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The virulence of Mycobacterium tuberculosis depends on the ability of the bacilli to switch between
replicative (growth) and non-replicative (dormancy) states in response to host immunity. However,
the gene regulatory events associated with transition to dormancy are largely unknown. To address
this question, we have assembled the largest M. tuberculosis transcriptional-regulatory network to
date, and characterized the temporal response of this network during adaptation to stationary phase
and hypoxia, using published microarray data. Distinct sets of transcriptional subnetworks
(origons) were responsive at various stages of adaptation, showing a gradual progression of
network response under both conditions. Most of the responsive origons were in common between
the two conditions and may help define a general transcriptional signature of M. tuberculosis growth
arrest. These results open the door for a systems-level understanding of transition to non-replicative
persistence, a phenotypic state that prevents sterilization of infection by the host immune response
and promotes the establishment of latent M. tuberculosis infection, a condition found in two billion
people worldwide.
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Introduction

A hallmark of Mycobacterium tuberculosis infection is the
switching of tubercle bacilli between replicative (growth) and
non-replicative (dormancy) states in response to environ-
mental cues generated by the host immune response (Wayne
and Sohaskey, 2001; Warner and Mizrahi, 2007). When
infection has progressed enough to induce adaptive immune
responses, the bacilli survive by slowing down their growth
and eventually entering a phenotypic state called dormancy,
which enables M. tuberculosis to persist in the immunocom-
petent host for many years, causing asymptomatic (latent)
infection. When host immunity falters, tubercle bacilli can
resume growth and reactivate disease (Wayne and Sohaskey,
2001; Warner and Mizrahi, 2007).

Little is known about the dormant state of tubercle bacilli in
human infection. A tractable surrogate for dormancy is the
arrest (or drastic slowdown) of bacterial growth in particular
stress conditions in vitro, including gradual O2 depletion,
treatment with nitric oxide (NO), and nutrient starvation.
Microarray studies of in vitro cultures have defined transcrip-
tional changes during hypoxia (Sherman et al, 2001; Voskuil
et al, 2004), NO treatment (Voskuil et al, 2003), nutrient
starvation (Betts et al, 2002; Hampshire et al, 2004), altered pH
(Fisher et al, 2002), and treatment with detergents such as SDS
(Manganelli et al, 2001). Robust markers of dormancy have
emerged, such as the upregulation of the dosR regulon (Park
et al, 2003). The induction of dosR-regulated genes in various
dormancy models was further underscored by a recent meta-
analysis of published microarray data (Murphy and Brown,

& 2008 EMBO and Macmillan Publishers Limited Molecular Systems Biology 2008 1

Molecular Systems Biology 4; Article number 225; doi:10.1038/msb.2008.63
Citation: Molecular Systems Biology 4:225
& 2008 EMBO and Macmillan Publishers Limited All rights reserved 1744-4292/08
www.molecularsystemsbiology.com



2007). Nevertheless, most of these studies have focused
only on changes in the expression of individual genes in
M. tuberculosis dormancy. Little, if any, attention has been
given to the dynamic series of events that occur at the level of
the gene regulatory network (Albert, 2005). To understand
these aspects of gene regulation during transition to dormancy,
time course microarray data should be overlaid with the large-
scale transcriptional-regulatory (TR) network of M. tubercu-
losis, as done earlier for Escherichia coli (Balázsi et al, 2005;
Ernst et al, 2008) and Saccharomyces cerevisiae (Ihmels et al,
2004; Farkas et al, 2006). However, the current database of
M. tuberculosis gene regulation (Jacques et al, 2005) contains
far fewer interactions than the TR network of S. cerevisiae
(Harbison et al, 2004; Balaji et al, 2006) and E. coli (Salgado
et al, 2006).

To address this problem, we assembled a large M.
tuberculosis TR network and used previously published
microarray data (Voskuil et al, 2004) to analyze the network-
level response of M. tuberculosis to hypoxia and transition into
stationary phase. Although the goal of most microarray data
analysis methods is to identify individual genes that are
significantly up- or downregulated, we aimed to identify
significantly responsive subnetworks. This is motivated by the
modular structure of biological networks (Wagner et al, 2007),
where various sets of modules respond specifically to various
types of environmental change. We found a distinct set of
transcriptional subnetworks (origons) affected early and late
during adaptation to hypoxia and stationary phase, indicating

a progressive shift of modular network response to
growth arrest. Most of the origons were affected in both
conditions, suggesting the existence of a general, condition-
independent repertoire of transcriptional modules utilized in
M. tuberculosis growth arrest.

