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Disorder-driven phase transition in a spring-block type magnetization model
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Abstract

The critical behavior of a one-dimensional Burridge–Knopoff type spring-block model, aimed to describe magnetization phenomena, is studied
by Monte Carlo type computer simulations. Disorder is introduced through randomly distributed pinning centers and the magnetization process is
modeled through a relaxation dynamics. The distribution of avalanche sizes (jumps in magnetization) is studied for different disorder values. The
results indicate that the model exhibits a disorder-driven phase transition. Estimates for some critical exponents and scaling laws are given.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Systems with quenched disorder, and disorder-induced phase
transitions [1–8] represent a fascinating research field in statis-
tical physics.

In the vicinity of a first-order phase transition there are
usually three characteristic time-scales: τa is the characteristic
time-scale of the microscopic (atomic) response of the system;
τth is the characteristic time-scale of the thermal fluctuations
and τdr is the characteristic time-scale of the external driving.
Whenever the τa � τdr � τth relation holds between the three
characteristic time-scales, we can encounter a fluctuationless or
athermal first-order phase transition. In contrast, for the conven-
tional equilibrium phase transitions the τa � τth � τdr relation
holds between the characteristic time-scales.

Well-known examples for such phase transitions are the
athermal solid–solid diffusionless martensitic transitions [9]
or the field-induced first-order phase transition in ferromag-
netic systems. For many fluctuationless phase transitions hys-
teresis occurs even if the system is driven extremely slowly.
This suggests that hysteresis is not of kinetic nature, but it is
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due to the quenched disorder present in these systems. A spe-
cial type of fluctuationless phase-transition occurs when the
amount of quenched disorder is varied in some systems. Chang-
ing the amount of disorder will qualitatively change their be-
havior, so this type of fluctuationless phase transitions are
named disorder-driven phase transitions. Whenever disorder-
driven phase transition occurs, the system has usually history-
dependent metastable evolution (hysteresis is present) and the
qualitative shape of the hysteresis loop changes abruptly at
the critical amount of disorder. Studying an exchange-coupled
Co/CoO-bilayer magnetic structure, recently Berger et al. [6]
gave also experimental evidence for the theoretically predicted
disorder-driven phase transition.

Disorder-driven phase transitions were observed in many
models aimed to describe magnetization phenomena. Many re-
cent studies proved that a convenient way of treating the micro-
scopic interactions responsible for magnetization phenomena
can be done by introducing random disorder in simple mag-
netic models. This was done in the well-known random-field
(RFIM) [1], random-bond (RBIM) [5] and random anisotropy
(RAIM) [10] Ising models. These models are all capable to ac-
count for magnetic hysteresis and Barkhausen noise, and indi-
cate also the presence of disorder-induced criticality. For a cer-
tain well-defined value of the disorder, a conventional critical
point appears in these systems. On the hysteresis cycle below
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Fig. 1. Sketch of the mechanical spring-block model.
this critical amount of disorder the magnetization reversal from
negative to positive saturation is abrupt. Above the critical value
of the disorder the magnetization reversal takes place continu-
ously without a giant avalanche which spans the whole system.
There is thus a well-defined value of the quenched disorder in
the system for which the transition between sharp and smooth
magnetization reversal takes place. At this point a first-order
fluctuationless phase-transition occurs. The tunable parameter
is the amount of disorder and the most relevant signature of the
critical state is the occurrence of power-law distributions for
some characteristic quantities like avalanche-size distribution,
signal energy-, duration- or area distribution on the magnetiza-
tion curves.

Many other conceptually different models were also elabo-
rated in order to capture the occurrence of criticality and power-
laws in magnetization phenomena [11]. Most of them consider
the motion of the domain-walls which separate magnetic do-
mains with different orientation (see for example [12–18]).

These domain-walls can be either Bloch-walls or Néel-walls.
The latter type of magnetic domain-walls are especially ob-
served in thin and ultrathin films (see for example [19]).

Recently [20] we have introduced a model based on a simple
mechanical analogy to describe magnetization related phenom-
ena. This model captures all the necessary microscopic ingredi-
ents, and successfully reproduces the experimentally observed
scaling laws for Barkhausen noise. The model is essentially a
Burridge–Knopoff [21] type model, in which disorder is in-
troduced by randomly distributed pinning centers acting on
the domain-walls. In the present Letter we investigate the oc-
currence of the disorder-driven phase transition in this simple
model.

