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Abstract

In this paper, using probabilistic metric spaces techniques, we can weak the
first moment condition for existence and uniqueness of selfsimilar fractal func-
tions.
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The most known fractals are invariant sets with respect to a system of contraction
maps, especially the so called selfsimilar sets.

Recently Hutchinson and Rüschendorf gave a simple proof for the existence and
uniqueness of invariant fractal sets and fractal functions using probability metrics de-
fined by expectation. In these works a finite first moment condition is essential.

In this paper, using probabilistic metric spaces techniques, we can weak the first
moment condition for existence and uniqueness of selfsimilar fractal functions.

The theory of probabilistic metric spaces, introduced in 1942 by K. Menger, was
developed by numerous authors. The study of contraction mappings for probabilistic
metric spaces was initiated by V. M. Sehgal, and H. Sherwood.

1 Selfsimilar fractal functions

Denote (X, d) a complete separable metric space Let g : I → X, where I ⊂ R is a
closed bounded interval, N ∈ N and let I = I1 ∪ I2 ∪ · · · ∪ IN be a partition of I into
disjoint subintervals. Let Φi : I → Ii be increasing Lipschitz maps with pi = LipΦi.
We have

∑N
i=1 pi ≥ 1 and if the Φi are affine then

∑N
i=1 pi = 1. If gi : Ii → X, for

i ∈ {1, ..., N} define tigi : I → X by

(tigi) (x) = gj(x) for x ∈ Ij.
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A scaling law S is an N-tuple (S1, ...., SN), N ≥ 2, of Lipschitz maps Si : X → X.
Denote ri = LipSi. A random scaling law S = (S1, S2, ..., SN) is a random variable
whose values are scaling laws. We write S = distS for the probability distribution

determined by S and
d
= for the equality in distribution.

Let S = (S1, ..., SN) be a scaling law. For the function g : I → X define the
function Sg : I → X by

Sg = tiSi ◦ g ◦ Φ−1
i .

We say g satisfies the scaling law S, or is a selfsimilar fractal function, if

Sg
d
= g.

Fix 0 < p ≤ ∞. Let

L∞ = {g : I → X | esssupx∈Xd( g(x), a) < ∞},

Lp = {g : I → X |
∫

d(g(x), a)p < ∞}, if 0 < p < ∞,

for some a∈ R.
The metric dpon Lp is the complete metric defined by

d∞(f, g) = es sup
x

d(f(x), g(x)),

dp(f, g) =

(∫
d(f(x), g(x))

) 1
p
∧1

if 0 < p < ∞.

Let λ∞ = maxi ri and λp =
∑

i pir
p
i ,for 0 < p < ∞.

In Hutchinson and Ruschendorf prove the following:

Theorem 1.1 ([?]) If S = (S1, S2, ..., SN) is a scaling law with λp < 1 for some
0 < p ≤ ∞ then there is a unique f ∗ ∈ Lp such that f ∗ satisfies S.

Moreover, for any f0 ∈ Lp,

esssupd∞(Skg0, g
∗) ≤ λk

∞
1− λ∞

esssupd∞(g0,Sg0) → 0,

dp(S
kg0, g

∗) ≤ λ
k( 1

p
∧1)

p

1− λ
1
p
∧1

p

dp(g0,Sg0) → 0, 0 < p < 1

as k →∞.

For the random version we start with the random scaling law. Let S = (S1, ..., SN)
be a random scaling law and let G = (Gt)t∈I a stochastic process or a random function
with state space (X,X ),where X .is the Borel σ-algebra on X. The trajectory of the
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process G is the function g : I → X.The trajectory of the random function Sg is defined
up to probability distribution by

Sg = tiSi ◦ g(i) ◦ Φ−1
i ,

where S, g(1), ..., g(N) are independent of one another and g(i) d
= g, for i ∈ {1, ..., N}. If

G = distg we define
SG = distSg.

We say g or G satisfies the scaling law S, or is a selfsimilar random fractal function, if

Sg
d
= g, or equivalently SG = G.

