

Available online at www.sciencedirect.com

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

J. Math. Anal. Appl. 352 (2009) 139-148

www.elsevier.com/locate/jmaa

Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity *

Alexandru Kristály^{a,b,*}, Csaba Varga^c

^a Babeş-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania ^b Central European University, Department of Mathematics, 1051 Budapest, Hungary

^c Babeş-Bolyai University, Department of Mathematics and Computer Sciences, 400084 Cluj-Napoca, Romania

Received 24 January 2008

Available online 18 March 2008

Submitted by V. Radulescu

Abstract

Some multiplicity results are presented for the eigenvalue problem

$$\begin{cases} -\operatorname{div}(|x|^{-2a}\nabla u) = \lambda |x|^{-2b} f(u) + \mu |x|^{-2c} g(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$

$$(\mathcal{P}_{\lambda,\mu})$$

where $\Omega \subset \mathbb{R}^n$ $(n \ge 3)$ is an open bounded domain with smooth boundary, $0 \in \Omega$, $0 < a < \frac{n-2}{2}$, $a \le b, c < a + 1$, and $f : \mathbb{R} \to \mathbb{R}$ is sublinear at infinity and superlinear at the origin. Various cases are treated depending on the behaviour of the nonlinear term g. © 2008 Elsevier Inc. All rights reserved.

Keywords: Degenerate elliptic problem; Caffarelli-Kohn-Nirenberg inequality; Sublinearity at infinity

1. Introduction and main results

We consider the eigenvalue problem

$$\begin{cases} -\operatorname{div}(|x|^{-2a}\nabla u) = \lambda |x|^{-2b} f(u(x)) & \text{in } \Omega, \\ u = 0 & \text{on } \partial\Omega, \end{cases}$$
(\mathcal{P}_{λ})

where $\Omega \subset \mathbb{R}^n$ $(n \ge 3)$ is an open bounded domain with smooth boundary, $0 \in \Omega$, $0 < a < \frac{n-2}{2}$, $a \le b < a + 1$, and $\lambda \in \mathbb{R}$ is a parameter.

Equations like (\mathcal{P}_{λ}) are introduced as model for several physical phenomena related to equilibrium of anisotropic media, see [6]. Due to this fact, problem (\mathcal{P}_{λ}) has been widely studied by several authors, see [1–3,7,13] and references therein. Usually, the nonlinear term $f : \mathbb{R} \to \mathbb{R}$ is considered to be *superlinear at infinity* or simply, $f(s) = |s|^{\theta-2}s$

^{*} Research for this article was supported by the Grant PN II, ID_527/2007 and CEEX 130/2006.

^{*} Corresponding author at: Babeş-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania. *E-mail address:* alexandrukristaly@yahoo.com (A. Kristály).

⁰⁰²²⁻²⁴⁷X/\$ - see front matter © 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.jmaa.2008.03.025

with $\theta > 2$. The common assumption in these papers is the well-known Ambrosetti–Rabinowitz condition: denoting by $F(s) = \int_0^s f(t) dt$, there exist $s_0 > 0$ and $\theta > 2$ such that

$$0 < \theta F(s) \leqslant sf(s), \quad \forall s \in \mathbb{R}, \ |s| \ge s_0.$$
(AR)

A simple computation shows that (AR) implies

$$|f(s)| \ge c|s|^{\theta-1}, \quad \forall s \in \mathbb{R}, \ |s| \ge s_0, \tag{AR'}$$

with c > 0, i.e., f is superlinear at infinity.

Our aim is to handle the counterpart of the above case, i.e., when $f : \mathbb{R} \to \mathbb{R}$ is *sublinear at infinity*. More precisely, we assume:

$$(f_1) \lim_{|s| \to \infty} \frac{f(s)}{s} = 0.$$

The presence of the parameter $\lambda \in \mathbb{R}$ is essential in our problem; indeed, if beside of (f_1) , the nonlinear term f is uniformly Lipschitz (with Lipschitz constant L > 0), then problem (\mathcal{P}_{λ}) has only the trivial solution whenever $|\lambda| < (LC_{22h}^2)^{-1}$; the constant $C_{2,2b} > 0$ is introduced after relation (3).