2. The spring-block model for magnetization phenomena

The model considered by us [20] is essentially a one-
dimensional (1D) spring-block system, similar to the 1D
Burridge–Knopoff models [21,22] applied for the study of
earthquakes. It is aimed to reproduce the accepted microscopic
picture of domain-wall dynamics for 180 degree domain-walls
which separate inversely oriented (+|−|+|−|+· · ·) magnetic
domains (Fig. 1).

The main advantage of this model is that it captures in a re-
alistic and pedagogic manner all the main interactions that are
believed to be responsible for magnetization phenomena. First,
we assume that domain-walls are pinned by defects and impuri-
ties, and cannot move unless the resultant force acting on them
is bigger than the strength of the Fp pinning force. Whenever
the resulting force is greater than the pinning force, the wall
simply jumps in the direction of the resulting force on the next
pinning center. Apart of this pinning force there are two addi-
tional forces of magnetic origin acting on each domain-wall. To
understand these forces let us consider the ith wall which sepa-
rates the (i − 1)th and ith domain. One of the forces acting on
this domain-wall, FH , results from the magnetic energy (called
Zeeman-energy) of the domains i − 1 and i in an external mag-
netic field H and it is easy to realize (see [20]) that this force
has the form:

(1)FH = (−1)iβ · H,

with β a constant. For positive (negative) values of the external
magnetic field this force tends to increase domains oriented in
the + (−) direction. The second type of magnetic force, Fm,
acting on both sides of the domain-walls, is due to the magnetic
self-energy of each domain. This force tends to minimize the
length of each domain. It can be easily proved ([20]) that Fm is
proportional with the length of the considered domain xi

(2)Fm = −fmxi.

The constant fm is an important coupling parameter. This term
models the demagnetization effect.

The system of the Fp , Fm and FH forces can be now easily
mapped on a one-dimensional spring-block Burridge–Knopoff
type model [21].

The main elements in this mechanical analogy (Fig. 1) are
randomly distributed pinning centers, rigid walls on the pin-
ning centers (modeling domain-walls) separating + and − ori-
ented domains and springs between the walls (modeling the
Fm forces). We assume that the strength of the pinning cen-
ters (pinning forces), Fp , are randomly distributed following
a normal distribution. These pinning centers behave as static
friction forces acting on domain-walls. Whenever the resulting
force on a domain-wall exceeds the pinning force, the wall will
jump in the direction of the resultant force on the next pinning
center (if this is empty). Different walls are not allowed to oc-
cupy the same pinning center. This constraint implies that the
number of magnetic domains and domain-walls are kept con-
stant and are thus a priori fixed within this model. Domains
cannot totally disappear and new domains cannot appear dur-
ing magnetization phenomena. This constraint implies also that
total magnetization cannot be completely reached. Whenever
the number of pinning centers is much larger than the num-
ber of domain walls (which is our case) the difference from the
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Fig. 2. Hysteresis loop (left) and corresponding jump-size distribution (right) in the vicinity of the critical regime. The power-law fit for the jump-size distribution
indicates a scaling exponent −0.83. Other parameters of the simulations are: Np/Nw = 100, Np = 7000, L = 7, σ = 0.4, fm = 10 and dH = 0.001.
achieved and total magnetization is negligible (in our case the
relative difference is less than 1%).

The elastic springs connecting the walls are ideal with zero
equilibrium length and tension linearly proportional with their
length. The tension in the elastic springs will reproduce the Fm

forces. Beside the pinning forces and the tensions in the springs
there is an extra force acting on each wall. The strength of this
force is proportional with the applied magnetic field’s intensity.
It has the same magnitude for all walls, however its direction is
inverse for the +|− and −|+ walls. This force reproduces the
FH magnetic forces. The main differences relative to the clas-
sical Burridge–Knopoff type models [21,22] is that in our case
the driving force acting on the blocks has different orientations
for the neighbors, and the second layer of springs which con-
nects the sliding blocks to the driving force is absent.

