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Recent evidence indicates that potential interactions within met-
abolic, protein–protein interaction, and transcriptional regulatory
networks are used differentially according to the environmental
conditions in which a cell exists. However, the topological units
underlying such differential utilization are not understood. Here
we use the transcriptional regulatory network of Escherichia coli to
identify such units, called origons, representing regulatory sub-
networks that originate at a distinct class of sensor transcription
factors. Using microarray data, we find that specific environmental
signals affect mRNA expression levels significantly only within the
origons responsible for their detection and processing. We also
show that small regulatory interaction patterns, called subgraphs
and motifs, occupy distinct positions in and between origons,
offering insights into their dynamical role in information process-
ing. The identified features are likely to represent a general
framework for environmental signal processing in prokaryotes.

cellular networks � regulation � transcription

Transcriptional regulatory (TR) networks govern cellular life by
initiating and mediating gene expression in response to envi-

ronmental and intracellular cues that result in the execution of
cellular programs such as metabolic adjustments, sporulation, or
cell division. The nodes of this network are transcription units
(genes or operons) together with their protein products, whereas
the links connecting them correspond to TR interactions mediated
by transcription factor (TF) proteins. The genome-scale identifica-
tion of TF-binding sites, their binding specificities, and their con-
dition-dependent utilization (1–7) results in increasingly compre-
hensive data sets amenable for analysis of TR-network topology
and function.

Previous studies analyzing the TR-network topology of the
prokaryote Escherichia coli and the eukaryote Saccharomyces cer-
evisiae have demonstrated that their TR networks share several
characteristics such as the exponential distribution of in-degree
connectivity, the scale-free distribution of out-degree connectivity,
and the very low number of feedback circuits except for self-
regulation (8–11). In addition, the same small-scale connectivity
patterns [e.g., the feed-forward loop (FFL) and bifan motif] are
overrepresented in both TR networks (12–15), suggesting that their
topology has evolved to accomplish similar tasks in various organ-
isms (14). Recent studies of motif dynamics (16–17) generated the
first insights into their information-processing capabilities, although
the position of motifs within TR networks and their aggregation
into larger topological structures (10) may modify their dynamic
behavior.

Despite these advances, there is a clear need to decipher the
system-level organization of dynamic TR-network utilization (5)
triggered by a various environmental and intracellular cues. Here,
based on the inherent directionality of TR interactions in E. coli (11,
12), we identify topological units of environmental signal processing
(called origons) as TR subnetworks originating at a distinct class of
TFs. Using microarray data, we demonstrate that environmental
signals affect significantly only the origons rooted at sensor TFs

specialized for their detection. We also show that small-scale
regulatory interaction patterns (subgraphs and motifs) occupy
distinct positions in and between origons that, together with their
filtering properties, are suggestive of their role in information
processing. Taken together these results suggest that E. coli uses
specific topological units of its TR network to detect the elementary
components (modes) of complex environmental signals and sub-
sequently develop a response by reassembling these elementary
modes near the output layer of the network.

Methods
Databases and Software. The publicly available data on the TR
network of E. coli MG1655 (www.weizmann.ac.il�mcb�UriAlon�
Network�motifs�in�coli�ColiNet-1.1) (12), based predominantly on
the RegulonDB database (18), was used for our work. The network
originally contained 423 operons and 578 regulatory interactions,
reduced to 418 operons and 519 links by the removal of all operons
that have only autoregulatory links.

We downloaded microarray data from two public sources: A
Systematic Annotation Package for Community Analysis of Ge-
nomes (ASAP) at the University of Wisconsin (Madison) (https:��
asap.ahabs.wisc.edu�annotation�php�ASAP1.htm) and the Okla-
homa University Microarray Core Facility database (http:��
chase.ou.edu�macro�runs.php). The ASAP database contained 91
experiments on E. coli MG1655 transposon insertion mutants (as of
June 2004), 50 using cDNA microarrays and 41 using Affymetrix
(Santa Clara, CA) oligoarray platforms and 41 aerobic-shift exper-
iments on E. coli K-12 MG1655 using Affymetrix oligoarray plat-
forms; the Oklahoma University database contained 104 experi-
ments performed on E. coli cells in various conditions.

