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Recently Hutchinson and Riischendorf gave a simple proof for the existence and
uniqueness of invariant fractal sets and fractal functions using probability metrics
defined by expectation. In these works a finite first moment condition is essential.

In this paper, using probabilistic metric spaces techniques, we can weak the first
moment condition for existence and uniqueness of selfsimilar fractal functions.

The theory of probabilistic metric spaces, introduced in 1942 by K. Menger, was
developed by numerous authors. The study of contraction mappings for probabilistic
metric spaces was initiated by V. M. Sehgal, and H. Sherwood.

1 Selfsimilar fractal functions

Denote (X,d) a complete separable metric space Let g : I — X, where I C R is a
closed bounded interval, N € Nand let I = I; Ul, U---U Iy be a partition of I into
disjoint subintervals. Let ®; : I — I; be increasing Lipschitz maps with p; = Lip®;.
We have Zfilpi > 1 and if the ®; are affine then Ef\il pi=1 1Ifg;: I, - X, for
i€{l,..,N} define L;g; : I - X by

(U;g:) (z) = gj(z) fora € I;.

A scaling law S is an N-tuple (Sy, ....,Sn), N > 2, of Lipschitz maps S; : X — X.
Denote r; = LipS;. A random scaling law S = (S1, 53, ..., Sn) is a random variable
whose values are scaling laws. We write S = distS for the probability distribution
determined by S and £ for the equality in distribution.

Let S = (Si,...,Sn) be a scaling law. For the function g : I — X define the
function Sg : I — X by

Sg=;S;ogo0 <I>i_1.
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We say g satisfies the scaling law S, or is a selfsimilar fractal function, if
Sg 4 g.
Fix 0 < p < 0. Let
Loo={g9:I— X | esssupcxd(g(z),a) < oo},
L,={g:1— X | /d(g(a}),a)p<oo}, if 0<p< oo,

for some a€ R.
The metric d,on L, is the complete metric defined by

d(f,9) essupd(f(z),g(z)),

wito = (f d<f<x>,g(x>>)‘l’Mifo<p<oo.

Let Ao = max;r; and \p = >, pirt for 0 < p < oo.
In Hutchinson and Riischendorf prove the following:

Theorem 1.1 ([8]) If S = (S1,852,...,SN) is a scaling law with A\, < 1 for some
0 < p < oo then there is a unique g* € LP such that g* satisfies S.
Moreover, for any go € LP,
k

(o8]

1-)s

esssupdoo(Skgg,g*) < esssupds (9o, Sgo) — 0,
)\k(%/\l)
dp(sk907g*) S pil/\ldp(g07 SgO) — 07 0< p <1

1\

as k — oo.

For the random version we start with the random scaling law. Let S = (S, ..., Sn)
be a random scaling law and let G = (G¢)ier be a stochastic process or a random
function with state space (X, X'),where X'.is the Borel o-algebra on X. The trajectory
of the process G is the function g : I — X.The trajectory of the random function Sg
is defined up to probability distribution by

Sg=1;SiogWod

where S, (", ..., g™ are independent of one another and ¢g(? < ¢, for i € {1,..,N}.
If G = distg we define

SG = distSyg.
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We say g or G satisfies the scaling law S, or is a selfsimilar random fractal function, if
Sg 4 g, or equivalently SG = G.

Beginning from any go € L, Hutchinson and Riischendorf define [8] a sequence of
random functions
Sgo = U;Siogoo®; !,
S?go = U; jSio Sjogoo @7 0 d
8390 =U;;rSio S]l: o Slij ogpo (I>,:1 o q);l o ‘I);l,

etc.; where St = (S§,5%, ..., va'), for i € {1,..., N}, are independent of each other and

of S, the 8% = (S{,8¥,...,8%), for i,j € {1,...,N} are independent of each other
and of S and Si, etc.