Modeling magnetization phenomena with this mechanical
model is straightforward. First Np pinning centers are randomly
distributed on a fixed length (L) interval, and their strengths
are assigned. Than a fixed Nw number of walls are randomly
spread over the pinning centers (Nw � Np) and connected by
ideal springs having the same elastic constant. Neighboring do-
mains (separated by the walls) are assigned opposite magnetic
orientation. The dynamics imposed is aimed to reproduce real
magnetization phenomena. The system is driven through sev-
eral complete magnetization–demagnetization cycles (hystere-
sis loops) by increasing and decreasing the value of H (and
correspondingly FH ) using a relaxation dynamics for a given
H value. Whenever for a given wall |FH + Fm| > Fp the wall
will jump in the direction of the resultant force on the next
pinning center. If this pinning center is occupied by another
domain-wall, the wall will remain on its original place. For a
given H value we consider that equilibrium is reached when
no wall can move anymore. We assume that the time needed
for the system to achieve equilibrium is zero. It is important to
note that one event (jump) can trigger many other events lead-
ing to avalanche-like processes. The order in which the position
of the walls is updated is random. The value of the FH external
force is increased step-by-step (corresponding to an increasing
H magnetic field intensity), and for each new FH value an equi-
librium position of the system is searched. In each equilibrium
configuration one can calculate the total magnetization of the
system as:

(3)M =
∑

i

li · si

where li is the length of domain i, and si is its orientation: +1
for positive orientation, and −1 for negative orientation.

The parameters of the model are: Np—the number of pin-
ning centers; Nw—the number of domain-walls (usually Nw �
Np); the geometrical size of the sample L; the standard devi-
ation σ of the strength for pinning forces; fm, the coupling
constant between the neighboring domain-walls (elastic con-
stant of the springs) and the dH driving rate of the external
magnetic field (change in H for one simulation step) which is
usually taken very small (quasi-static driving). The parameter
β in the equation for FH (1) is taken as unity, fixing by this the
units for the relevant forces.

During the simulation we focus on the variation of the
magnetization, constructing the shape of the hysteresis loop
and jump-size distribution. The hysteresis loop is the history-
dependent relation between the magnetization M and the ex-
ternal magnetic field H when the value of H is successively
increased and decreased. The jump-size distribution (g(s)) is
the distribution function of the abrupt jumps in M through-
out many hysteresis loops. In our previous study [20], we have
proved that for reasonable parameter values the model repro-
duces well the shape of hysteresis loops and the statistics of
Barkhausen jumps. As an example on Fig. 2 we have plotted a
characteristic hysteresis loop and the corresponding jump-size
distribution in the critical regime (where the jump-size distrib-
ution follows a power-law).

In a wide range of parameters (for example parameters as in
Fig. 2 and σ � σcrit) the shape of the obtained hysteresis curves
satisfies the expectations for real magnetization phenomena.
The qualitative shape of the hysteresis curves are quite stable
and one can detect many discrete jumps with largely different
sizes. The effects of the variation of the free parameters of the
model are extensively discussed in our previous work [20].

As it was shown also in [20] the model exhibits a fair sta-
tistics for Barkhausen noise. It has also the necessary require-
ments for the occurrence of a fluctuationless phase transition.
The characteristic time-scales of the model system are: τa = 0
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Fig. 3. Relative size of the largest avalanche as a function of the disorder for
fixed pinning center density (Np/L = 1000) and different system sizes: L = 1,
L = 2, L = 3, L = 4, L = 6 and L = 7. Other parameters of the simulations
are: Np/Nw = 100, fm = 10 and dH = 0.001.

(instant response), slow driving rate and zero temperature,
which means that τth → ∞. Thus the relation τa � τdr � τth
holds. Here we investigate the disorder-driven phase transition
which should appear while the amount of disorder is varied
in the system. This phase transition should be observable by
studying the size of the largest avalanche as a function of the
amount of quenched disorder introduced by the randomly dis-
tributed pinning centers. The relevant order parameter is thus
the relative size of the maximal avalanche. It is computed by
averaging over several hundreds of different realizations of the
quenched disorder, keeping all parameters of the model fixed.

3. Simulation results for the disorder-driven phase
transition

As it is known from previous studies on RFIM, RBIM and
RAIM [1,5,10] the amount of disorder in the model has a crucial
role on the statistical properties of the obtained jumps in magne-
tization. For low and very strong disorder values the jump-size
distribution does not exhibit scaling property. Usually there is a
critical amount of disorder for which the jump-size distribution
has power-law decay.

