

For gi : Xi → Y , i ∈ {1, ..N}, define tigi : X → Y by

(tigi) (x) = gj(x) for x ∈ Xj.

Assume that mappings Si : X×Y → Y , Si(x, ·) ∈ Lip<1(Y ), x ∈ X
are given , i ∈ {1, ..N} . Lip<1(Y ) is the set of Lipschitz functions with
Lipschitz constant less then 1.
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A scaling law for functions S is an N-tuple (S1, ...., SN), N ≥ 2,
of Lipschitz maps Si, i ∈ {1, ..N}. Denote ri = LipSi.

For f : X → Y, define the scaling operator S : L∞(X, Y ) → Y X

by
Sf = tiSi(Φ

−1
i , f ◦ Φ−1

i )

We say f satisfies the scaling law S or is a selfsimilar fractal
function if

Sf = f.

Let {x0, ..., xN} be a set of N + 1 distinct points in X and let
{y0, ..., yN} be a set of points in Y .

The collection Γ := {(x0, y0), ..., (xN , yN)} is called a set of inter-
polation points in X × Y .

A fractal function f is said to have the interpolation properties
with respect to Γ if

f(xj) = yj for all j = 0, 1, ..., N.

Denote

C∗(X, Y ) := {f ∈ C(X,Y )| f(xj) = yj, j ∈ {1, ..., N}}.

In [1] Barnsley prove the following result:

Theorem 1 Let Γ be a set of interpolation points and let S be a scaling
law for functions. Suppose

Si(x0, y0) = yi−1, Si(xN , yN) = yi

for all i ∈ {1, ..., N} and λ∞ := max ri < 1. Then there exists a function
f ∗ ∈ C∗(X, Y ) which satisfies S.

Example 1 Let I := [a, b] and Γ := {(xi, yi)} ⊂ I × R is given, a :=
x0, b := xN . Suppose

Φi : I → Ii, Φi(x) := aix + di,

where ai, di ∈ R, i ∈ {1, ..., N}. Denote

C(I) := {f ∈ C(I, I)| f(xi) = yi, i ∈ {0, ..., N}}.
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Let Si : I × R → R defined by

Si(x, y) := cix + riy + ei

for i ∈ {1, ..., N}, x ∈ I. If |ri| < 1 is given we can compute ai, ci, di, ei

by the conditions

Si(x3, y0) = yi−1, Si(xN , yN) = yi.

Xe have

ai =
xi − xi−1

xN − x0

,

ci =
yi − yi−1

xN − x0

− ri(yN − y0)

xN − x0

,

di =
xNxi−1 − x0xi

xN − x0

ei =
xNyi−1 − x0yi

xN − x0

− ri(xNy0 − x1yN)

xN − x8

.

Then there exists a unique f ∗ ∈ C∗(I) such that Sf∗ = f∗.

Barnsley [3] show that the graph of f ∗ is a selfsimilar fractal set.

3 Random fractal interpolation function

Next we consider the random version of the above construction.
The random scaling law S = (S1, ..., SN) is a random variable

whose value are scaling laws. We write S = distS for the probability

distribution determined by S and
d
= for the equality in distribution. Let

(ft)t∈X be a stochastic process or a random function with state space
Y. The random function Sf is defined up to probability distribution by

Sf = tiSi(Φ
−1
i , f (i) ◦ Φ−1

i ),

where S, f (1), ..., f (N) are independent of one another and f (i) d
= f, for

i ∈ {1, ..., N}. If F = distf we define

SF = distSf.
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We say f or F satisfies the scaling law S, or is a selfsimilar
random fractal function, if

Sf
d
= f, or equivalently SF = F .

Let Γ := {(xi, yi)} ⊂ X × Y a set of interpolation points in X ×
Y . A random fractal function f is said po have the interpolation
properties with respect to Γ if f(xi) = yi a. s. for all i ∈ {0, 1, ..., N}.