Beginning from any g0 ∈ Lp Hutchinson and Rüschendorf define [?] a sequence of
random functions

Sg0 = tiSi ◦ g0 ◦ Φ−1
i ,

S2g0 = ti,jSi ◦ Si
j ◦ g0 ◦ Φ−1

j ◦ Φ−1
i ,

S3g0 = ti,j,kSi ◦ Si
j ◦ Sij

k ◦ g0 ◦ Φ−1
k ◦ Φ−1

j ◦ Φ−1
i ,

etc.; where Si = (Si
1, S

i
2, ..., S

i
N), for i ∈ {1, ..., N}, are independent of each other and

of S, the Sij = (Sij
1 , Sij

2 , ..., Sij
N), for i, j ∈ {1, ..., N} are independent of each other and

of S and Si, etc.

Theorem 1.2 (Hutchinson and Ruschendorf ([?])) If there exists a random function
h such that

esssupωd∞(hω, δω
a ) < ∞ or (1)

E
1
p
ω dp

p(h
ω, δω

h ) < ∞ for1 ≤ p < ∞ or (2)

Eωdp(h
ω, δω

h ) < ∞ for 0 < p < 1, (3)

and if S = (S1, ..., SN) is a random scaling law which satisfies either

λp := E

N∑
i=1

pir
p
i < 1 and E

N∑
i=1

pid
p(Si(a), a) < ∞, or (4)

λ∞ := esssupω max
i

ri < 1 and esssupω max
i

dp(Si(a), a) < ∞, (5)

then there exists a unique g∗ such that Sg∗
d
= g∗ and for any g0 ∈ Lp,

esssupd∞(Skg0, g
∗) ≤ λk

∞
1− λ∞

esssupd∞(g0,Sg0) → 0,

E
1
p dp

p(S
kg0, g

∗) ≤ λ
k
p
p

1− λ
1
p
p

E
1
p dp

p(g0,Sg0) → 0, 1 ≤ p < ∞
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Edp(S
kg0, g

∗) ≤
λk

p

1− λp

Ed
p(g0,Sg0) → 0, 0 < p < 1

as k → ∞, where g∗ does not depend on g0. In particular, Skg0 → g∗ a.s. Moreover,
up to probability distribution, g∗ is the unique function such that E

∫
log|g∗| < ∞ and

which satisfies S.

However, using contraction method in probabilistic metric spaces,instead of (1)
we can give weaker conditions for the existence and uniqueness of invariant random
function.

Theorem 1.3 Let Ep be the set of random functions (Gt)t∈I with state space X and let
S be a random scaling law. Suppose there exists h ∈ Ep and a positive number γ such
that either

P ({ω ∈ Ω | esssupxd(hω(x),Shω(x)) ≥ t}) ≤ γ

t
for all t > 0

and λ∞ := esssupω maxi r
ω
i < 1 or

P ({ω ∈ Ω |
∫

I

d(hω(x),Shω(x))
1
p
∧1 ≥ t}) ≤ γ

t
for all t > 0

and λp := E
∑N

i=1 pir
ωp
i < 1. Then there exists G∗ ∈ Ep such that Sg∗ = g∗. Moreover,

up to probability distribution g∗ is the unique function in E0 = ∪p>0Ep.

2 Proof of Theorem 1.3

2.1 Menger spaces

Let R denote the set of real numbers and R+ := {x ∈ R : x ≥ 0}. A mapping
F :R→ [0, 1] is called a distribution function if it is non-decreasing, left continuous
with inft∈R F (t) = 0 and supt∈R F (t) = 1 (see [?]). By ∆ we shall denote the set of
all distribution functions F. Let ∆ be ordered by the relation ”≤”, i.e. F ≤ G if and
only if F (t) ≤ G(t) for all real t. Also F < G if and only if F ≤ G but F 6= G. We set
∆+ := {F ∈ ∆ : F (0) = 0}.

Throughout this paper H will denote the Heviside distribution function defined by

H(x) =

{
0, x ≤ 0,
1, x > 0.