For network representation we used the program PAJEK (http:��
vlado.fmf.uni-lj.si�pub�networks�pajek). For the rest of our pro-
gramming (as described below), we used MATLAB (Mathworks,
Natick, MA), C, and PERL.

Microarray Data Assembly. Within the three microarray experiment
sets, we considered the following as control: in the 50 cDNA
microarray experiments, 11 experiments designated as ‘‘wild-type,
standard-growth conditions’’; in the 41 Affymetrix experiments,
five experiments described as ‘‘wild-type, standard-growth condi-
tions’’; and in the 41 aerobic shift experiments, three designated as
‘‘wild-type aerobic.’’ To construct log ratios, we first calculated the
average estimated transcript copy number (ETCN) within the
control experiments for each of the three experimental data sets.
Next, we divided the ETCNs from all other experiments by the
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control ETCNs and calculated the base-10 logarithm of the result-
ing values. Finally, we renormalized the resulting log ratios such that
the average of all log ratios for each experiment became zero. The
Oklahoma University data set already contained log ratios, and thus
these data were only renormalized to yield average log ratios equal
to 0.

We assembled expression tables from the four different data sets
after renormalizing the data again such that the mean of all
gene-expression profiles became 0, and the standard deviation of all
expression values within each set of experiments became 1. The
rows in the obtained tables corresponded to E. coli genes, and the
columns corresponded to various experiments. Because the E. coli
TR network used here consists of 855 genes distributed among 418
operons, we reduced the expression tables to rows corresponding
only to these 855 genes. The resulting tables contained normalized
expression values (log ratios) LRr,c in Nr � 855 rows and Nc
columns, corresponding to Nc microarray experiments.

Node–Node Correlation. Because the rows were normalized to zero
mean, we calculated the node–node cross-correlation coeffi-
cients cori,j as

cori, j � � �c�1

Nc

LRr,cLRr�,c

� r� r�

�
r�I,r��J

, [1]

where the averages are taken over all genes belonging to operons
i and j, and the standard deviation of the gene from row r is

�r �
��

c�1

Nc

LRr,c
2

Nc
. [2]

Node–Signal Covariance. We calculated the node–signal covari-
ance between node i and signal Sc with Nc binary values as

covi � � �
c�1

Nc

LRr,cSc	
r�1

, [3]

where the averages are taken over all genes belonging to operon I.

Double z Scores. We consider an origon to be significantly affected
by the external signal if it is significantly enriched in signal-affected
nodes compared to the same number of nodes chosen randomly.

First, to identify the nodes significantly affected by a certain
signal, we calculate covNS(n) for all n � 1, 2, . . . , N nodes within
the network. Then we calculate a z score z(n) for each individual
node, defined as

zNS�n� �
�covNS�n� � �NS�

�NS
, [4]

where �NS and �NS are the mean and standard deviation of
covNS(n), respectively.

To determine origons significantly affected by the external signal,
we calculate the average z score �O � �zNS�O over all NO nodes
within an origon. Then we repeatedly select NO nodes at random
within the E. coli TR network to estimate the mean, �R and
standard deviation, �R of the quantity �zNS�R. Finally, we calculate
the double z score, ZNS, for the origon as

ZNS �
�O � �R

�R
. [5]

Modeling the Dynamics of Small Subgraphs. To simulate subgraph
dynamics, we used the built-in delay differential equation solver
dde23 from MATLAB using mass-action kinetic modeling and
quasiequilibrium approximation for reactions occurring at much
faster time scales than the others. First, we modeled the alteration
of sensor TF-binding activity by a small metabolite. Next, we
modeled RNA polymerase binding and transcription initiation,
elongation, and termination. Finally, we modeled translation initi-
ation, elongation, and termination. In the simulations, we used
generic constants found in the literature, and we varied them over
reasonable ranges to test the robustness of our conclusions. Because
of space limitations, we describe the details of the modeling in the
supporting information.

Supporting Information. For more information, see Supporting Ap-
pendices 1–3 and Tables 2–5, which are published as supporting
information on the PNAS web site.