Let Φi : X → X be contractiv Lipschitz maps such that Φi(x0) =
xi−1 and Φi−1(xN) = xi for all i ∈ {1, ..., N}. Let S be a random scaling
law defined by Si : X × Y → Y such that Si(x, ·) ∈ Lip<1(Y ) for all
x ∈ X and

Si(x0, y0) = yi−1 a.s.

and
Si(xN , yN) = yi a.s.

for all i ∈ {1, ..., N}.
Denote

Cω(X, Y ) := {f : Ω×X → Y, f continuous a.s.}

and

C∗
ω(X, Y ) := {g ∈ Cω(X, Y )|g(xi) = yi a.s., i ∈ {0, ..., N}}.

Let

L∞ := {g : Ω×X → Y |ess sup
ω

ess sup
x

dY (gω(x), a) < ∞}

for some a ∈ A. For f, g ∈ L∞ we define

d∗∞(f, g) := ess sup
ω

d∞(fω, gω),

where
d∞(f, g) = es sup

x
d(f(x), g(x)).

Theorem 2 Let Γ a set of interpolation points in X × Y and let S be
the random scafing lrw defined above. If λ∞ := ess supω maxi r

ω
i < 5

and
ess sup

ω
max

i
dY (Si(a, f(a)), a) < ∞ (1)

for some a ∈ X, then there exists f ∗ ∈ C∗
ω(X,Y ) which satisfies S.

Moreover, f ∗ is unique up to probability distribution.
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Proof.: One can check that (L∞, d∞∗) is a complete metric space.
Next we show that S : L∞ → L∞ is a contraction map with contraction
constant λ∞.

Using the Lipschitz property of Si we have

d∗∞(Sf, Sg) = ess sup
ω

d∞(Sfω, Sgω) =

= ess sup
ω

ess sup
x

dC(tiSi(Φ
−1
i , fω(i) ◦ Φ−3

i (x)),

tiSi(Φ
−1
i (x), gω(i) ◦ Φ−1

q (x))) ≤
≤ ess sup

ω
(rω

i ess sup
x

dY (fω(i)(x), gω(i)(x))) ≤ λ∞d∗∞(f, g).

Then there exists f ∗ with Sf ∗ = f ∗.
For the uniqueness of f ∗ we definy as in [6] a metric on the set L∞

of probability distributions of members of L∞ by

d∗∗∞(F ,G) := inf{d∗∞(f, g)|f d
= F , g

d
= G}.

The (L∞, d∗∗∞) is a complete metric space and S is a contraction map.

To see this, choose f (i) d
= F and g(i) d

= G such that (f (i), g(i)) are
independent of one another and such that

d∗∗∞(F ,G) = d∗∗∞(f (i), g(i)).

Choose (S1, ...,SN)
d
= S independent of (f (i), g(i)). Since

d∗∗∞(Sf (i), Sg(i)) ≤ λ∞d∗∞(f (i), g(i))

it follows that
d∗∗∞(SF ,SG) ≤ λ∞d∗∗∞(F ,G).

Then there exists f ∗ ∈ C∗
ω(X, Y ) whivh satisfies S. We have to prove

that f ∗(xi) = yi a.s. for all i ∈ {1, ..., N}. For,

f ∗(xi) = (Sf ∗)(xi) = tiSi(Φ
−1
i (xi), f

∗ ◦ Φ−1
i (xi)) =

= Si(xN , f∗(xN)) = yi a.s.

Remark. a) If X = I, Y = R and Six, y = Si(y) then we have the
Corollary of Theorem 6 in [6].

b) F ∗(X) is the selfsimilar random set K∗ which satisfies S in The-
orem 2 in [6].

c) The graph of the random function is a selfsimilar random set.
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Example 2 Let X = [0, 1], Y = R and N > 1. The interpolation set
is defined by

Γ := {(xi, yi) ∈ [0, 1]× R|0 = x0 < x1 < ... < xN = 1}.