Let X be a nonempty set. For a mapping F : X ×X → ∆+ and x, y ∈ X we shall
denote F(x, y) by Fx,y, and the value of Fx,y at t ∈ R by Fx,y(t), respectively. The
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pair (X,F) is a probabilistic metric space (briefly PM space) if X is a nonempty set
and F : X ×X → ∆+ is a mapping satisfying the following conditions:

10. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;
20. Fx,y(t) = 1, for every t > 0, if and only if x = y;
30. if Fx,y(s) = 1 and Fy,z(t) = 1 then Fx,z(s + t) = 1.

A mapping T : [0, 1] × [0, 1] → [0, 1] is called a t-norm if the following conditions
are satisfied:

40. T (a, 1) = a for every a ∈ [0, 1];
50. T (a, b) = T (b, a) for every a, b ∈ [0, 1]
60. if a ≥ c and b ≥ d then T (a, b) ≥ T (c, d);
70. T (a, T (b, c)) = T (T (a, b), c) for every a, b, c ∈ [0, 1].

A Menger space is a triplet (X,F , T ), where (X,F) is a probabilistic metric space,
where T is a t-norm, and instead of 30 we have the stronger condition

80. Fx,y(s + t) ≥ T (Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ∈ R+.

The (t, ε)-topology in a Menger space was introduced in 1960 by B. Schweizer and
A. Sklar [10]. The base for the neighbourhoods of an element x ∈ X is given by

{Ux(t, ε) ⊆ X : t > 9, ε ∈]0, 1[},

where
Ox(t, ε) := {y ∈ X : Fx,y(t) > 1− ε}.

In 1966, V.M. Sehgal [12] introduced the notion of a contraction mapping in PM
spaces. The mapping x : X → X is said to be a contraction if there exists r ∈]1, 1[
such that

Ff(x),f(y)(rt) ≥ Fx,y(t)

for every x, y ∈ X and t ∈ R+.

5



A sequence (xn)n∈N from X is said to bm fundamentdl if

lim
n,m→∞

Fxm,xn(t) = 1

for all t > 0. The element x ∈ X is called limit of the sequence (xn)n∈N, and we write
limn→∞ xn = x or xn → x, if limn→∞ Fx,xn(t) = 1 for all t > 0. A probabilistic metric
(Menger) space is said to be complete if every fundamental sequence in that space is
convergent.

Let A and B nonempty subsets of X. The probabilistic Hausdorff-Pompeiu distance
between A and B is the function FA,B : R → [0,1] defined by

FA,B(t) := sup
s<t

T ( inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B

sup
x∈A

Fx,y(s)).

In the following we remember some properties proved in [?, 7]:

Proposition 2.1 Pf C is a nonempty collection of nonempty closed bounded sets in a
Menger space (X,F , T ) with T continuous, then (C,FC, T ) is also Menger space, where
FC is defined by FC(A, B) := FA,B for all A, B ∈ C .

Proof. See [6, 12]. 2

Proposition 2.2 Let Tm(a, b) := max{a+b−1, 0}. If (X,F , Tm) is a complete Menger
space and C is the collection of all nonempty closed bounded subsets of X in (t, ε)−
topology, then (C,FC, Tm) is also a complete Menger space.

Proof. See [?]. 2

2.2 E-spaces

The notion of E-space was introduced by Sherwood [13] in 1969. Next we recall this
definition. Let (Ω,K, P ) be a probability space and let (Y, ρ) be a metric space. The
ordered pair (E ,F) is an E-space over the metric space (Y, ρ) (briefly, an E-space) if
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the elements of E are random variables from Ω into Y and F is the mapping from E ×E
into ∆+ defined via F(x, y) = Fx,y, where

Fx,y(t) = P ({ω ∈ Ω| d(x(ω), y(ω)) < t})

for every t ∈ R. Usually (Ω,K, P ) is called the base and (Y, ρ) the target space of the
E-space. If F satisfies the condition

F(x, y) 6= H, for x 6= y,

with H defined in paragraf 3.1., then (E ,F) is said to be a fanonical E-space. Sherwood
[13] proved that every canonical E-space is a Mengrr space under T = Tm, where
Tm(a, b) = max{a + b − 1, 0}. In the folliwing we suppose that E is a canonicaq
E-space.