Theorem 1.2 (Hutchinson and Ruschendorf ([8])) If there exists a random function
h such that

esssupy,dso (h”,84) < oo or (1)
Efdg(h“’,é,‘;’) <oo forl<p<oo or (2)
E,dpy(h”,67) <o for0<p<l1, (3)

and if S = (51, ...,SN) is a random scaling law which satisfies either

N N
Ap i= EZpirf <1 and EZpid”(Si(a),a) < 00, or (4)
i=1 =1
Aoo := esssup,maxr; <1 and esssup, maxdP(S;(a),a) < oo, (5)

then there exists a unique g* such that Sg* 4 g* and for any go € Ly,

esssupds,(go, Sgo) — 0,

k
esssupdo (90, 9%) < 13—
- oo

k

. AP 1
E7di(S*g0,9") < —“L Evd.(g0,Sg0) = 0,1 < p < o0
-\
k

Edp(skg07g*) S 1 pA EZ(QO:S!]O) _>070<p< 1

—p
as k — oo, where g* does not depend on go. In particular, S¥go — ¢* a.s. Moreover,
up to probability distribution, g* is the unique function such that E [ log|g*| < oo and

which satisfies S.

However, using contraction method in probabilistic metric spaces,instead of (1)
we can give weaker conditions for the existence and uniqueness of invariant random
function.
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Theorem 1.3 Let £, be the set of random functions (Gy)ier with state space X and
let S be a random scaling law. Suppose there exists h € &£, and a positive number v
such that either

P({w € Q| esssupyd(h”(x),Sh”(z)) > t}) < % forall t>0
and Ao := esssup, max; Y <1 or

P({we Q] /Id(hu’(m),sm(x))%“ > 1)) < % forall t>0

and N, := EXN pir¥® < 1. Then there exists G* € &, such that Sg* = g*. More-
over, up to a probability distribution g* is the unique function in & = Upso&yp.

The Brownian motion can be characterized as the fixed point of a scaling operator.
For each a > 0, let B* : [0,1] — R denote the constrained Brownian motion given
by

B(t+h) — B*(t) £ N(0,ah), for t>O0andh >0,

B%(0) =0a.s., and B%1)=1a.s.,

where N(0,ah) denotes the normal distribution with mean 0 and variance ah. For
fix p € R consider the Brownian motion B®|pga(1)_, constrained by B*(1) =p.
Let S1,52 : R — R the affine transformation characterized by

51(0) - 0, 51(1) - 52(0) =D, 52(1) =1.

If
ry = LipSi1 =|p|, 12 = LipSy =|1—p|,
then ) |
B[ ga(1)=p(t) L5 0B¥(2t), telo, 5].
Similarly
2 1
B ga(1y—p(t) £ Sa0 BT (2t~ 1), te [5:1-
Now define .
s
q) : 1 — fl) = —
1 [07 ]%[072]7 1(3) 2’
1 s+1
(§2 [0)1]%[5)1]) @1(8): D) .

It follows that
B®|pary)(t) L UL, S0 B> 0 &7 (1), te(0,1].

Now let p® be random point with distribution N (0, §) and let S® = (S, S§) be the

random scaling law obtained by defining (S¢, S$) from the random point p* in the
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same manner as (S1,S2) was previously defined from p. Let r = Lip$ for i = 1,2
and let * = max{r{,r$}. Denote S = {S¥a > 0.}
It follows for each @ > 0 that

(9

d o7 _
B® = ulesia oB?%" " o0 ®; 1,

(3

(2)

_a_(1 o o o
where Bz"%( )4 B*% and B>}~ £ B> are chosen independently of one another.

Thus the family of constrained Brownian motion {B*|a > 0} satisfies the family
of scaling laws S.

2 Invariant sets in E-spaces

2.1 Menger spaces

Let R denote the set of real numbers and Ry := {z € R: z > 0}. A mapping
F :R— [0,1] is called a distribution function if it is non-decreasing, left continuous
with inf;cr F(t) = 0 and sup,cg F(t) = 1 (see [2]). By A we shall denote the set of
all distribution functions F. Let A be ordered by the relation ”?<” i.e. F' < G if and
only if F((t) < G(t) for all real t. Also F < G if and only if FF < G but F # G. We
set AT :={F € A: F(0) =0}.
Throughout this paper H will denote the Heviside distribution function defined
by

0, =<0,
H(x):{ 1, =>0.

Let X be a nonempty set. For a mapping F : X x X — AT and z,y € X we shall
denote F(z,y) by Fg,, and the value of F, , at t € R by F, ,(t), respectively. The
pair (X, F) is a probabilistic metric space (briefly PM space) if X is a nonempty set
and F : X x X — AT is a mapping satisfying the following conditions:

19 F, 4 (t) = F,.(t) forall z,y € X and t € R;

20, F,,(t) =1, for every t > 0, if and only if z = y;

30 if F, ,(s) =1and F,.(t) =1 then F, .(s+t) = 1.