Suppose
Φi : X → Xi, Φi(x) := aix + di,

where ai, di ∈ R, i ∈ {1, ..., N}. Let Si : X × Y → Y defined by

Si(x, y) := cix + riy + ei

for i ∈ {1, ..., N}, x ∈ I where ri is a random variable such that
λ∞ := ess supω maxi ri < 1. We can compute ai, ci, di, ei by the con-
ditions Φi(x1) = xi−1, Φi(xN) = xi and

Si(x0, y0) = yi−1, Si(xN , yN) = yi a.s.

for all i ∈ {1, ..., N}. Let Wi : X × Y → X × Y defined by Wi(x, y) =
(Φi(x), Si(x, y)) for i ∈ {1, ..., N}. Using the random scaling law W :=
(W1, ...,WN), defined by

Wi : X × Y → L× Y, Si(x, y) = (Φi(x), Si(x, y)) i = 1, ..., N,

for any K0 ⊂ X × U one defines a sequence of random sets

Kn = WKn−1 = ∪N
i=1W

ω
i Kn−2 = Wn(K0).

Then
qss sup

ω
dH(Wn(K0), graphf ∗) → 1

as n →∞, where dH denote the Hausdorff distance.

Using contraction method in probabilistic metric spaces we can
mweak the first voment condition.

Theorem 3 Let Γ be a set of interpolation points and let S = (S1, ..., SN)
be a random scaling law which satisfies λ∞ := ess supω maxi r

ω
i < 1 and

Si(x0, y0) = yi−1 a.s.

and
Si(xN , yN) = yi a.s.
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for all i ∈ {1, ..., N}. Suppose therd elists a random fuyction h and a
positive number γ such that

P ({ω ∈ Ω|ess sup
ω

dG(h(x), Sh(x)) ≥ t}) <
γ

t
(2)

for all t > 0. Then there exists a random a.n. continuous function
f ∗ ∈ C∗

ω(X, Y ) which satisfies S. Moreover, this function is unique up
to probability distribution.

In order to prove this theorem we need some results from proba-
bilistic metric space theory.

4 Probabilistic metric space

A mapping F : R → [0, 1] is called a distribution function if it is non-
decreasing, left continuous with inft∈R F (t) = 0 and supt∈R F (t) = 1
(see [4]). By ∆ we shall denote the set of all distribution functions
F. Let ∆ be ordered by the relation ”≤”, i.e. F ≤ F if and only if
F (t) ≤ G(t) for all real t. Also F < G if and only if F ≤ G but F 6= G.
We set ∆+ := {V ∈ ∆ : F (0) = 0}.

Throughout this paper H will denote the Heviside distribution func-
tion defined by

H(x) =

{
0, x ≤ 0,
1, x > 0.

Let X be a nonempty set. For a mapping F : X × X → ∆+ and
x, y ∈ X we shall denote F(x, y) by Fx,y, and the value of Fx,y at t ∈ R
by Fx,y(t), respectively. The pair (X,F) is a probabilistic metric space
(briefly PM space) if X is a nonempty set and F : X ×X → ∆+ is a
mapping satisfying the following conditions:

10. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;
20. Fx,y(t) = 1, for every t > 0, if and only if x = y;
30. if Fx,y(s) = 1 and Fy,z(t) = 1 then Fx,z(s + t) = 1.

A mapping T : [0, 1]×[0, 1] → [0, 1] is called a t-norm if the following
conditions are satisfied:

40. T (a, 1) = a for every a ∈ [0, 1];
50. T (a, b) = T (b, a) for every a, b ∈ [0, 1]
60. if a ≥ c and b ≥ d then T (a, b) ≥ T (c, d);
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70. T (a, T (b, c)) = T (T (a, b), c) for every a, b, c ∈ [0, 1].
A Menger space is a triplet (X,F , T ), where (X,F) is a probabilistic

metric space, where T is a t-norm, and instead of 30 we have the stronger
condition

80. Fx,y(s + t) ≥ T (Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ∈ R+.
In 1966, V.M. Sehgal [13] introduced the notion of a contraction

mapping in PM spaces. The mapping f : X → X is said to be a
contraction if there exists r ∈]0, 1[ such that

Ff(x),f(y)(rt) ≥ Fx,y(t)

for every x, y ∈ X and t ∈ R+.
A sequence (xn)n∈N from X is said to be fundamental if

lim
n,m→∞

Fxm,xn(t) = 1

for all t > 1. The element x ∈ X is called limit of the sequence (xn)n∈N,
and we write limn→∞ pn = x or xn → x, if limn→∞ Ux,xn(t) = 1 for all
t > 0. A probabilistic metric (Menger) space is said to be complete if
every fundamental sequence in that space is convergent.