In order to state our main results, we introduce the weighted Sobolev space $\mathcal{D}_a^{1,2}(\Omega)$ where the solutions of (\mathcal{P}_{λ}) are going to be sought, which is the completion of $\mathcal{C}_0^{\infty}(\Omega)$ with respect to the norm

$$\|u\|_{a} = \left(\int_{\Omega} |x|^{-2a} |\nabla u|^{2} dx\right)^{1/2}.$$

Beside of (f_1) , we assume

(f₂) $\lim_{s\to 0} \frac{f(s)}{s} = 0$ (superlinearity at zero); (f₃) $\sup_{s\in\mathbb{R}} F(s) > 0.$

Theorem 1.1. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which satisfies (f_1) , (f_2) and (f_3) . Then, there exist an open interval $\Lambda \subset (0, \infty)$ and a constant $\nu > 0$ such that for every $\lambda \in \Lambda$ problem (\mathcal{P}_{λ}) has at least two nontrivial weak solutions in $\mathcal{D}_a^{1,2}(\Omega)$ whose $\|\cdot\|_a$ -norms are less than ν .

Now, we consider the perturbation of the problem (\mathcal{P}_{λ}) in the form

$$\begin{cases} -\operatorname{div}(|x|^{-2a}\nabla u) = \lambda |x|^{-2b} f(u) + \mu |x|^{-2c} g(u) & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$
 $(\mathcal{P}_{\lambda,\mu})$

where $0 < a < \frac{n-2}{2}$, $a \leq b, c < a + 1$ and for the continuous function $g : \mathbb{R} \to \mathbb{R}$ we introduce the hypotheses:

- (g₁) there exist $p \in (2, 2_{a,c}^{\star})$ with $2_{a,c}^{\star} = \min\{\frac{2n}{n-2}, \frac{2(n-2c)}{n-2(a+1)}\}$ and $c_g > 0$ such that $|g(s)| \le c_g(1+|s|^{p-1})$ for every $s \in \mathbb{R}$;
- $s \in \mathbb{R};$ (g₂) $\lim_{|s|\to\infty} \frac{|g(s)|}{|s|} = l < +\infty$ (asymptotically linear at infinity).

It is clear that (g_2) implies (g_1) .

Theorem 1.2. Let $f : \mathbb{R} \to \mathbb{R}$ be a continuous function which satisfies the conditions (f_1) , (f_2) , (f_3) . Then, there exists a nondegenerate compact interval $A \subset [0, \infty)$ with the following properties:

- (i) there exists a number $v_1 > 0$ such that for every $\lambda \in A$ and every continuous function $g : \mathbb{R} \to \mathbb{R}$ verifying (g_1) , there exists $\delta_1 > 0$ with the property that for each $\mu \in (0, \delta_1)$ the problem $(\mathcal{P}_{\lambda,\mu})$ has at least two distinct weak solutions whose $\|\cdot\|_a$ -norms are less than v_1 ;
- (ii) there exists a number $v_2 > 0$ such that for every $\lambda \in A$ and every continuous function $g : \mathbb{R} \to \mathbb{R}$ verifying (g_2) , there exists $\delta_2 > 0$ with the property that for each $\mu \in (0, \delta_2)$ the problem $(\mathcal{P}_{\lambda,\mu})$ has at least three distinct weak solutions whose $\|\cdot\|_a$ -norms are less than v_2 .

It is worth to notice that problem $(\mathcal{P}_{\lambda,\mu})$ may be viewed in particular as a degenerate elliptic problem involving concave–convex nonlinearities whenever (g_1) holds; indeed, f has a sublinear growth at infinity, while g can be superlinear (and subcritical) at infinity.

The main ingredient for the proof of Theorem 1.1 is a recent critical point result due to Bonanno [4] which is actually a refinement of a result of Ricceri [9,10]. In the proof of Theorem 1.2 we use a recent result of Ricceri [11] and a version of the mountain pass theorem due to Pucci and Serrin [8].

2. Preliminaries

The starting point of the variational approach to problems (\mathcal{P}_{λ}) and $(\mathcal{P}_{\lambda,\mu})$ is the weighted Sobolev–Hardy inequality due to Caffarelli, Kohn, Nirenberg [5]: for all $u \in C_0^{\infty}(\mathbb{R}^n)$, there is a constant $K_{a,b} > 0$ such that

$$\left(\int_{\mathbb{R}^n} |x|^{-bq} |u|^q \, dx\right)^{2/q} \leqslant K_{a,b} \int_{\mathbb{R}^n} |x|^{-2a} |\nabla u|^2 \, dx,\tag{1}$$

where

$$-\infty < a < \frac{n-2}{2}, \qquad a \le b < a+1, \qquad q = 2^*(a,b) = \frac{2n}{n-2d}, \qquad d = 1+a-b.$$