Results
Directionality of Regulatory Interactions Defines TR Subnetworks.
The E. coli TR network is defined by its nodes (operons and their
protein products) and the links connecting them (TR interactions
mediated by binding of TFs to the promoter regions of operons)
(8–12). Because all links are unidirectional (12), and the network
contains no cycles other than autoregulatory loops (8), the 418
nodes can be arranged hierarchically into five regulatory layers as
described previously (11) (Fig. 1A). We define layers as the set of
nodes for which the longest path connecting them to the input layer
has one, two, three, or at most four links. The layers reflect the flow
of information from 76 input nodes (representing sensor TFs that
are not regulated transcriptionally by any other TF) to 312 output
nodes (representing non-TF proteins) (12, 19).

Besides TFs in the input layer, most TFs from intermediate
regulatory layers (such as AraC, ArcA, etc.) also mediate environ-
mental signaling into the TR network, because their conformation
and activity are affected by specific changes in the environment
(e.g., metabolite availability, oxygen pressure, etc.). However, the
expression of sensor TFs from lower layers can also be transcrip-
tionally regulated by other TFs, in contrast to the operons in the
input layer that can only be regulated by their own protein products.
Therefore, we differentiate topological inputs (operons from layer
0) from sensory inputs (TFs with environment-dependent activity).

Because of link directionality and the sparseness of the E. coli TR
network (8, 12, 19) (see the supporting information for a description
of the network’s topological characteristics), TFs regulate only a
limited number of operons (nodes). Thus, the set of operons
regulated directly or indirectly by a given TF form a transcriptional
subnetwork, rooted at the given TF. All such subnetworks are parts
of other subnetworks except for the ones originating at the 76
topological input nodes, to which we refer as origons (see Discus-
sion) and label them according to their input node (Fig. 1A).
Because the input layer contains 76 operons, there are a total of 76
origons in the E. coli TR network, each affected by different
environmental signal(s) (see the supporting information for their
detailed description). An actual example of an E. coli origon is
shown in Fig. 1B.

If an environmental signal affects the activity or expression level
of a single sensor TF, only the expression of the genes within its
origon should be affected transcriptionally, the perturbation grad-
ually percolating toward the output layer (Fig. 1A). In turn, when
several sensors are affected simultaneously by complex external
signals, signal processing may involve propagation through isolated
origons or signal combination by connected origons. To examine
their connectedness, we redrew the TR network with origons as
nodes. Two nodes in this origon network are connected if they share
at least one node (operon). As shown in Fig. 1C, 45 of the 76 origons
form a single connected component, indicating that a perturbation

7842 � www.pnas.org�cgi�doi�10.1073�pnas.0500365102 Balázsi et al.



applied to their input node will affect nodes in the lower layers of
some other origons, as well. In contrast, 25 origons are isolated from
the rest of the network, indicating that they carry out transcriptional
responses to specific stimuli independently, and six origons form
three additional two-node clusters.

Distinct Environmental Signals Affect Origons Selectively. The role of
the E. coli TR network is to sense various environmental changes,
process the obtained information, and develop a response, allowing
the bacterium to dynamically adapt to continuously changing
conditions. Let us assume that the environment is constant except
for a single stimulus (factor). If the input nodes to each of the 76
origons constituting the network were responsive to different types
of environmental changes, then only the origon rooted at the sensor
for this stimulus should be affected. To test this hypothesis we
focused on the crp (Fig. 12) and fnr origons (Fig. 14), rooted at the
genes encoding the proteins FNR and CRP, respectively. FNR is a
sensor TF that rapidly changes its conformation in the absence of
oxygen, with a concomitant increase in its promoter-binding affinity
(20, 21). In contrast, the DNA-binding affinity of CRP is not
oxygen-dependent. Taking this into account, we used publicly
available microarray data to decipher the transcriptional response
to a stimulus known to affect the promoter-binding activity of the
protein FNR. We grouped the available microarray data (22, 23)
into two classes of experiments. The first class, in which wild-type
and mutant strains of E. coli MG1655 were repeatedly sampled in
aerobic and anaerobic conditions, is the best (and only) available
data set for a repeated FNR-specific perturbation. The second class
of experiments, in which aerobically grown wild-type and mutant E.
coli strains were exposed to various nutrients, acid, heat shock, etc.,
represents a non-FNR-specific perturbation. Both data sets repre-
sent non-CRP-specific perturbations.