Results and discussion

Assembly of a large-scale M. tuberculosis
TR network

We compiled a large-scale M. tuberculosis TR network using
three main sources. The core of the TR network consists of 381
gene regulatory interactions documented in the literature, 222
of which have been collected in MtbRegList (Jacques et al,
2005), whereas 159 links were added in this study (see
Materials and methods). We enlarged this core network
including 223 M. tuberculosis gene pairs that have orthologs
with confirmed TR relationship in E. coli (Babu et al, 2006).
Finally, we augmented the network based on the full list of
M. tuberculosis operons (Roback et al, 2007), assuming that
transcription factor (TF) binding to the promoter region affects
the expression of all genes within an operon. This is a
reasonable assumption, as TF-promoter binding dictates the
rate at which genes in a typical operon are co-transcribed
into polycistronic mRNA (Jacob et al, 1960), although still
allowing for post-transcriptional modulation of individual

Figure 1 The M. tuberculosis TR network assembled from publicly available sources. Input nodes (genes with no known transcriptional regulators) are shown
in blue, whereas transit nodes (TFs with known transcriptional regulators) are shown in green. The white nodes represent output nodes (genes encoding proteins with
no TF activity). Triangles mark nodes that autoregulate their own expression, whereas diamonds represent nodes that are part of two-gene feedback loops.
As an example, The oxyS origon is indicated by the dashed red line. The insets show the distributions of out-degree (number of target genes a TF can regulate, on the
top) and in-degree (number of regulators a gene can have, on the bottom). The dashed line indicates the exponential fit f (x )¼0.8e�1.78(x�1).
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gene expression (Nudler and Gottesman, 2002; Li and Altman,
2004; Isaacs et al, 2006; Pfleger et al, 2006).

The 783 nodes in the TR network (see Figure 1 and
Supplementary information) correspond to M. tuberculosis
genes and their protein products, whereas the 937 links
correspond to 45 TFs (Table I) directly regulating the
expression of target genes. Remarkably, 29 of these 45 TFs
regulate their own expression, demonstrating the importance
of autoregulation in prokaryotic gene networks (Thieffry et al,
1998). In addition, the gene pairs Rv2358-furB, Rv1404-
Rv1931c, and mprA-sigE participate in two-gene feedback
loops (Figure 1).

We consider 381 (41%) of the 937 interactions in this
network relatively reliable, because they are based on
experimental studies of 26 TFs binding and regulating the
expression of 355 target genes. The operon-based extension of
the literature-derived network has 581 links (62%) among 518
genes, which are somewhat less reliable. Finally, the 223
regulatory interactions among 201 genes inferred from
orthology with E. coli TF–target gene pairs (Babu et al, 2006)
might have the lowest confidence because orthologous TFs in
bacteria can have different functions and can regulate different
genes (Price et al, 2007). In fact, only 4 of the 223 orthology-
based links are in common with the literature-based links.
Still, the operon-based expansions of these two networks (581
and 410 links, respectively) share 54 links, supporting the
inclusion of orthology-based links into the network.

To the best of our knowledge, this is the largest TR network
of M. tuberculosis that has been assembled to date, comprising
B20% of its genome. In comparison, the current version of the
E. coli TR network (excluding sigma factors) contains 1364
genes (B35%) of the E. coli genome (Salgado et al, 2006). We
expect that this large-scale TR network will be a valuable
resource for the M. tuberculosis research community, com-
plementing existing efforts of genome-scale data integration
(see, for example http://www.tbdb.org).

Topological properties of the M. tuberculosis TR
network

To quantitatively characterize the topology of the newly
assembled M. tuberculosis TR network, we analyzed and
compared its connectivity distribution with that of other
existing TR networks. The out-degree distribution (Albert,
2005) did not follow a power law (Khanin and Wit, 2006), but
had a heavy tail, indicating that a small number of TF hubs
regulate a very large number of targets, whereas most TFs
regulate few or no targets. On the other hand, the in-degree

distribution had a near-exponential tail to the right of a peak
for genes with one regulator, indicating that most genes have
only one known transcriptional regulator (Figure 1). Such
differences between in- and out-degree distributions have been
observed for other TR networks (Thieffry et al, 1998; Guelzim
et al, 2002), suggesting a general property of TR network
topology (see the Supplementary information for a detailed
analysis and comparison with the TR networks of E. coli and
S. cerevisiae).