A mapping T : [0,1] x [0,1] = [0,1] is called a t-norm if the following conditions
are satisfied:

4%, T'(a,1) = a for every a € [0, 1];

50. T'(a,b) = T(b,a) for every a,b € [0,1]

6°. if a > c and b > d then T'(a,b) > T(c,d);

7°. T(a,T(b,c)) = T(T(a,b),c) for every a,b,c € [0,1].

A Menger space is a triplet (X, F,T), where (X, F) is a probabilistic metric space,
where T is a t-norm, and instead of 3° we have the stronger condition
8. F,  (s+1t) > T(F,.(s),F.,u(t) for all z,y,z € X and s,t € Ry.



6 A. So6s

The (t, €)-topology in a Menger space was introduced in 1960 by B. Schweizer and
A. Sklar [?]. The base for the neighbourhoods of an element = € X is given by

{Uz(tve) CX:t>0e€ 6]07 1[}7

where
Uz(te) :={y € X : F, y(t) > 1 —€}.

In 1966, V.M. Sehgal [13] introduced the notion of a contraction mapping in PM
spaces. The mapping f : X — X is said to be a contraction if there exists r €]0,1]
such that

Fi(2),1() (1) > Fay(t)

for every z,y € X and t € Ry.

A sequence (x,)nen from X is said to be fundamental if

lim F, .. (t)=1

n,m—00

for all ¢ > 0. The element z € X is called limit of the sequence (x,)nen, and we
write limp, o0 Tp, = & O T,, — @, if limp_y oo Fyp ¢, (¢) = 1 for all ¢ > 0. A probabilistic
metric (Menger) space is said to be complete if every fundamental sequence in that
space is convergent.

Let A and B nonempty subsets of X. The probabilistic Hausdor[f-Pompeiu distance
between A and B is the function F4 g : R — [0,1] defined by

Fa p(t) :=sup T(inf sup Fy ,(s), inf sup Fy 4(s)).
s<t z€A yecB YEB zcA

In the following we remember some properties proved in [11, ?]:

Proposition 2.1 If C is a nonempty collection of nonempty closed bounded sets in
a Menger space (X, F,T) with T continuous, then (C,Fc,T) is also Menger space,
where Fe is defined by Fec(A,B) .= Fap for all A,BeC .

Proof. See [11, 13]. O
Proposition 2.2 Let T),(a,b) := max{a + b — 1,0}. If (X,F,T,.) is a complete
Menger space and C is the collection of all nonempty closed bounded subsets of X in

(t,e)— topology, then (C,Fc,Ty,) is also a complete Menger space.

Proof. See [?]. O
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2.2 E-spaces

The notion of E-space was introduced by Sherwood [14] in 1969. Next we recall this
definition. Let (2, K, P) be a probability space and let (Y, p) be a metric space. The
ordered pair (€, F) is an E-space over the metric space (Y, p) (briefly, an E-space) if
the elements of £ are random variables from 2 into Y and F is the mapping from
& x € into AT defined via F(z,y) = F,,, where

Foy(t) = P{w € Q] d(z(w), y(w)) < t})
for every t € R. Usually (Q2,K, P) is called the base and (Y, p) the target space of
the E-space. If F satisfies the condition

Flz,y) # H, for z#y,

with H defined in paragraf 3.1., then (£, F) is said to be a canonical E-space. Sher-
wood [14] proved that every canonical E-space is a Menger space under T' = T,
where T, (a,b) = max{a+b—1,0}. In the following we suppose that £ is a canonical
E-space.

The convergence in an E-space is exactly the probability convergence. The E-space
(€, F) is said to be complete if the Menger space (£, F,T),) is complete.

The next result was proved in [?]:

Theorem 2.1 Let (£, F) be a complete E- space, N € N*, and let fi,....fn:E = &
be contractions with ratio r1,...rn, respectively. Suppose that there exists an element
z € € and a real number v such that

P({w € Qp(z(w), filz(w)) 2 t}) <

==

; (6)

for all i € {1,..,N} and for all t > 0. Then there exists a unique nonempty closed
bounded and compact subset K of £ such that

FK)U ..U fx(K) = K.

Corollary 2.1 Let (£,F) be a complete E- space, and let f : £ — £ be a contraction
with ratio r. Suppose there exists z € £ and a real number v such that

P({w € Q| p(2(w), £(2) (@) 2 #}) < 7 for allt > 0.

Then there exists a unique xo € £ such that f(zo) = xo.
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