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Abstract. The computational paradigm represented by Cellular Neural/nonlinear Networks (CNN) and

the CNN Universal Machine (CNN-UM) as a Cellular Wave Computer, gives new perspectives for com-

putational physics. Many numerical problems and simulations can be elegantly addressed on this fully

parallelized and analogic architecture. Here we study the possibility of performing stochastic simulations

on this chip. First a realistic random number generator is implemented on the CNN-UM, and then as an

example the two-dimensional Ising model is studied by Monte Carlo type simulations. The results obtained

on an experimental version of the CNN-UM with 128 × 128 cells are in good agreement with the results

obtained on digital computers. Computational time measurements suggests that the developing trend of

the CNN-UM chips - increasing the lattice size and the number of local logic memories - will assure an

important advantage for the CNN-UM in the near future.

PACS. 07.05.Tp Computer modeling and simulation – 05.10.Ln Statistical physics and nonlinear dynamics

– 89.20.Ff Computer science and technology

1 Introduction

Many areas of science and especially physics are pref-

acing serious problems concerning the computing power

of the presently available computers. Solving more and

more complex problems, simulating large systems, ana-

lyzing huge datasets for which even storing represents a

problem, are just a few examples which reminds us that

computing power needs to keep up with it’s exponen-

tial growth, as expressed by Moore’s law [1]. We know

however that this process can not continue much further

solely with the classical digital computers and new com-

putational paradigms are necessary. Parallel computing,
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grid computing and quantum computing are just the most

popular examples. The goal of the present article is to

make the physicist community aware of a modern and

promising trend which is called by computational scien-

tists and engineers Cellular Wave Computers [2]. This

computer is based on the Cellular Neural/nonlinear Net-

work (CNN) and it is experimentally realized by different

physical principles in the architecture of the CNN Univer-

sal Machine (CNN-UM). Possibilities of performing fast

image processing [3], solving in an elegant manner partial

differential equations [4,5] or studying cellular automata

models [6,7] on CNN were already studied. Here we ar-

gue, that the CNN architecture is also appropriate for

Monte Carlo (MC) type simulations on lattice models. As

a specific example we study on an experimental version of

CNN-UM (the ACE16K chip which has 128 × 128 cells)

the well-known second-order phase transition in the two-

dimensional Ising model. Due to the fact that some simple

operations are not included in this experimental hardware

implementation, on this chip the speed of the simulations

is in the range of modern PC type computers. We will ar-

gue however, that the developing trend of this new hard-

ware (2 and 3 layer complex cell CNN-UM architectures,

and a powerful new visual microprocessor is coming out

at AnaFocus Ltd. soon) could substantially increase the

speed of such simulations, assuring an important advan-

tage for CNN computing.

2 The CNN Universal Machine

The theory of cellular neural/nonlinear networks (CNN)

appeared in 1988 [8], but the hardware based on this

theory, like the CNN Universal Machine (CNN-UM) [9]

are just now developing. The CNN-UM is an analogic

(analog+logic) computer which has on it’s main processor

several thousands of interconnected computational units

(cells), working parallelly. The CNN-UM can be easily

connected to any PC type computer and programmed

through a special programming language [10]. This new

kind of hardware does not replace digital computers, but

due to it’s special structure and architecture it could rep-

resent an excellent platform for solving some complex prob-

lems of physics which demand high computational power.

CNN-UM is also extremly usefull as a visual or tactile

topographic microprocessor.

The standard CNN is composed by L× L cells placed

on a square lattice and interconnected through the 8 neigh-

bors. Each cell is an electronic circuit in which the most

important element is a capacitor. The voltage of this ca-

pacitor is called the state value of the cell xi,j(t). The cell

has also an input value (voltage) ui,j , which is constant

in time and can be defined at the beginning of an oper-

ation. The third characteristic of the cell is the output

value yi,j(t). This is equivalent with the xi,j state value

in a given range. More specifically it is a piece-wise lin-

ear function, bounded between −1 (white) and 1 (black):

y = f(x) ≡ 1

2
(| x + 1 | − | x − 1 |)

The connections between the cells are realized with

voltage-controlled resistors resulting that the state value
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of each cell depends on the input and output values of the

connected neighbors. The state equation of the CNN cells,

resulting from the time-evolution of the equivalent circuit

(supposing the 8 neighbor interactions) is the following

[8]:

dxi,j(t)

dt
= −xi,j(t) +

1∑

k=−1

1∑

l=−1

Ak,lyi+k,j+l(t) + (1)

+

1∑

k=−1

1∑

l=−1

Bk,lui+k,j+l + zi,j

The coupling between neighbors can be controlled with

matrices A and B. Within the standard CNN (and on the

hardwares realized up to the present days) A and B are the

same for all cells. Parameters zi,j are constant values and

can vary from cell to cell. The set of parameters {A, B, z}

is called a template. An operation is performed by giving

the initial states of the cells, the input image (the input

values of all cells) and by defining a template. The states of

all cells will vary parallelly and the result of the operation

will be the final steady state of the CNN. Each operation

is equivalent with solving a differential equation defined

by the template itself, with the extra condition that the

state of a cell remains bounded in the [−1, 1] region [11].