The 783 genes in the M. tuberculosis TR network can be
arranged hierarchically (Balázsi et al, 2005) into four layers,
which reflect the flow of information from the 34 input nodes
(representing 15 TFs that are transcriptionally unregulated and
19 TFs that are regulated only by feedback loops) to the 735
output nodes (representing genes that do not directly regulate
the expression of other genes). The 11 nodes that are neither
input nor output nodes are transit nodes (Table I). Input and
transit nodes mediate information entry into the TR network
because their TR activity is affected by various intra- or
extracellular changes (Martinez-Antonio et al, 2006). Most
(34/45) TFs are input nodes, similar to E. coli, but unlike
S. cerevisiae (see the Supplementary information). This may
reflect the simplicity of bacterial TR networks as compared
with eukaryotes, indicating that bacteria are equipped with a
specialized sensing apparatus for diverse environmental
stimuli that undergo relatively simple processing before a
response is developed.

Because of the directionality and sparseness of links, TFs
control the expression of only a limited number of genes in the
current version of the TR network. The set of genes regulated
directly or indirectly by a given TF forms an origon (an
example is shown in Figure 1). This is a generalization of the
earlier concept of regulatory subnetworks originating only at
the input layer (Balázsi et al, 2005). By contrast, here we allow
origons to originate at either input or transit TFs, because
any TF can be affected by intra- or extracellular signal(s)
(Martinez-Antonio et al, 2006) and relay the perturbation to
target genes directly or indirectly. Thus, the number of origons
is equal to the number of TFs in the network, and we will refer
to the resulting 45 origons by the name of the TF at which they
originate (see the Materials and methods).

Origons significantly affected by growth arrest

Having assembled a large-scale TR network of M. tuberculosis,
we set out to identify transcriptional subnetworks affected by
various conditions. The reason for shifting focus from
individual genes to subnetworks is that particular TFs can
mediate the up- or downregulation of downstream target

Table I List of transcription factors in the large-scale TR network of M. tuberculosis

Transcription factor TF type

Rv0117 (oxyS), Rv0212c (nadR), Rv0302 (TetR/AcrR family), Rv0491 (regX3), Rv0494 (GntR family), Rv0586 (GntR family), Rv0735
(sigL), Rv0844c (narL), Rv1027c (kdpE), Rv1033c (trcR), Rv1266c (pknH), Rv1316c (ogt), Rv1657 (argR), Rv1785c (FruR-like/cyp143),
Rv1931c (AraC/xylS family), Rv1956 (HTH TF), Rv1985c (LysR family), Rv1994c (cmtR), Rv2069 (sigC), Rv2374c (hrcA), Rv2720 (lexA),
Rv3133c (dosR), Rv3223c (sigH), Rv3279c (birA), Rv3286c (sigF), Rv3291c (Lrp/AsnC family), Rv3334 (MerR family), Rv3414c (sigD),
Rv3574 (TetR family), Rv3575c (LacI family), Rv3648c (cspA), Rv3676 (Crp/Fnr family), Rv3855 (ethR), Rv1395 (AraC/xylS family)

Input

Rv0001 (dnaA), Rv0353 (hspR), Rv0485 (NagC/XylR family), Rv0967 (YvgZ-like), Rv1221 (sigE), Rv1267c (embR), Rv1343c (LprD),
Rv1909c (furA), Rv2359 (furB), Rv2711 (ideR), Rv3080c (pknK)

Transit
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genes by post-translational modification while maintaining
relatively constant mRNA expression levels. Traditional
approaches focusing only on individual genes with signifi-
cantly altered mRNA expression could miss such TFs (Ideker
et al, 2002).

We developed a new method, NetReSFun (Network Res-
ponse to Step Functions), which takes a network and time
course data as inputs, and generates a list of significantly
affected subnetworks for each time point as output. NetReSFun
is the extension of an earlier approach (Balázsi et al, 2005),
with a new scope and modified methodology (see the
Materials and methods). We have tested NetResFun on random
data, and showed that it can reliably detect the time when a
major expression change occurs in a group of genes, such as an
origon (see the Supplementary information).

