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Three-state Potts model in combination with the rock-scissor s-paper game
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We study a three-state Potts model extended by allowingccgiominance between the states as it appears
for the rock-scissors-paper game. Monte Carlo simulatamesperformed on a square lattice when varying
the temperature and the strength of cyclic dominance. Ihésva that the critical phase transition from the
disordered state to the ordered one is destroyed by thecajmthinance that yields a self-organizing pattern
even at low temperatures. The differences and similarétfesdiscussed between the present model and the
half-filled, driven lattice gases with repulsive interacti
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The ordering phenomena and the related phase transitiofi$ie time evolution of the system is governed by random se-
are already well understood in the equilibrium systems [1]Jquential updates. More precisely, the transition prolitgbil
while the theoretical understanding of the non-equilibriu from a states(z) (at sitex) to a randomly chosen stat&x)
phase transitions is still at its beginnirlg [2, 3]. Many rele is given as
vant and general features of these transitions in the équili
rium systems can be studied by the Potts models [4]. Now we Wis(z) — §'(z)] = 1
introduce an extended version of the three-state Potts Imode 1+ exp (—6U(z)/T)

to investigate the effect of cyclic dominance between the _ . _
states. This model can be considered as a combination ¥fheredU (z) is the difference of payoffs between the final and

the traditional Potts model and a spatial rock-scissopepa initial sta’ges, and’is the temp_erature characterising the effect

game (sometimes called as three-state cyclic predatgrepre ©f the noise. The payoff at site depends om(z) as well as

Lotka-Volterra models). The strength of cyclic dominance©n the neighboring states(fy)] as given by the following sum

will be characterized by a single parameterif such away ©f matrix products:

that fore = 0 the system becomes equivalent to the equilib-

rium Potts model exhibiting a well-known critical traneti. Uz) =Y sT(z)As(y) (3)

The consideration of this model was strongly motivated fey th <y>

work of Katz et al. [[5| 6] who introduced the concept of driven

lattice gases to study th_e effect of an external eIec_trld"tnei site z, s+ () denotes the transpose efz), and the payoff

the ordering process. Since the appearance of their pioigeer o .

works many general features of these systems have alreag}amXA is defined as

been explored (for a review see the RefsL[2, 7]). < 1 e s)
A=

)

where the summation runs over the nearest-neighbors of the

The present model provides a continuous transition be- — 1 ¢
tween an equilibrium system and a spatial evolutionary game e —e 1
where the time-reversal symmetry (detailed balance) ikéaro
at the elementary (microscopic) steps. It will be shownimat In the limite — 0 this model can be considered as a (kinetic)
the presence of cyclic dominance the long-range order ¢annéghree-state ferromagnetic Potts model [4] with a Glauber dy
be observed even for low temperatures, and thereby the crifamics[10]. Evidently, in this case the total energy is defin
ical transition is also suppressed. A similar phenomenen haasH = — 3 U(x)/2 and the microscopic processes satisfy
already been observed for the two-dimensional driverckatti the detailed balance in equilibrium. Consequently, théesys
gas with repulsive interactions where the formation of long tends towards a stationary state whose statistical featwne
range order is prevented by an interfacial instability dutne ~ described by the Gibbs ensemble. When decreasing the tem-
enhanced particle transport along the boundaries sepgrati perature the Potts model undergoes an ordering process from
the "chessboard” and "anti-chessboard” ordered phak$.[8, the disordered state to one of the three equivalent homoge-

Our analysis is focused on a two-dimensional system wherB€ous (ordered) states. The corresponding critical tiansi
each siter of a square lattice is characterized by a three-statéepresents a well-known universality classi|1, 4].

(4)

site variable, namely(x) = so, s1, ands,. For later conve- ~ Fore > 0 the off-diagonal components of the payoff matrix
nience these states (strategies, species, etc.) will betetbn A are asymmetrical therefore the total payoff (or the above de
by the basis vectors of a three-dimensional space, i.e. fined H) is not affected by the value effor any states. Atthe

same time, the value afinfluences the probability of strat-

1 0 0 egy changes becaus€[s(z) — s'(z)] depends definitely on

so=10), si=|1], s2a=1[0 (1) the variation of individual payoffdU (z)] and the above evo-
0 0 1 lutionary rule manifests a way how the (selfish) individuals
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wish to maximize their own payoff without any concern abouttion that deviates monotonously if we decrease the systezsn si
the neighbors’ performance. As a result, cyclic invasionis o [17,118]. Significantly different finite size effects are ebged
cur along the boundaries separating homogeneous domainshen investigating the present model for 0.