The CNN-UM [9] is a programmable cellular wave

computer in which each cell contains additionally a local

analog and a logic unit, local analog and logic memories

and a local communication and control unit. Beside these

local units, the CNN-UM has also a global analog pro-

gramming unit which controls the whole system, making

it a programmable computer. It can be easily connected

to PC type computers and programmed with special lan-

guages, for example the analogic macro code (AMC).

3 Random number generators on the

CNN-UM

Many applications ideal for the analogic (analog &logic)

architecture of the CNN-UM were already developed and

tested. For practical purposes the most promising appli-

cations are for image processing, robotics or sensory com-

puting purposes [3]. The CNN architecture seems also

promising when considering complex problems in natu-

ral sciences. Studies dealing with partial differential equa-

tions (PDE) [4,5,12,13] or cellular automata (CA) mod-

els [6,7] prove this. Solving partial differential equations

is relatively easy and offers the advantage of continuity in

time [4]. Deterministic cellular automata [6] with simple

nearest-neighbor rules are also straightforward to imple-

ment in the CNN architecture. In physics however, many

of the interesting problems deal with stochastic cellular

automaton, random initial conditions or other MC meth-

ods on lattices (spin problems, population dynamics mod-

els, lattice gas models, percolation etc...). Developing and

proving the efficiency of stochastic simulation techniques

on the CNN-UM - using its stored (or algorithmic) pro-

grammability - would be thus an important step toward

its success.

It is known that for a successful stochastic simulation

the crucial starting point is a good random number gen-

erator (RNG). While computing with digital processors,

the ”world” is deterministic and discretized, so in prin-

ciple there is no possibility to generate quickly random

events and thus real random numbers. The implemented
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RNGs are all pseudo-random number generators working

with a deterministic algorithm, and it is believed that

their statistics approximates well real random numbers.

The reproducibility of the pseudo-random numbers can

be sometimes an advantage (debugging the code) but in

many cases it presents a serious disadvantage. A first ad-

vantage of the analog architecture is the possibility to use

the the natural noise on the device and to generate real

random numbers.

There are relatively few papers presenting or using

RNGs on the CNN-UM [14,7,15]. The known and used

ones are all pseudo-random number generators based on

chaotic Cellular Automaton (CA) type update rules, gen-

erating binary images with 1/2 probability of the black

and white pixels (logical 1 and 0, respectively). They were

used mainly in cryptography [7] and watermarking on pic-

tures [14]. In a recent paper [15] we presented a realistic

RNG by using the natural noise of the chip. An algorithm

for generating binary images with any probability of the

black pixels was also described. Here we present briefly

this realistic RNG and for more details we recommend

[15].

The natural noise of the CNN-UM chip is usually highly

correlated in space and time, so it can not be used directly

to generate random binary values. Our method is based

on a chaotic CA perturbed with the natural noise of the

chip. The random nature of the noise eliminates the de-

terministic properties of the chaotic CA.

As a starting point the relatively simple but efficient

chaotic CA, presented by Crounse et al. [7] and Yalcin et

al. [14] called the PNP2D was chosen. This chaotic CA is

based on the following update rule

xt+1(i, j) = (xt(i + 1, j) ∨ xt(i, j + 1)) ⊕ xt(i − 1, j) ⊕(2)

⊕xt(i, j − 1) ⊕ xt(i, j),

where i, j are the coordinates of the cells, the index t

denotes time-steps and x is a logic value 0 or 1 (repre-

senting white and black pixels, respectively). Symbols ∨

and ⊕ stand for the logical operations or and exclusive-

or (XOR), respectively. As described by the authors this

chaotic CA is relatively simple and fast, it passed all im-

portant RNG tests and shows very small correlations. It

generates binary values 0 and 1 with the same 1/2 proba-

bility independently of the starting condition. It is a good

candidate for a pseudo-random number generator and our

first goal is to transform it into a realistic RNG. The way

to do this is relatively simple. After each time step the P (t)

result of the chaotic CA is perturbed with a noisy N(t)

binary picture (array) so that the final output is given as:

P ′(t) = P (t) ⊕ N(t). The symbol ⊕ stands again for the

logical operation XOR, i.e. pixels which are different on

the two pictures will become black (logic value 1). This

operation assures that no matter how N(t) looks like, the

density of black pixels remains the same 1/2. Because the

used noisy images contain only very few black pixels (logic

values 1) we just slightly sidetrack the chaotic CA from

the original deterministic path and all the good properties

of the pseudo-random number generator will be preserved.