First, we reconstructed the FNR-specific ‘‘external signal’’ as a
binary series of 39 values (0 for anaerobic and 1 for aerobic growth),
based on oxygen availability in the growth media in the 39 aerobic-
shift microarray experiments (Fig. 2A). Second, to characterize how
repeated aerobic–anaerobic shifts affect the mRNA expression of
individual nodes, we calculated the node–signal covariance (covNS;
Fig. 2A) between their expression profile and the external signal.
Third, we calculated z scores (13) (zNS; Fig. 2A) for every node to
measure its affectedness (deviation from the covNS of other nodes
within the network). Finally, we compared zNS histograms (Fig. 2B)
for nodes located within specific origons or chosen randomly from
the TR network (see Methods).

The histogram of zNS of all nodes within the crp origon (Fig. 2B
Lower) is similar to the averaged histogram of zNS for the same
number of nodes chosen randomly. In contrast, the zNS histogram
for nodes within the fnr origon (Fig. 2B Upper) is substantially
flatter than the same histogram for randomly selected nodes,
indicating the increased number of strongly positive or negative
covariances. To statistically compare the flatness of these distribu-
tions, we defined double z scores (ZNS; see Methods) based on zNS.
The double z scores (Fig. 2B) for the fnr and crp origons were 6.04
and 0.85, respectively, indicating that nodes within the fnr origon are
significantly affected by the FNR-specific signal, whereas nodes
within the crp origon are not. In fact, the only five origons affected
significantly (Z � 2) by the FNR-specific stimulus are rooted at the
anoxic sensor FNR (Z � 6.04), the redox sensor SoxR (Z � 3.66),
the regulator of nitrite- and nitrate-based anaerobic respiration and
fermentation NarL (Z � 2.92), the � factor involved in the
utilization of various nitrogen sources RpoN (Z � 2.39), and the
degradative (anoxic) arginine decarboxylase system AdiA–AdiY
(Z � 2.18). Because the zNS distributions are non-Gaussian (Fig.
2B), we also used rank scores (24) to test the validity of our findings,
determining the percentage of cases when the mean zNS of ran-
domly chosen nodes exceeded the mean zNS within an origon. After
this procedure, the list of significantly affected origons (P � 0.05)
was identical with the one found by using double z scores, indicating
that our findings are robust to the statistical method applied. The
small number of significantly affected origons (also observed for
other stimuli, such as H2O2 treatment, diauxic shift, and UV
exposure; see the supporting information) confirms our hypothesis
that external perturbations influence only a limited set of origons,

Fig. 1. Definition and characteristics of transcriptional subnetworks. (A) Sche-
matic representation of the E. coli TR network. Nodes are genes�operons and
their protein products, and links are TR interactions between them. White nodes
represent TF-encoding operons in the input layer (layer 0); they are not regulated
transcriptionally by any other TFs. Nodes located farther from the input layer are
increasingly darker. The color of the links indicates activation (green), repression
(red), or both activation and repression (yellow). Nodes marked by purple circles
of larger size within the light-purple shaded area form a signal-affected tran-
scriptional subnetwork, or origon, rooted at the node in layer 0. The numbers on
the right indicate the number of nodes in the corresponding layers of the E. coli
TR network. (B) The rob origon is shown as an example from the E. coli TR
network. (C) The origon network. Circles represent origons labeled by their root
node, which directly or indirectly regulates all other nodes in the origon. The
radius of circles is proportional to the base-2 logarithm of the number of operons
(nodes) in that origon. Black circles represent origons with tree topology, and red
circles represent origons with FFL-tree topology, an example of the latter being
shown in B. Two origons are connected if they share at least one node, with the
thickness of links being proportional with the number of nodes in common.
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suggesting that origons are meaningful topological units of the TR
network, dynamically used for environmental signal processing.

Consistency Between Known TR Interactions and Microarray Data.
After investigating how mRNA expression levels in the E. coli TR
network reflect external changes, we studied how internal variations
in the mRNA expression of various nodes relate to each other. To
this end, we calculated node–node correlations, i.e., the cross-
correlation between the expression profiles of two nodes (corNN,
Fig. 2A). Given two nodes, we measured the deviation of their
correlation from the corNN of randomly chosen node pairs by z
scores (zNN) again. We compared the zNN values of node pairs
located within the crp and fnr origons to zNN values of node pairs
chosen randomly from the network. For an FNR-specific stimulus,
the number of outlying zNN values is much higher for nodes within
the fnr origon than for nodes chosen randomly or within the crp
origon (Fig. 2C). We again used double z scores to statistically