domains of state, are invaded by, invaded bys, invaded

by so. These cyclic invasions are capable to maintain a self- 1p

organizing pattern with rotating spiral arms whose “velgti - L

is controlled bye [11,11213]. 08l o 50
For most of the spatial evolutionary games the choice of the = 100

dynamical rules (o#V[s(z) — s'(x)]) is based on a learn- © 200

ing mechanism or strategy adoption modelling the Darwinian 061 * 500

selections[[14/_15_16]. In these models different ways are €

suggested for the players to adopt the strategy of their more 04}

successful neighbors. The common feature of these strat- L

egy adoptions is that the new state will be equivalent to one 02l

of the neighboring strategies. Consequently, this meshani |

prohibits the variation inside the homogeneous domains and 0 %

makes the extinction process to be similar to those defined
by the contact process (or directed percolatioh)|[2, 3].h t
present model, however, the above “Glauber dynamics” al-
lows the players to choose all the possible strategiesftirere .
the time variation is not restricted to the interfaces sapar " 'C-1: Monte Carlo data for the order parametgrtemperature at
ing the homogeneous domains. In the context of evolutionarguije(;ﬁ;%ggfeéem system sizes as indicated The solid lines are
game theory the above evolutionary rule describes a differe ye:

behavior. Namely, here the players know all their possiedi . . . .
and their choices depend on the increase of income what th% Figure [ illustrates how the order parametewaries with

are able to evaluate in the knowledge of neighboring strate- mperaturd’ fordlfferentllneqr sizes € = 0.1. Appar_ently
gies. the MC data refers to an ordering process for small sizes (

In the present work we study the effect of the "cyclic dom- 50_an(<)j 180) tr)]earmg a resfe mblance Ito 'Vll,]céhdff%%%talﬂed for
inance” on the phase transition. For this purpose systemat E de{ta dr:) tnc()at fn%?;;ig’thgraexirgfaﬁcg of Io; -rar,1 teeor der
Monte Carlo (MC) simulations are performed on a square Iat—I tead of it " - p?h _color d 9-! %ﬂ " :
tice under periodic boundary conditions varying the teraper hstead of 1t a sefl-organizing, three-color domain stiue
ture7 and strength of the cyclic dominance for different lin- can _be 0_bs¢rve_d when visualizing the time-dependence of the
ear sized.. Each simulation is started from a random initial spatial distribution (for a snapshot, see Eig. 2).
state and after a suitable thermalization time we have decbr
the concentration of statepy( p1, and p:) for each Monte
Carlo steps. We have also made simulations starting from or-
dered homogeneous phases to check the stability of the sta-
tionary state. To investigate the ordering process, we have
determined the average value of the order parameter from the
values of concentration dala [4)17]
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T

m = 5 {[3max(po, o1, p2) ~ 1) (5)

where (- --) refers to averaging over a sampling time var-
ied from 10° to 106 Monte Carlo steps per sites (MCS). In
the disordered phases = p1 = p2 = 1/3 (due to the
cyclic symmetry) andn = 0 in the thermodynamic limit
(L — o). Fore = 0 and below the critical tempera-
ture (' < T. = 0.995(1)) the system evolves into one of
the long-range ordered (symmetry breaking) stationatgsta
(e.9..(po) = (1 +2m)/3and(p1) = {p2) = (1 —m)/3and
the remaining two equivalent states are given by the cyclig;g, 2. snapshot on a typical domain structure appearingfer
permutation of indices) if the linear size is sufficientlyde. .64 ande = 0.1. The three-edge vortices (antivortices) rotate in
In the thermodynamic limit the order parameterdecreases clockwise (anticlockwise) direction with spiral arms besa the av-
monotonously from 1 to 0 as the temperature is increased frorrage velocity of the invasion fronts (white invades blackades

0 to T, and the vanishing of: follows a power law behavior gray invades white) is hardly affected by their curvature.

if T, is approached from below|[4]. For finite sizes, however,

the MC simulations exhibit a smoothed order parameter func- On this snhapshot one can identify all the three ordered




phases forming domains with a characteristic linear siger
T < T, ande = 0 the growth of these domaing £ /1) is '

driven by the interfacial (Potts) energy [19,] 20| 21]. Here, 100 ¢ .
however, this domain growth is prevented by two processes (]
emerging fore > 0. The first process is related to the appear- .

ance of rotating spiral arms for the three-edge vorticesrahe 12 w1 Y .
the three types of domains (or domain boundaries) meet. On *¥ ﬁ
these maps we can distinguish vortices and antivortices-rot 10 8 1 ﬁ{'

ing in opposite directions. Some topological and geomaitric akb | Eﬁ
features of such spatio-temporal patterns were alreadsinv +-}
tigated in previous papers |11,112) 13, 22]. Itis found that t

spirals become well-marked if a “surface tension” is swéith

on and then the corresponding patterns cannot be character- 1
ized by a single parameter (e.g., typical domain size oreeorr

lation length)[22].