We identified significantly affected M. tuberculosis origons
during hypoxia-induced growth arrest by feeding the newly
assembled TR network and the recently published time course
microarray data GSE8786 (Voskuil et al, 2004) into NetReSFun.
Briefly, the program calculates scaled cross-covariances
covi(t) between the expression profile xi(t) of each gene i
and a set of step functions s(t, t) that jump at subsequent time
points t of microarray data collection, e.g., tA{4, 6, 8, 10, 12,
14, 20, 30, 80 days} in hypoxia (Figure 2A). Next, the

responsiveness |zi(t)| of each gene at time point t is
determined as the z-score of covi(t) when compared with
covj(t) for all other genes (Figure 2A). Finally, the program
calculates the responsiveness ZI(t) of each origon I as the
z-score of the average o|zi(t)|4I over all genes in the origon
(Figure 2B), when compared to the average o|zi(t)|4R of the
same number of genes chosen randomly from the network (see
the Materials and methods). The output of NetReSFun consists
of origons with ZI(t)42, considered ‘significantly responsive’
at time point t. Importantly, the responsiveness ZI(t) of origon
I peaks at times when many genes within the origon have a
large expression change (Figure 2C and D). Therefore, the
times t when ZI(t) peaks occur can be used to classify origons
as early or late responders.

We classified significantly responding origons as ‘early’,
‘intermediate’ or ‘late’ based on the peak in their responsive-
ness ZI(t) over the time course (Figure 2C). For example, the
dosR origon was most responsive at day 4, as nearly all dosR-
controlled genes changed their expression at this time point
(Figure 2B and 3A). Rv0494 and sigD were also early origons,
with a ZI(t) peak on or before day 6. Most of the significantly
responsive origons peaked between days 8 and 14. These
intermediate origons included furB/zur, crp, sigH, kstR, and
sigE-mprA. Finally, late origons such as nadR, Rv1956, and

Figure 2 Responsiveness of genes and origons. (A) The gene expression profile of the gene devS (top row, left panel) combined with each of nine time-shifted step
functions (bottom rows, left panel) give the normalized cross-covariance (middle panel), and then the responsiveness |z (t)| (right panel) of devS at each of the nine
hypoxia time points starting with day 4. The orange error bars indicate averages and standard deviations over all M. tuberculosis genes. (B) Similar to (A), except the
cross-covariance and responsiveness are calculated by combining a single step function s(4, t) with the expression profile of each gene in the dosR origon. The yellow
rectangles indicate identical values of cov(t) and |z(t)|. (C) Z I (t) scores of significantly responsive origons during growth arrest in hypoxia (time points correspond to 4,
6, 8, 10, 12, 14, 20, 30, and 80 days). (D) Z I (t) scores of significantly responsive origons during aerated growth (time points correspond to days 6, 8, 14, 24, and 60).
Eleven origons (nadR, hspR, Rv0494, sigE, sigC, furB, hrcA, ideR, dosR, sigD, and crp) responded significantly in both time courses. E and L denote the time points of
peak response for early and late origons, respectively. Since a step function can only jump at time point 1 or later, time point 0 (day 0) is excluded from panels (C) and (D).
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hrcA were most responsive on or after day 20 (Figure 2C).
Interestingly, the dosR origon had a second prominent ZI(t)
peak at day 80, corresponding to a gene expression change
opposite to day 4 (Figure 2B).

We performed a similar analysis for the time course
microarray data collected by the same authors at days 0, 6, 8,
14, 24, and 60 in aerated cultures (Voskuil et al, 2004).
Surprisingly, 11 of the origons responsive in hypoxia were also
significantly responsive during transition to stationary phase
(Figure 2D). We found that dosR was again the most
prominently responding early origon, but it remained signifi-
cant longer than in hypoxia (until day 14), presumbly because
aerated cultures reach stationary phase later (day 20) than
hypoxic cultures stop growing (day 10) (Voskuil et al, 2004),
and prompted us to classify origons with a ZI(t) peak on or
before day 8 as ‘early’ in the aerated time course. In addition
to dosR, other early origons during aerated growth were hrcA
and hspR. The origons sigD, nadR, and Rv0494 were most
prominently responsive at intermediate time points (days 14
and 24) (Figure 2D), whereas the origons sigC and furB had a
ZI(t) peak on day 60. This indicates that, although the two types
of growth arrest elicit response from the same origons, the
temporal sequence of these responses is not always identical.

The most consistent early responder is the dosR origon
(Figure 3A and C), which seems to be upregulated immedi-
ately before the bacteria stop growing in both time courses. By
contrast, the origons sigD, hrcA, and Rv0494 respond early in
only one of the time courses, raising the possibility that they
are condition-dependent initiators of growth arrest along with
dosR. Finally, the origons nadR (Figure 3B and D), sigE, sigC,
and furB peak consistently after dosR in both time courses
(Figure 2C and D), suggesting that they orchestrate the
maintenance (rather than the initiation) of dormancy. It will
be important to experimentally test how inhibiting early
versus late TFs affects the transition to dormancy.