The N(t) noisy picture is obtained by the following sim-

ple algorithm. All pixels of a gray-scale image are filled
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up with a constant value a and a cut is performed at a

threshold a+ z, where z is a relatively small value. In this

manner all pixels which have smaller value than a+ z will

become white (logic value 0) and the others black (logic

value 1). Like all the logic operations this operation can

be also easily represented by a CNN template. Since the

CNN-UM chip is an analog device, there will always be

a natural noise on the gray-scale image. Choosing thus a

proper z value one can always generate a random binary

picture with few black pixels. These N(t) pictures might

be strongly correlated and will fluctuate in time. The time-

like fluctuations are caused by real stochastic processes in

the transistor circuits of the chip and can not be thus

controlled. They are the source of a convenient random

perturbation on the chaotic CA, and are responsible for

the realistic nature of the RNG. In case one would need

a repeatable series of pseudo-random numbers the chaotic

CA is simply not perturbed by the N(t) noisy picture.

Using now n independent random binary images with

1/2 density of the black pixels, it is possible to generate

pictures with any p probability of the black pixels (p be-

ing a number represented by n-bits, when expressed as a

power of 1/2). For more details see [15].

This RNG and the described algorithms were tested

and are properly working on an ACE16K chip which is

an experimental version of the CNN-UM with 128 × 128

cells. It is found that the RNG with p = 0.5 is already

almost 5 times faster on the ACE16K than on modern

PC type digital computers. Generating images with other

p probabilities is of course slower, depending on n (see

[15]). Taking into account thus the natural trend that the

lattice size of CNN-UM chips will be growing and that

calculations on this chip are totally parallel, these results

predict a promising trend. Some codes and movies about

the RNGs on the ACE16K chip are available on the home-

page dedicated to this study [10].

4 Studying the Ising model on the CNN-UM

Once a properly working RNG is available, Monte Carlo

type simulations on two-dimensional lattice-type models

are possible. Generating random initial conditions for cel-

lular automata models is straightforward and many simple

stochastic lattice models can be relatively easily solved

[15]. Here we consider the well-known two-dimensional

Ising model. Implementing the MC study of this model on

the CNN-UM is however not trivial. As it will be shown

later a straightforward application of the usual Glauber

[16] or Metropolis [17] algorithms could lead to problems

due to the parallel architecture of the computer.

In the Ising model the spins can have two possible

states σ = ±1. On the CNN-UM these states can be

mapped on the ”black” and ”white” states of the cells.

Without an external magnetic field the hamiltonian of the

system is

H = −J
∑

<i,j>

σiσj , (3)

< i, j > representing nearest neighbors. There are many

different MC type methods for studying this basic lattice

model. Most of them like the Metropolis or the Glauber al-

gorithm are of serial nature, meaning that in each step we
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update one single spin. Working however parallelly with

all spins, could create some unexpected problems due to

the fact that nearest neighbors are updated simultane-

ously. Imagine for instance an initial state where the spin-

values are assigned using a chessboard pattern. This state

will have a zero total magnetization. Let us consider now

the zero-temperature case and the Glauber or Metropo-

lis algorithm. Contrary to what is expected, this system

will not order in a simple ferromagnetic phase but it will

continuously switch between the two opposite chessboard

patterns. For eliminating the parallel update of the neigh-

bors which causes such problems but still taking advan-

tage of the parallel nature of the computer, we impose an

extra chessboard mask on the system. In each odd (even)

step we update parallelly the spins corresponding to the

black (white) cells of the chessboard mask. For the chosen

spins the simple Metropolis algorithm is used. It is simple

to realize that our method is equivalent with the classical

serial Metropolis dynamics in which the spins are updated

in a well-defined order. Detailed balance and ergodicity is

valid, so the obtained statistics should be the right one.

Implementing the above scheme on the CNN-UM is

realized as follows. In each step we first build three ad-

ditional masks: the first marks the spins with 4 similar

neighbors (∆E = 8J), the second one marks the spins

with 3 similar neighbors (∆E = 4J), and the third rep-

resents all the other spins for which ∆E ≤ 0. Separat-

ing these cells is relatively easy using logic operations

and some special templates which can shift the images

in different directions (for ex. shifting to right can be re-

alized by the template: A = {0, 0, 0, 0, 2, 0, 0, 0, 0}, B =

{0, 0, 0, 1, 0, 0, 0, 0, 0}, z = 0). We generate two random

images with probability exp(−8J/kT ) and exp(−4J/kT )

and we perform an AND operation between the random

image and the corresponding mask. After uniting the re-

sults of these two and the third mask (∆E ≤ 0) we get a

new mask which marks all spins which have to be flipped.