characterize the observed differences and obtained for FNR-
specific perturbation Z � 21.5 for nodes within the fnr origon,
compared to Z � 	9.2 for nodes within the crp origon. For
non-FNR-specific perturbations (Fig. 2C), both double z scores
were �2 (Z � 0.56 for the fnr origon and Z � 0.16 for the crp
origon), indicating that node–node correlations were not signifi-
cantly affected in either of the two origons. Extending the analysis
to all origons reveals that 17 origons ( fnr, yhdG�fis, purR, fruR, argR,
lrp, cysB, uidR, nlpD�rpoS, narL, rhaSR, mlc, adiA�adiY, nhaR, soxR,
glcC, birA�murA) are characterized by significant (Z � 2) node–
node correlations. Besides the known anoxic regulators FNR and
NarL, this list contains origons rooted at redox sensors (SoxR), �
factors (RpoS), or TFs initiating reduced amino acid and nucleotide
synthesis and transport in conditions of stress (PurR, ArgR, CysB,
Lrp) (25).

We also examined whether the measured corNN values agree with
the ones predicted by the type of interaction (activation or repres-

Fig. 2. Validation of the origon concept by microarray data. (A) Definition of node–signal covariance (covNS) and node–node cross-correlation (corNN). The
quantity covNS characterizes the impact of the changes in environmental oxygen concentration (39 binary values of [O2] in the top graph) on the intracellular
mRNA expression [log ratios (LRs): vertical axes in the bottom three graphs] of three representative single-gene nodes (sodA, adhE, and cpxP). The z score, zNS,
measures how different the covNS value of a node is from other nodes in the network. The quantity corNN characterizes the similarity between the mRNA
expression profiles of the different genes. (B) Histograms of covNS (Left) within the crp and fnr origons (red bars) versus equal number of nodes chosen randomly
(black bars) for FNR-specific (aerobic-shift) perturbation. The corresponding zNS histograms are shown (Center), as are the double z scores, ZNS, for all origons
(Right) (the ZNS values for the fnr and crp origons are circled). The dashed black line corresponds to a cutoff of ZNS � 2. (C) Histograms of zNN within the crp and
fnr origons (red bars) versus equal number of nodes chosen randomly (black bars) for FNR-specific (aerobic-shift) and nonspecific perturbation. The ZNN values
for all origons are shown (Right) (fnr and crp origons are circled, and the dashed black line corresponds to a cutoff of ZNN � 2). (D) The predicted binary node–node
correlation (within the narL origon) between two nodes is equal to the product of link types along any path connecting the two nodes in a nondirectional version
of the origon. Link types are considered as follows: 
1, activating; 	1, repressing; 0, dual. (E) Predictions are only indicative of measured node–node
cross-correlations in the fnr origon for FNR-specific stimulus. Along the horizontal and vertical axes are operons within the crp or fnr origon so that the diagonal
contains values calculated for an operon with itself. The agreement between predicted binary (Left) and measured (Center) cross-correlations is calculated as
the product of the predictions and measurements (Right) and the corresponding averages �P � M�. All values in the right column are between 	1 and 1, and
correct predictions result in positive values, as indicated by the color scale shown at the bottom.
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sion) between a TF and its target. We associated a binary value (1
or 	1) with each node within an origon depending on how its
expression level is expected to change when the expression of the
root node is altered. We defined the predicted binary cross-
correlation between two nodes as the product of the values asso-
ciated with them. Dual interactions, in which TFs can be both
activating or repressing, were not considered. Fig. 2D illustrates
such predictions for the narL origon. Fig. 2E illustrates the pre-
dicted binary cross-correlations between every pair of nodes in the
crp and fnr origons (P, left column of plots), the measured covNN
values between the same pair of nodes (M, center column of plots),
and the quality of predictions estimated as the product of the
predicted and measured gene–gene cross-correlations (P � M,
right column of plots). Increasingly lighter colors in the plots
correspond to increasingly higher values, clearly illustrating that for
FNR-specific stimulus, the predicted and measured corNN values
agree substantially more within the fnr origon than within the crp
origon. To quantitatively characterize this difference, we calculated
averages over the plots in Fig. 2E Right, obtaining the values of
(�P � M�, from top to bottom) 0.3049, 0.0454, 0.0693, and, 0.0377,
respectively. These values indicate again that cross-correlations are
very noisy and have little predictive value of actual transcriptional
regulation for nonspecific perturbations applied to both the fnr and
crp origon. In contrast, FNR-specific perturbation applied to the fnr
origon results in a 10-fold increase in the quality of the predictions.