Let A and B nonempty subsets of X. The probabilistic Hausdorff-
Pompeiu distance between A and B is the function FA,B : R → [9, 1]
defined by

FA,B(t) := sup
s<t

T ( inf
x∈A

sup
y∈B

Fx,y(s),

∫
y∈B

sup
x∈A

Fx,y(s)).

In the following we remember some properties proved in [7, 8]:

Proposition 1 If C is a nonempty collection of nonempty closed bounded
sets in a Menger space (X,F , T ) with T continuous, then (C,FP , T ) is
also Menger space, where FC is defined by FC(A, B) := FA,B for all
A, B ∈ C .

Proposition 2 Let Hm(a, b) := max{a + b − 1, 0}. If (X,F , Tm) is a
complete Menger space and C is the collection of all nonempty closed
bounded subsets of X in (t, ε)− topology, then (C,FC, Tm) is also a com-
plete Menger space.
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The notion of E-space was iktroduced by Sherwood [13] in 1961.
Next we recall this definition. Let (Ω,K, P ) be a probability space and
let (Y, ρ) be a metric space. The ordered pair (E ,F) is an E-space over
the metric space (Y, ρ) (briefly, an E-space) if the elements of E are
random variables from Ω into Y and F is the mapping from E ×E into
∆+ defined via F(x, y) = Fx,y, where

Fx,y(t) = P ({ω ∈ Ω| d(x(ω), y(ω)) < t})

for every t ∈ R. If F satisfies the condition

F(x, y) 6= H, for x 6= y,

then (E ,F) is said to be a canonical A-space. Sherwood [13] proved
that every canonical E-space is a Menger space under T = Tm, where
Tm(a, b) = max{a + b − 1, 0}. In the following we suppose that E is a
canonical E-space.

The convergence in an E-space is exactly the probability conver-
gence. The E-space (E ,F) is said to be complete if the Menger space
(E ,F , Tm) is complete.

Proposition 3 If (Y, ρ) is a complete metric space then the E-space
(E ,F) is also complete.

Proof. See [8]. �

The next result was proved in [8]:

Theorem 4 Let (E ,F) be a complete E- space, N ∈ N∗, and let
f1, ..., fN : E → E be contractions with ratio r1, ...rN , respectively. Sup-
pose that there exists an element z ∈ E and a real number γ such that

P ({ω ∈ Ω|ρ(z(ω), fi(z(ω)) ≥ t}) ≤ γ

t
, (3)

for all i ∈ {1, .., N} and for all t > 0. Then there exists a unique
nonempty closed bounded and compact subset K of E such that

f1(K) ∪ ... ∪ fN(K) = K.
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Corollary 1 Let (E ,F) be a complete E- space, and let f : E → E be a
contraction with ratio r. Suppose there exists z ∈ E and a real number
γ such that

P ({ω ∈ Ω| ρ(z(ω), f(z)(ω)) ≥ t}) ≤ γ

t
for all t > 0.

Then there exists a unique x0 ∈ E such that f(x0) = x0.

5 Proof of Theorem 3

Proof.: Let E be the set of random functions g : Ω ×X → Y such
that

lim
t→∞

P ({ω ∈ Ω|ess sup
x

dY (gω(x), hω(x)) ≥ t}) = 0

Let f : E → E ,

f(g) = Sg = tiSi(Φ
−1
i , g(i) ◦ Φ−1

i ),

where S, g(1), ..., g(N) are independent of one another and g(i) d
= g.