From the boundedness of Ω and standard approximations argument, it is easy to see that (1) holds on $\mathcal{D}_a^{1,2}(\Omega)$; more precisely, for every

$$1 \leqslant r \leqslant \frac{2n}{n-2} \quad \text{and} \quad \frac{\alpha}{r} \leqslant (1+a) + n\left(\frac{1}{r} - \frac{1}{2}\right),\tag{2}$$

we have

$$\left(\int_{\Omega} |x|^{-\alpha} |u|^r dx\right)^{2/r} \leq C \int_{\Omega} |x|^{-2a} |\nabla u|^2 dx, \quad u \in \mathcal{D}^{1,2}_a(\Omega),$$

that is, the embedding $\mathcal{D}_a^{1,2}(\Omega) \hookrightarrow L^r(\Omega; |x|^{-\alpha})$ is continuous, where $L^r(\Omega; |x|^{-\alpha})$ is the weighted L^r -space with the norm

$$\|u\|_{r,\alpha} = \|u\|_{L^{r}(\Omega;|x|^{-\alpha})} = \left(\int_{\Omega} |x|^{-\alpha} |u|^{r} dx\right)^{1/r}.$$
(3)

We denote by $C_{r,\alpha} > 0$ the best Sobolev constant of the embedding $\mathcal{D}_a^{1,2}(\Omega) \hookrightarrow L^r(\Omega; |x|^{-\alpha})$.

The following version of the Rellich-Kondrachov compactness theorem can be stated, see Xuan [12,13].

Lemma A. Suppose that $\Omega \subset \mathbb{R}^n$ is an open bounded domain with C^1 boundary and $0 \in \Omega$, $n \ge 3, -\infty < a < \frac{n-2}{2}$. The embedding $\mathcal{D}_a^{1,2}(\Omega) \hookrightarrow L^r(\Omega; |x|^{-\alpha})$ is compact if $1 \le r < \frac{2n}{n-2}$ and $\alpha < (1+a)r + n(1-\frac{r}{2})$.

First, we associate the energy functional $\mathcal{E}_{\lambda} : \mathcal{D}_{a}^{1,2}(\Omega) \to \mathbb{R}$ to problem (\mathcal{P}_{λ}) , given by

$$\mathcal{E}_{\lambda}(u) = \frac{1}{2} \|u\|_a^2 - \lambda \mathcal{F}(u), \quad u \in \mathcal{D}_a^{1,2}(\Omega),$$

where $\mathcal{F}(u) = \int_{\Omega} |x|^{-2b} F(u(x)) dx$ and $F(s) = \int_0^s f(t) dt$.

Proposition 2.1. Assume (f_1) and (f_2) hold. Then, for every $\lambda \in \mathbb{R}$ the functional \mathcal{E}_{λ} is well defined, of class C^1 on $\mathcal{D}_a^{1,2}(\Omega)$, sequentially weakly lower semicontinuous, and coercive. Moreover, every critical point of \mathcal{E}_{λ} is a weak solution of (\mathcal{P}_{λ}) .

Proof. Fix $\lambda \in \mathbb{R}$. Combining (f_1) and (f_2) , there exists M > 0 such that

$$|f(s)| \leq M(1+|s|) \quad \text{for all } s \in \mathbb{R}.$$
 (4)

Then, for every $u \in \mathcal{D}_a^{1,2}(\Omega)$, we have

$$\left|\mathcal{F}(u)\right| \leq M\left(C_{1,2b} \|u\|_{a} + C_{2,2b}^{2} \|u\|_{a}^{2}\right) < \infty.$$
(5)

Note that the pairs r = 1, $\alpha = 2b$ and r = 2, $\alpha = 2b$ verify relation (2). Consequently, \mathcal{E}_{λ} is well defined.

One can see in a standard way that \mathcal{E}_{λ} is of class C^1 on $\mathcal{D}_a^{1,2}(\Omega)$ and every critical point of \mathcal{E}_{λ} is a weak solution of (\mathcal{P}_{λ}) .

We prove that \mathcal{F} is sequential weak continuous which clearly implies the sequential weak lower semicontinuity of \mathcal{E}_{λ} . To do this, we argue by contradiction; let $\{u_k\} \subset \mathcal{D}_a^{1,2}(\Omega)$ be a sequence which converges weakly to $u \in \mathcal{D}_a^{1,2}(\Omega)$ but $\{\mathcal{F}(u_k)\}$ does not converge to $\mathcal{F}(u)$ as $k \to \infty$. Therefore, up to a subsequence, one can find a number $\varepsilon_0 > 0$ such that

$$0 < \varepsilon_0 \leq |\mathcal{F}(u_k) - \mathcal{F}(u)| \quad \text{for every } k \in \mathbb{N},$$

and $\{u_k\}$ converges strongly to u in $L^1(\Omega; |x|^{-2b}) \cap L^2(\Omega; |x|^{-2b})$. Here, the pairs $r = 1, \alpha = 2b$, and $r = 2, \alpha = 2b$ verify relations from Lemma A. Using Hölder inequality and (4), for every $k \in \mathbb{N}$ one has $0 < \theta_k < 1$ such that

$$0 < \varepsilon_0 \leq |\mathcal{F}(u_k) - \mathcal{F}(u)| \leq \int_{\Omega} |x|^{-2b} |f(u + \theta_k(u_k - u))| |u_k - u| dx$$

$$\leq M(||u_k - u||_{1,2b} + ||u_k + \theta_k(u_k - u)||_{2,2b} ||u_k - u||_{2,2b}).$$