In the present model there exists a second process CauSipgy; 3. variation of correlation length (with error bars)afunction
the appearance of growing domains via a nucleation mechgg . for fixed temperatureTl = 0.75) The straight line indicates a

nism inside the large “homogeneous” territories. Due t6 thi power law divergence with a slope ofi. Inset shows the correlation
process an “ordered state” prevaileddgywill be transformed  |engthvs. temperature foe = 0.1.

into another one prevailed by as indicated by simulations
for small sizes. In these cases the three ordered states fol-

low each other cyclically and the above method yields a suffitemperature. Furthermore, here it is worth mentioning ithat
ciently large value forn (see FigL). Both the duration time the above mentioned driven lattice gas model the transversa
and the probability of these transitions, that are initlaly  correlation length was also proportional to the inversenef t
a nucleation mechanism due to the thermal fluctuations, instrength of driving field[]o].
crease with the system size. This is the reason why the values | gych systems the Potts energy measures the concentra-
of m are higher forl, = 50 than those for. = 100 in the  {jon of domain walls and it gives an additional information
Fig.0. about spatial distributions. From the average Potts energy

For sufficiently large system sized (>> [) both men-  as a function of temperature one can derive a specific heat
tioned mechanisms work simultaneously and result in a self¢c = d(H)/dT) that exhibits a\-divergence at the critical
organizing pattern where the three states are presentheth t temperature in the equilibrium limit:(= 0). Figure[ il-
same concentration and = 0). Henceforth the quantitative |ustrates how the\-divergence is smoothed out if the cyclic
investigations will be focused on the large systems>(500)  dominance is switched on. When choosing larger and larger
and to the region of temperaturg ¢~ 0.67:) where the spa- ¢ the maximum value of specific heat decreases meanwhile
tial patterns are isotropic. the peak position moves towards the lower and lower temper-

Now we study the variation of correlation lengtlderived  atures. The peaks are so shallow in the "driven” cases that a
from the asymptotic behavior (exponential vanishing) & th logarithmic scale was necessary to present them in the same
two-site correlation functior[8]. For this purpose a seii¢  figure. The appearance of the this peak in the specific heat can
MC simulations is performed by varying the temperature forbe interpreted as a sign of the short range ordering.
e = 0.1. The inset in Fig[13 illustrates the absence of diver- A similar phenomenon was observed for the driven lattice
gence ir¢ as expected. When decreasing the temperature thgases with repulsive interaction when increasing the eater
correlation length increases monotonously until a maximunelectric field [8,.B]. Although the observed patterns and mi-
value ¢ ~ 11.5(5) measured in lattice unit). Below the peak croscopic mechanisms are very different, in both cases inte
atT ~ 0.77 the visualization of the distribution of species facial effects prevent the formation of long-range ordethie
shows a self-organizing pattern (see Elg. 2) and here theval presence of driving force. In these cases the interfacesmgel
of ¢ decreases very slowly with. to the stationary states and their geometrical charaet@iz

The e-dependence of the correlation length is also deterrequires additional parameters. This general feature can o
mined for a fixed temperature and the results are illustratedur in some other non-equilibrium systems (e.qg., in ecalalgi
in a log-log plot (see Fidl]3). These MC data are consistentmodels) where an external force induces some extra activity
with a prediction¢ ~ 1/e for smalle. In the typical size of along the interfaces separating the "ordered domains”.
domains similar divergence was found previously for a model In summary, a three-state dynamical lattice model is intro-
where the nucleation mechanism was blocked [22]. This obeuced by combining the Potts model and the rock-scissors-
servation refers to a minor role of nucleation mechanisrént paper game to study the effect of cyclic dominance on the or-
maintenance of the self-organizing patterns at suffigjdatt ~ dering process. Due to the cyclic dominance the time-ravers
temperaturel’ < 7). For higher temperature the nucleation symmetry is broken at the elementary steps and thereby the
mechanism plays a crucial role by preventing the formatfon obehavior of this this model cannot be described by the meth-
monodomain state even for= 0. Thus it is conjectured that ods of equilibrium statistical physics. Our numerical gsabk
this process results in a different behavior¢adt the critical  have justified that both the long-range (symmetry breaking)

ol 1 1 1 1
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FIG. 4: Specific heat as a function of temperature for thréereint

4

ordering process and the corresponding critical transkice
suppressed in the presence of cyclic dominaace (). Ac-
cording to the simulations the three equivalent ordered@ba
coexist by forming a self-organizing domain structure even
at low temperatures and sufficiently weak cyclic dominance.
The equilibrium state is approached via the divergenceef th
typical domain size when the strength of cyclic dominance
goes to zero.
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