Finally we use the chessboard mask and allow only those

spins to flip which correspond to black (white) pixels if

the time-step is odd (even). The CNN code developed for

studying this problem can be also downloaded from the

home-page dedicated to this study [10]. It worth men-

tioning that cluster algorithms, like the one proposed by

Swendsen and Wang [18] or Wolf [19], seem to be also

appropriate for the parallel architecture of the CNN-UM.

Simulation results obtained with the Metropolis type

algorithms are sketched on fig. 1. On this figure we com-

pare results of (i) the classical Metropolis algorithm on

a digital computer, (ii) the results of our parallel algo-

rithm simulated on a digital computer and (iii) the results

obtained on the ACE16K chip. By plotting the average

magnetization, the specific heat and the susceptibility as

a function of the temperature one can conclude that dif-

ferent results are in good agreement with each other. All

simulations were performed on a 128 × 128 lattice using

free boundary conditions.

Fig. 1d plots the time needed for 1 MC step as a func-

tion of the lattice size L. While on a PC type computer

this scales as L2, on the CNN-UM the time does not de-

pend on the lattice size (each command is executed in a
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Fig. 1. Average magnetization M (a), specific heat Cv (b) and

susceptibility χ (c) are plotted as a function of the temperature

T for the classical Metropolis algorithm on a digital computer

(squares), our parallel algorithm simulated on a digital com-

puter (triangles) and the algorithm simulated on the ACE16K

CNN-UM chip (circles). Figure (d) compares the simulation

time t (in ms) needed for 1 MC step on a Pentium 4 PC with

2.4 GHz (squares) and the CNN-UM (circles) as a function of

the lattice size L. The filled circle marks the simulation time

obtained on the ACE16K chip (L = 128).

fully parallel manner on the whole lattice). The time mea-

sured on the ACE16K chip with L = 128 was 4.8ms, while

on a Pentium 4 PC working on 2.4 GHz under Linux op-

erating system the time needed for 1 MC step was 2ms.

For this lattice size the simulations are still faster on the

classical digital computers, however considering the trend

that the size of the CNN chip (Table 1) will increase in

the near future the results are still promising.

Name Year Size

— 1993 12 × 12

ACE440 1995 20 × 22

POS48 1997 48 × 48

ACE4k 1998 64 × 64

CACE1K 2001 32 × 32 × 2

ACE16K 2002 128 × 128

XENON 2004 128 × 96 × 2

EYE-RIS 2005 176 × 144

CACE2K under fabrication 32 × 32 × 3

TABLE 1. Evolution of the CNN-UM chip, different physical

realizations. From these chips only the ACE16K is commer-

cially available, mass production is expected to begin with the

EYE-RIS at the end of 2006.

It also worth mentioning here that this ACE16K chip

was developed mainly for image processing purposes, the

cells have only 2 Local Logic Memories (LLM) and 8 Ana-

log Memories (LAM). While performing logic operations

on our binary images we always had to copy the images

to the LLMs and save than the results again to LAMs.

These copying processes used around 3/4 of the process-

ing time. Most of this lost time could be and hopefully will

be eliminated in the future by increasing the number of

available LLMs. One must also not forget that the CNN-

UM was developed mainly for analog signal processing and

the main strength of these chips are related to gray scale

operators. In that area the proven speed advantage is in

about three orders of magnitude [2,13].
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5 Conclusions

In the present study we worked with binary images and

we exploited mainly the parallel and connectivity features

of the CNN. Our results suggest that the special architec-

ture makes the Cellular Wave Computers very appropriate

for simulating lattice models and it’s natural noise can be

effectively used in stochastic simulations. The ongoing de-

veloping process of this hardware is expected to increase

the number of cells and local memories, and also three-

dimensional chips with more layers of cells are expected

to appear. This would assure an important advantage for

these chips in the near future. We think that CNN com-

puting could be effectively used in computational physics

for supplementing digital computers in some complex and

time-consuming problems.
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http://www.phys.ubbcluj.ro∼zneda/cnn.html (2005)

11. L.O. Chua, T. Roska, Cellular Neural Networks and Visual

Computing (Cambridge University Press, 2002)

12. T. Kozek, T. Roska, International Journal of Theory and

Applications 24, 49 (1996)

13. I. Petrás, T. Roska, L.O. Chua, IEEE Transactions on Cir-

cuits and Systems I: Fundamental Theory and Applica-

tions 50, 619 (2003)

14. M.E. Yalcin, J. Vandewalle, P. Arena, A. Basile, L. For-

tuna, International Journal of Circuit Theory and Appli-

cations 32, 591 (2004)

15. M. Ercsey-Ravasz, T. Roska, Z. Néda, physics/0603121,
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