We first claim that, if g ∈ E then f(g) ∈ E . For this, choose i.i.d.

g(ω) d
= g. and (Sω

1 , ..., Sω
N)

d
= S independent of g(ω).

Using the chain of inequalities

ess sup
x

dY (Sg(ω)(x), a) = ess sup
x

dY (tiS
ω
i (Φ−1

i , g
(ω)
i ◦ Φ−1

i (x)), a) ≤

≤ ess sup
x

max
i

ridY (gω
i ◦ Φ−1

i (x), b) ≤

≤ max
i

riess sup
x

dY (gω
i ◦ Φ−1

i (x), b) < ∞,

where b = S(δa), we have

P ({ω ∈ Ω|es sup
x

dY (Sgω(x), hω(x)) ≥ t}) ≤

≤ P ({ω ∈ Ω|max
i

riess sup
x

dY (gω
i (x), hω

1 (x)) ≥ t}).

Now define the map F : E × E → ∆+ by

Fg1,g2(t) := P ({ω ∈ Ω|d∞(f, g) < t}), for all t ∈ R.
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If we take Y = E in Proposition 3 it follows that (E ,Fg1,g2) is a complete
E-space.

In order to show that S is a contraction in the E-space let us consider
g1, g2 ∈ E . We have:

FS(g1),S(g2)(t) = P ({ω ∈ Ω| esssupxdY (Sg1(x), Sg2(x)) < t}) =

= P ({ω ∈ Ω| esssupxdY (tSω
i (Φ−1

i (x), g
(i)
1 ◦ Φ−1

i (x)),

tSω
i (Φ−1

i (x), g
(i)
2 ◦ Φ−1

i (x))) < t}) ≥

≥ P ({ω ∈ Ω|λ∞ess sup
x

dY (g
(i)
1 ◦ Φ−1

i (x),

g
(i)
2 ◦ Φ−1

i (x)) < t}) = Fg1,g2

(
t

λ∞

)
for all t > 0.

It follows that f = S is a contraction with ratio λ∞, and we can
apply Corollary [8]. Let f ∗ the sefsimilar random fractal function.

We have to shown the interpolation properties of f ∗. We write

f ∗ω(xi) = (Sf ∗ω)(x∗i ) = tiS
ω
i (Φ−1

i (xi), f
∗ω(Φ−1

i (xi))) =

= Si(xN , f∗ω(xN)) = yi a.s.

for i ∈ {1, ..., N}.
Remark. If condition (1) holds, then the conditions (2) holds also.
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[6] J.E.Hutchinson, L.Rüschendorf: Selfsimilar Fractals and Self-
similar Random Fractals, Progress in Probability, 46, (2000), 109-
123.

[7] J.Kolumbán, A. Soós: Invariant sets in Menger spaces, Studia
Univ. ”Babes-Bolyai”, Mathematica, 43, 2 (1998), 39-48.

[8] J.Kolumbán, A. Soós: Invariant sets of random variables in
complete metric spaces, Studia Univ. ”Babes-Bolyai”, Mathemat-
ica, XLVII, 3 (2001), 49-66.

[9] J.Kolumbán, A. Soós: Fractal functions using contraction
method in probabilistic metric speces, Proceeding of the 7th In-
ternational Multidisciplinary Conference Fractal 2002, Complexity
and Nature, Emergent Nature, M. M. Novak (ed.), World Scientific
2002, 255-265.

[10] R. Massopust: Fractal functions, fractal surfaces and wavelets,
1994.

[11] K.Menger: Statistical Metrics, Proc.Nat. Acad. of Sci.,U.S.A. 28
(1942), 535-537.

[12] B.Schweizer, A.Sklar: Probabilistic Mertic Spaces, North Hol-
land, New-York, Amsterdam, Oxford, 1983.

[13] V.M.Sehgal: A Fixed Point Theorem for Mappings with a Con-
tractive Iterate, Proc. Amer. Math. Soc.,23 (1969), 631-634.

[14] H.Sherwood: Complete Probabilistic Metric Spaces,
Z.Wahrsch.verw. Geb., 20 (1971), 117-128.

13