Motifs and Subgraphs Occupy Distinct Positions Within Origons and
Filter Environmental Signals Differently. The effect of many envi-
ronmental signals is initiated through altered sensor TF activity,
followed by the dynamical propagation of the perturbation to lower
layers, eventually altering the expression of all genes within an
origon. This propagation takes place through small motifs (12), or

subgraphs (15), that connect subsequent regulatory layers to each
other. To elucidate the type and information-processing function of
subgraphs encountered by the propagating signal, we next investi-
gated the position and abundance of three-node subgraphs in the
whole TR network as well as with respect to individual origons. Fig.
3A shows all three-node subgraphs found within the E. coli TR
network: divergence (DIV), convergence (CNV), cascade (CAS),
and FFL, all of which [composed of single regulatory interactions
(SRIs)], connect two or three consecutive layers of the TR network.
To examine the relative abundance of all three-node subgraphs
present in the E. coli TR network, we used a randomization
protocol (13) preserving all five layers and keeping the network
acyclic (see the supporting information). Our analysis confirms that
FFL subgraphs are significantly more abundant than expected (13).
However, the abundance of DIV and CAS also deviates from the
random expectation, with DIV occurring more frequently, whereas
CAS is less frequent than expected (Table 1 and supporting
information).

Based on the randomization protocol described above, we ex-
pected to find 5.07 � 4.44 CNV subgraphs within individual
origons, whereas the probability of finding no CNV subgraph in any
origons is 0.11. It is surprising that CNV is completely absent from
any of the individual E. coli origons. Therefore, the apparent role
of CNV subgraphs is to combine perturbations propagating in
different origons. We also found that the majority of origons are
trees (Fig. 1C), containing only DIV and CAS subgraphs (Fig. 9).
However, seven origons also contain FFL subgraphs in addition to
their backbone tree structure (Figs. 12–18). Thus, origons can be
classified into those with tree structure and those with FFL-tree
structure (Fig. 1C) (see the supporting information for details). An
example of an origon with tree structure is shown in Fig. 2C, and
an origon with FFL-tree structure [containing aggregated FFL
subgraphs (10)] is shown in Fig. 1B.

Fig. 3. Filtering properties and dynam-
ics of small subgraphs. (A) Directed small
subgraphs: SRI, DIV, CNV, CAS, and FFL
are shown. The nodes are labeled by X, Y,
and Z progressively, depending on their
distance from the input layer of the sub-
graph (layer 0). (B) Schematic illustration
of SRIs, the basic building unit of all
three-node subgraphs, reflecting the
mechanism considered in our modeling.
The signal SX activates the input TF, PX.
Once activated, PX

* binds to the operator
region of gene Y and allows binding of
RNA polymerase PR to its promoter re-
gion. The polymerase–operator complex
initiates transcription, resulting in the
synthesis of an mRNA molecule RY after a
delay �R, which, bound by a ribosome PP,
is translated into the output protein PY

after a delay �P. (C) Time courses of out-
put protein levels after a periodic pertur-
bation for SRIs and DIVs (black line), CASs (blue line), and FFLs (red line). The amplitude of fluctuations at the output of the FFL is nearly the same as at the output of
the SRI, although it is substantially reduced because of the stronger filtering properties of CAS. (D) Frequency response of SRI and DIV (black circles), CAS (blue squares),
and FFL (red triangles) showing the amplitude of fluctuations at the output of subgraphs (vertical axis) versus the frequency of the signal applied to their input
(horizontal axis). All subgraphs are low-pass filters, but CAS has a much stronger filtering effect than either the SRI (DIV) or FFL.