In the present model the disorder is induced by the randomly
distributed pinning centers. The amount of disorder can be con-
trolled in two manner: either by varying the average distance,
L/Np , between the pinning centers (inverse of the density of
the pinning centers Np/L) or by changing the standard devi-
ation σ of their strength’s distribution. Here, we use both of
these methods and expect qualitatively similar results. We will
use the parameters given in the caption of Fig. 2, and vary σ or
Np/L.

First, by keeping the density of the pinning centers constant,
the order parameter (the maximum size of the avalanches),
Smax/L, versus σ is studied. For various system sizes the sim-
ulation results are plotted in Fig. 3. The shape of the curves
Fig. 4. Relative size of the largest avalanche at σ > σcrit disorders for fixed
pinning center density (Np/L = 1000) and different system sizes: L = 0.5,
L = 1, L = 2, L = 3, L = 4, L = 5, L = 6 and L = 7. Other parameters of the
simulations are: Np/Nw = 100, fm = 10 and dH = 0.001. The dashed-line
indicates the best power-law fit.

indicates that the expected disorder-induced phase transition
occurs. The results show that for low values of the disor-
der (σ < σcrit) huge avalanches arise which sweep through
the whole system. This means that the magnetization reverses
abruptly at a certain intensity of the driving field. There is a
critical amount of disorder σcrit where the curves have their in-
flection point. In the neighborhood of σcrit the avalanche sizes
will drop drastically.

Fig. 3 suggest that by increasing the system sizes the curves
(Smax/L versus σ ) show similar behavior, the location of the
inflection point does not move and the two phases become more
and more distinct.

For high amount of disorder (σ > σcrit) there is no possibility
for spanning avalanches to occur. The relative size of the largest
avalanche in this case is much smaller. For an infinite system
one would expect that the relative size of the non-spanning
avalanches should approach zero. Due to the fact that computer
simulations were performed with finite system sizes, this quan-
tity is naturally greater than zero. It is quite simple to prove that
for infinite system sizes and for high values of σ there is a clear
tendency for the Smax/L quantity to approach zero. In order to
do this we considered the case of (σ = 0.8 � σcrit) and plot-
ted the value of Smax/L as a function of system size. Results
are shown in Fig. 4 and are well fitted by a power-law with ex-
ponent −0.76. The power-law nature of this curve supports our
expectation that for σ > σcrit indeed the relative size of the or-
der parameter Smax/L goes to zero as the system size tends to
infinity.

Using polynomial fits we located the inflexion point of the
Smax/L versus σ curves. This is indicated in Fig. 3 by dashed
lines. Results suggest that regardless of the system size the criti-
cal amount of disorder for this particular pinning center density
is the same, namely σcrit = 0.28±0.02. The corresponding rela-
tive size of the percolating avalanche is: Smax/L = 0.59 ± 0.03.
This avalanche size at criticality is in good agreement with the
result reported by Vives and Planes [10].
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Fig. 5. Relative size of the largest avalanche as a function of the average
distance between the pinning centers. The three curves correspond to three
different σ values. Other parameters of the simulations are: Np/Nw = 100,
Np = 1000, fm = 10 and dH = 0.001.

We study now this disorder-induced phase transition as a
function of the average distance (L/Np) between the pinning
centers. In the simulation the number of pinning centers were
kept constant (Np = 1000) and the size of the system, L, varied.
The phase transition should be observable by plotting the rela-
tive size of the maximal avalanche (order parameter), Smax/L,
versus L (which is proportional with 1/density). Results for
three different σ values are given on Fig. 5.

The graphs from Fig. 5 indicate that disorder-driven phase
transition is present again and clearly observable for a wide
range of σ values. As the strength of the disorder in the pinning
force values is increased (σ is increased), the phase transition
occurs for lower and lower pinning center densities, i.e. Lcrit
increases with increasing σ values. This result is not surpris-
ing at all, since the total amount of quenched disorder in the
system depends linearly both as a function of σ and Np/L. An
immediate estimate for the total amount of disorder would be:
σNp/L, which would yield the

(4)Lcrit ∝ σ

scaling law for the Lcrit phase transition point. The transition
point Lcrit can be estimated from the coordinates of the inflec-
tion point in the Smax/L versus L curves. After studying the
disorder-driven phase transition for several σ values the valid-
ity of (4) can be studied. On Fig. 6 we plotted the computed
Lcrit values as a function of σ . The clearly visible linear trend
proves our scaling hypothesis.