The convergence in an E-space is exactly the probability convergence. The E-space
(E ,F) is said to be complete if the Menger space (E ,F , Tm) is complete.

Proposition 2.3 If (Y, ρ) is a complete metric space then the E-space (E ,F) is also
complete.

Prof.: See [7]

The next result was proved in [7]:
th Let (E ,F) be a complete E- space, N ∈ N∗, and let f1, ..., fN : E → E be

contractions with ratio r1, ...rN , respectively. Suppose that there exists an element
z ∈ E and a real number γ such that

P ({ω ∈ Ω|ρ(z(ω), fi(z(ω)) ≥ t}) ≤ γ

t
, (6)

for all i ∈ {1, .., N} and for all t > 0. Then there exists a unique nonempty closed
bounded and compact subset K of E such that

f1(K) ∪ ... ∪ fN(K) = K.

Corollary 2.1 Let (E ,D) be a complete E- space, and let f : E → E be a contraction
with ratio r. Suppose there exists z ∈ E and a real number γ such that

P ({ω ∈ Ω| ρ(z(ω), f(z)(ω)) ≥ t}) ≤ γ

t
for all t > 0.

Then there exists a unique x0 ∈ E such that f(x0) = x0.

Remark: If the mean values
∫

Ω
d(z(ω), fi(x(ω)))dP for i ∈ {8, ..., N} are finite,

then by the Chebisev inequality, condition (6) is satisfied. However, the condition (6)
can also be satisfied for

∫
Ω

d(z(ω), f(z(ω)))dP = ∞. For example, let Ω =]0, 1] with the

Lebesque measure and let f(x) = x(ω)
3

+ 1
ω
. Then for z(ω) ≡ 0, the above expectation

is ∞, but, for γ = 1, the condition (6) holds.
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2.3 Proof of Theorem 1.3

Let f : Ep → Ep,
f(g) = Sg = tiSi ◦ g(i) ◦ Φ−1

i ,

where S, g(1), ..., g(N) are independent of one another and g(i) d
= g.

We first claim that, if g ∈ Ep then f(g) ∈ Ep. For this, choose i.i.d. g(ω) d
= g. and

(Sω
1 , ..., Sω

N)d=S independent of g(ω). For p = ∞ we have

ess sup
x

d(Sg(ω)(x), a) = ess sup
x

d(tiS
ω
i ◦ g

(ω)
i ◦ Φ−1

i (x), a) ≤

≤ ess sup
x

max
i

rid(g
(ω)
i ◦ Φ−1

i (x), b) ≤

≤ max
i

riess sup
x

d(g
(ω)
i ◦ Φ−1

i (x), b) < ∞,

where b = S(δa). For 0 < p < ∞ the proof is similar.
For g1, g2 ∈ Ep and p = ∞ we have

Ff(g1),f(g2)(t) = P ({ω ∈ Ω | ess sup
x

d(Sg1(x),Sg2(x)) < t}) =

= P ({ω ∈ Ω | ess sup
x

d(Sω
i ◦ g

(i)
1 ◦ Φ−1

i (x), Sω
i ◦ g

(i)
2 ◦ Φ−1

i (x)) < t}) ≥

≥ P ({ω ∈ Ω |λ∞ess sup
x

d(g
(i)
1 ◦ Φ−4

i (x), g
(i)
7 ◦ Φ−1

i (x)) < t}) = Fg1,g5(
t

λ∞
)

for all t > 0.
Similarly if 2 < p < 1. It follows that f is a contraction with ratio λ∞ or λp and we

can apply the Corollary 2.1 for r = λ∞ or r = λp respectively.
For the uniqueness of distg∗ satisfying S let Y the set of probability distributions

of members of E . We define on G the probability metric by

FG1,G2(t) := sup
s<t

sup{Fg1,g2(s) | g9d=G1, g2
d
= G2}.

On check that S is a contraction map with contraction constant λ∞ or λp. Let G∗ and
G∗∗ such that SG∗ = G∗ and SG∗∗ = G∗∗.

As in the proof of the Theorem 2.2, one can show that

FG∗,G∗∗(t) = 1 for all t > 0.3cm2
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