Table 1. Abundance of three-node subgraphs in the TR network of E. coli and the randomized
version of this network

Subgraph CNV DIV CAS FFL

Abundance in real network 227 4777 160 42
Abundance in randomized network 231.92 � 8.05 4339.3 � 132 186.69 � 7.08 9.50 � 4.17
z score 0.61 3.31 3.77 7.79

The corresponding z scores (13) (listed in the bottom row) indicate the deviation of the values for the real
network from those for the randomized network. The corresponding distributions are shown in Fig. 6.
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For free-living bacteria such as E. coli, environmental signals
(e.g., available carbon sources, pH, or oxygen) change frequently.
To understand how the effect of fluctuating environmental changes
propagate within individual origons, we developed dynamical mod-
els of the elementary topological units (subgraphs) connecting
subsequent layers (Fig. 3A) by using a generic mass-action kinetic
model (26) and taking into account the time delay required for
mRNA and protein synthesis (27, 28). We applied perturbation to
each of the subgraphs by altering the activity of their input node
through the periodically changing concentration of a signaling
molecule (see the supporting information for details) and investi-
gated their response amplitude through the concentration of the
protein product of their output node (Fig. 3B). As shown in Fig. 3
C and D, the response amplitude of SRIs (Fig. 3A) decreases with
increasing frequency of the input signal. Therefore, SRIs are
low-pass filters, as described previously (29), i.e., they allow slow
fluctuations to pass through but filter out fast signal fluctuations.
Because SRIs are the basic building blocks of all three-node
subgraphs, they all possess filtering properties to some degree.
When keeping all parameters used in the simulation of the various
subgraphs identical, we find that DIV (composed of two parallel
SRIs) has an identical filtering effect to SRI. In contrast, the effect
of the two subsequent SRIs comprising a CAS is combined,
resulting in the strongest signal filtering. Finally, in FFLs with an
AND-type promoter logic (30, 31), the strong filtering effect is again
substantially reduced (Fig. 3 C and D) because of the extra link
directly connecting their input and output nodes. Thus, in contrast
to what was suggested previously (12), FFLs might have the role to
diminish the strong filtering effects of CASs and�or combine two
related signals from two sensory inputs (see Discussion).

Discussion
Our analysis indicates that in E. coli, distinct transcriptional sub-
networks (called origons) are responsible for environmental per-
turbation processing. In relation to existing concepts of multigene
regulatory structures, origons are more complex entities than
modulons but less complex than stimulons (32). Specifically, all
nodes within a modulon must be controlled directly by a common,
‘‘pleiotropic’’ regulator, whereas in the origon they can be con-
trolled indirectly by percolation of altered transcriptional levels
through the network. On the other hand, origons are subnetworks
originating at a single TF, whereas stimulons include all nodes
affected by an environmental signal and are composed of all the
origons rooted at TFs sensitive to the signal.

Based on their complexity, environmental perturbations can be
classified as elementary (change of a single factor on a constant
environmental background) or complex (simultaneous changes of
two or more environmental factors).

The transcriptional response of the cell will depend on the type
of perturbation, the structure of the affected origon, and its
interconnectivity with other origons. If an elementary perturbation
is highly specific to one (or few) origon(s), it will affect only operons
within them. On the other hand, complex perturbations involving
related signals (e.g., two different sugars) typically affect two or
more sensory proteins within an origon, resulting in a combined
response within individual origons. In this case, processing of the
incoming signals is mediated by CAS and�or FFL subgraphs that
combine related signals within the same origon. Finally, complex
perturbations involving unrelated stimuli (e.g., oxygen and one
sugar) are often processed independently and then combined by
overlapping origons through CNVs. In addition to signal combi-
nation by sensor TFs, the target promoters of FFLs and CNVs use
combinatorial logic (30) (with a dependence on signal intensity,
promoter strength, etc.) that needs to be determined experimen-
tally (16, 33).

The origon concept suggests that at the transcriptional regulatory
level cells perceive their environment by first dissecting complex
external signals into elementary perturbations (or modes) pro-
cessed by individual origons and then developing a response by
reassembling the elementary modes near the output of the TR
network. Decomposition into such elementary modes is common in
signal analysis (Fourier components). Thus, the origon concept may
also explain why dimensionality-reduction techniques such as sin-
gular-value decomposition (34–36) or network-component analysis
(37) have been successful in uncovering biologically significant
information. Because the origon concept is intimately related to the
directed nature of the TR network, the identification of similar
topological units in undirected (protein–protein interaction) and
reversibly directed (metabolic) networks will require alternative
approaches. Yet, to fully understand the response to external
stimuli in these networks, one cannot disregard the origon-specific
directed flow of environmental signals characterizing transcrip-
tional regulation.
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