4. Discussion and conclusions

First let us emphasize a few advantages of using this spring-
block model relative to the other well-known models, like the
RFIM [1,2].

The RFIM considers scalar spins si = ±1 on a hypercube
lattice. Nearest neighbors are coupled ferromagnetically (J ), a
Fig. 6. Scaling of the inflection point location (obtained from the Smax/L ver-
sus 1/L curves) for different σ values. Data indicates a linear scaling with
slope 2.8. Other parameters of the simulations are: Np/Nw = 100, Np = 1000,
fm = 10 and dH = 0.001.

random field is associated with each site (hi ), and the whole
system is exposed to a magnetic field (H ). The Hamiltonian is:

(5)H = −J
∑

n.n.

sisj −
∑

i

(H + hi)si .

As one can see from the Hamiltonian (5), the RFIM con-
siders only three basic interactions: ferromagnetic coupling,
interaction with the external driving field and the disorder in-
troduced through the random fields. RFIM like many of the
previous models does not account for the demagnetization ef-
fect. A second advantage of our model is the pedagogically use-
ful mechanical analogy with the spring-block system, though
it contains all the necessary microscopic ingredients needed
to reproduce magnetization phenomena. Despite all of the ad-
vantages the spring-block model is far from being perfect. The
main disadvantages are the fixed number of domain walls, the
absence of temperature as a parameter, and the absence of real
time in the dynamics (relaxation is assumed to be instantaneous
in time for each magnetic field value).

A fundamental difference between RFIM (or other spin-
type models) and the spring-block model is that the latter
shows disorder-induced phase transition for a non-trivial disor-
der amount even in the simple one-dimensional case. Previous
work on RFIM (see for example [2]) report the existence of
such kind of phase transition in three and higher dimensions.
In the RFIM in one dimension a transition-like curve is ob-
tained in finite systems (Fig. 7). A finite-size analysis suggests
however, that the critical amount of disorder tends to infinity
for infinite system sizes. Moreover, the shape of the Smax(σ )

curves indicates a less and less obvious transition-point (smaller
slope) while the system size is increased. This behavior is dif-
ferent from the one observed in our spring-block model (Fig. 3),
where the transition point is stable and in the vicinity of the crit-
ical amount of disorder the Smax(σ ) curves gets sharper as the
system size is increased.

In conclusion, in the present Letter a one-dimensional Bur-
ridge–Knopoff type magnetization model was studied from the
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Fig. 7. Relative size of the largest avalanche as a function of the disorder in the
one-dimensional RFIM for different system sizes: 1000, 2000, 3000, 5000 and
10000 spins. Coupling constant J = 1, driving rate dH = 0.001.

viewpoint of the disorder-driven phase transition. The quenched
disorder was introduced by randomly distributed pinning cen-
ters, acting as static friction forces on the domain-walls. The
amount of disorder could be controlled either by changing the
density of the pinning centers Np/L, or by varying the stan-
dard deviation σ of their strength. The system was driven
along many hysteresis loops and the statistics of the jumps
in magnetization (avalanche sizes) was computed. As relevant
order parameter the relative size of the maximum avalanche
(maximum jump in magnetization) Smax/L, was considered.
Disorder-induced phase transition was observed both as a func-
tion of σ and Np/L. At criticality (critical amount of disorder)
we found that the statistics of the jumps (avalanches) in magne-
tization follows scaling properties. For low amount of disorder
(smaller than the critical amount) the system evolves with big,
so-called spanning avalanches Smax/L → 1. For high amount
of disorder (bigger than the critical amount) the system evolves
with many small avalanches Smax/L → 0.

The disorder-induced phase transition found in our simple
one-dimensional mechanical model is very similar with the one
found in earlier higher-dimensional models aimed to describe
magnetization phenomena and Barkhausen noise (RFIM [1],
RBIM [5] and RAIM [10]). Here we have shown that the
fluctuationless phase transition can be observed also in one-
dimensional out-of-equilibrium systems.

Our earlier studies on this model [20] proved that at crit-
icality the model is successful in describing the statistics of
Barkhausen noise. In the present work in the framework of the
disorder-induced phase transition we have given a deeper un-
derstanding for what criticality means in our model. It is also
shown that criticality can be reached for several parameter val-
ues, characterized by a scaling law between σ and the density
of the pinning centers.
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