In particular, the condition-dependent activation of other,
alternate early origons in addition to dosR might explain the
controversy between the early upregulation of the dosR
regulon during growth arrest in vitro (Park et al, 2003) and
in vivo (Shi et al, 2003) with the ability of a dosR deletion
mutant to stop growing in hypoxic cultures and in mice weeks
into the time course (Rustad et al, 2008). Considering the
likelihood of alternate origon partners joining dosR to initiate
dormancy in a condition-dependent manner, the ability of
appropriate multiple deletion mutants (including dosR, sigD,
hrcA, and Rv0494) to prevent growth arrest should be tested
experimentally. Also, the apparent contradiction between the
early hyper-virulence and fast growth of the dosR deletion
mutant (Parish et al, 2003) and its unaltered dormancy after
weeks of culture (Rustad et al, 2008) could be resolved by late
origons governing growth arrest regardless of dosR status.

We performed additional control analyses to test the
sensitivity of these results to random network rewiring and
node removal. Specifically, we used NetReSFun to detect
significantly responding regulons instead of origons, and we
performed the same analysis on a higher confidence (litera-
ture-based) network. All these tests supported the robustness
of our findings (see the Supplementary information).

Conclusions

In summary, we have assembled the largest M. tuberculosis TR
network available to date, and analyzed its topology, compar-
ing it with two other large-scale TR networks. We have
developed a novel method to unravel the temporal network
response to a cellular program (growth arrest), and identified
early, intermediate, and late origons based on their peak
responsiveness during the time course. We found that the sets
of TFs governing temporal network response to growth arrest

Figure 3 Gene expression profiles in two M. tuberculosis origons affected early and late during hypoxia and stationary phase. The log10 ratios of all genes are shown
for (A) the dosR origon during transition to dormancy in hypoxia, (B) the nadR origon during transition to dormancy in hypoxia, (C) the dosR origon during transition to
stationary phase following aerated growth (white boxes indicate missing data) and (D) the nadR origon during transition to stationary phase following aerated growth.
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in two different conditions (hypoxia and stationary phase)
were highly similar. As growth arrest is key to M. tuberculosis
virulence, these regulators can be regarded as potential drug
targets.

The present work has several limitations. First, the network-
level analysis presented here would benefit from microarray
data collected more frequently during the transition of M.
tuberculosis into dormancy. The lower the number of samples,
the higher the chance of observing high covariance values
by pure chance. Second, time course data obtained under
additional growth-arresting conditions, such as NO treatment
and nutrient starvation, are needed to confirm that the
observed repertoire of transcriptional modules generally
governs growth arrest. However, no other time course data
on M. tuberculosis growth arrest with sufficient time points is
currently available. Third, a more complete TR network would
improve our analysis significantly. The current version of the
M. tuberculosis TR network contains only 45 of the 194 TFs
listed in TubercuList. A systematic effort to identify the genes
directly regulated by each of the 149 TFs is necessary to obtain
an unbiased TR network. Future studies would also benefit
from including non-TF regulators of gene expression in the
network, such as signaling kinases, the alarmone (p)ppGpp,
small peptides, and so on. Fourth, the majority of TFs
implicated in network response are feedback-regulated,
implying that their expression dynamics during growth arrest
needs to be studied at the single cell level to better understand
their role in adaptation and cell decision-making (Maamar
et al, 2007; Sureka et al, 2008).

Despite the limitations mentioned above, our analysis
defines an early, transient involvement of the dosR origon
(Rustad et al, 2008), along with origons sigD, hrcA, and Rv0494
in a condition-dependent manner during growth arrest. We
also observed that the response of the origons nadR, sigE, sigC,
and furB consistently replace dosR late in the time course,
independent of the growth arrest conditions. This is in
agreement with the proposition that the hypoxic response is
maintained by genes that are not dosR-regulated (Rustad et al,
2008). However, our results also indicate that these ‘later’
origons are associated not specifically with hypoxia, but rather
with the growth arrest per se, largely independent of the
initiating stimulus.

Combining time course microarray data and large-scale gene
regulatory networks might provide new means to dissect the
cellular response to environmental changes at the network
level. Such analyses should provide important novel insights
into microbial biology and will likely suggest new drug targets.

Materials and methods

Assembly of the large-scale M. tuberculosis
TR network

The TR network used in this study was assembled in several steps as
follows. First, we created a gene regulatory network consisting of 222
links among 216 genes based on MtbRegList (Jacques et al, 2005),
a database that lists the binding sites of 21 TFs and sigma factors. Next,
we added to this network 159 links among 164 genes, based on recent
studies on the transcriptional regulatory activity of mprA, dosR,
Rv1395, Rv2358, furB, Rv0967, kstR, pknH, embR, trcR, and crp (Zahrt
and Deretic, 2001; Park et al, 2003; Kendall et al, 2004, 2007; Bai et al,

2005; Canneva et al, 2005; Haydel and Clark-Curtiss, 2006; Sharma
et al, 2006; Liu et al, 2007). We also downloaded and included an M.
tuberculosis TR network (223 links among 201 genes) inferred from
gene orthology with 29 E. coli TFs and their targets (Babu et al, 2006).
Finally, we completed the network based on the list of M. tuberculosis
operons (Roback et al, 2007), assuming that if a TF regulates a gene
within an operon, it also regulates all other gene members of the
operon. Following a similar procedure, we have also assembled a
separate, purely literature-derived network, with 581 links among 518
genes that should have higher confidence than those in the full
network.

The full M. tuberculosis TR network is available for download as
Supplementary Table S1. This file contains regulator and target gene
pairs identified by their GenBank IDs, their Rv numbers and traditional
names whenever available. The last two columns provide information
about the source of each regulatory interaction with respect to the
literature and gene orthology, respectively. For example, the numbers
0, 1 and 2 in the last column indicate whether a link is not orthology-
based (0), is from the original orthology-based network (1) or has been
inferred by operon-based extension of the original orthology-based
network (2). We used the software Pajek (Batagelj and Brandes, 2005)
for network visualization.

Naming of genes and origons

Throughout this paper, we used gene names obtained from FTGPRED
(http://www.imtech.res.in/raghava/ftgpred/ANNOTATION/), Tuber-
cuList (http://genolist.pasteur.fr/TubercuList/) and the recent litera-
ture whenever possible. When the gene name was unknown, we used
the Rv number instead.

We mapped origons as subtrees reachable from 45 of the 47 TFs.
Two TFs (Rv0144 and Rv3744) regulate no other genes except
themselves, and therefore were not considered as origons. Origons
were named based on the TF at which they originate. For the feedback
loops involving more than one TF (Rv2358-furB, Rv1404-Rv1931c, and
mprA-sigE), we chose the TF with more target genes to name the
corresponding origons furB, Rv1931c, and sigE, respectively.

Origons significantly affected during transition to
non-replicative persistence

The GSE8786 microarray dataset that we used (Voskuil et al, 2004)
consisted of two time series: aerated growth and growth arrest in
hypoxia. For each gene, we used its expression at day 0 in aerated
growth as a control intensity value. We determined the log10 ratios of
expression, dividing the intensity on both the hypoxia and aerated
growth arrays by this control intensity value.

The tool NetReSFun (available for download as Supplementary
information) measures the effect of various stages of growth arrest on
each gene’s expression by the scaled covariance covi(t) between the
expression (log10 ratio) profile xi(t) of gene i and a step function s(t, t)
that jumps at time point t:

coviðtÞ ¼ ½xiðtÞ � �xi�½sðt; tÞ � �sðtÞ�h i=s½sðt; tÞ� ð1Þ
where the brackets indicate averaging over genes, the horizontal bar
indicates averaging over time, and the letter s denotes standard
deviation. Thus, the covariance covi(t) is scaled by the standard
deviation of the step function s(t, t):

sðt; tÞ ¼ 0; tot
1; tXt

�
ð2Þ

ensuring that only the variance of gene expression contributes to gene
responsiveness at time t, defined as the z-score

ziðtÞ ¼
coviðtÞ � coviðtÞh i

s½coviðtÞ�
ð3Þ

Similarly, the responsiveness of origon I at time point t was defined as
the z-score of z-scores, or ‘double Z-score’:

ZIðtÞ ¼
jziðtÞjh iI� jziðtÞjh iR

s½jziðtÞj�R
ð4Þ
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The subscripts I and R indicate averaging over all genes in the origon,
and over the same number of genes chosen randomly from the
network.

Using the scaled covariance to determine gene affectedness offers
the advantage of simultaneously measuring the amplitude of gene
expression changes as well as their similarity to a pre-defined signal.
More widely used measures, such as the cross-correlation coefficient
would only measure the similarity of the expression profile to the
external signal, regardless of the amplitude of gene expression
changes, ignoring an important characteristic of gene response.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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