Since $\{u_k\}$ converges strongly to u in $L^1(\Omega; |x|^{-2b}) \cap L^2(\Omega; |x|^{-2b})$, both terms in the right-hand side tend to 0 as $k \to \infty$, contradicting $\varepsilon_0 > 0$.

We prove now that \mathcal{E}_{λ} is coercive. By (f_1) there exists $\delta_0 = \delta(\lambda) > 0$ such that

$$|f(s)| \leq C_{2,2b}^{-2} (1+|\lambda|)^{-1} |s|$$
 for every $|s| \geq \delta_0$.

Integrating the above inequality we get that

$$|F(s)| \leq \frac{1}{2} C_{2,2b}^{-2} (1+|\lambda|)^{-1} |s|^2 + \max_{|t| \leq \delta_0} |f(t)| |s| \text{ for every } s \in \mathbb{R}.$$

Thus, for every $u \in \mathcal{D}_a^{1,2}(\Omega)$, we have

$$\left|\mathcal{F}(u)\right| \leq \frac{1}{2} \left(1 + |\lambda|\right)^{-1} \|u\|_{a}^{2} + C_{1,2b} \max_{|t| \leq \delta_{0}} \left|f(t)\right| \|u\|_{a}.$$
(6)

Using (6), we obtain the inequality

$$\mathcal{E}_{\lambda}(u) \ge \frac{1}{2} \|u\|_{a}^{2} - |\lambda| |\mathcal{F}(u)| \ge \frac{1}{2(1+|\lambda|)} \|u\|_{a}^{2} - |\lambda| C_{1,2b} \max_{|t| \le \delta_{0}} |f(t)| \|u\|_{a}.$$

Consequently, if $||u||_a \to \infty$ then $\mathcal{E}_{\lambda}(u) \to \infty$ as well, i.e., \mathcal{E}_{λ} is coercive. \Box

3. Proof of Theorem 1.1

Throughout of this section, we assume that the assumptions of Theorem 1.1 are fulfilled. First, we prove two lemmas.

Lemma 3.1.
$$\lim_{\rho \to 0^+} \frac{\sup\{\mathcal{F}(u): \|u\|_a^2 < 2\rho\}}{\rho} = 0.$$

Proof. Due to (f_2) , for an arbitrary small $\varepsilon > 0$, there exists $\delta = \delta(\varepsilon) > 0$ such that

$$|f(s)| < \frac{\varepsilon}{2}C_{2,2b}^{-2}|s|$$
 for every $|s| < \delta$

Combining the above inequality with (4), we obtain

$$\left|F(s)\right| \leq \varepsilon C_{2,2b}^{-2} |s|^2 + K(\delta)|s|^q \quad \text{for every } s \in \mathbb{R},\tag{7}$$

where $q \in (2, \min\{\frac{2n}{n-2}, \frac{2(n-2b)}{n-2(a+1)}\})$ is fixed and $K(\delta) > 0$ does not depend on *s*.

From (7) we get

$$\mathcal{F}(u) \leqslant \varepsilon C_{2,2b}^{-2} \int_{\Omega} |x|^{-2b} |u|^2 dx + K(\delta) \int_{\Omega} |x|^{-2b} |u|^q dx \leqslant \varepsilon ||u||_a^2 + K(\delta) C_{q,2b}^q ||u||_a^q.$$

From the above relation we obtain that

$$\sup\left\{\mathcal{F}(u): \|u\|_{a}^{2} < 2\rho\right\} \leq 2\varepsilon\rho + K(\delta)C_{q,2b}^{q}(2\rho)^{\frac{q}{2}}.$$

Because q > 2 and $\varepsilon > 0$ is arbitrarily, we obtain

$$\lim_{\rho \to 0^+} \frac{\sup\{\mathcal{F}(u): \|u\|_a^2 < 2\rho\}}{\rho} = 0. \qquad \Box$$

Lemma 3.2. For every $\lambda \in \mathbb{R}$ the functional \mathcal{E}_{λ} satisfies the usual (PS)-condition.

Proof. Let $\{u_k\} \subset \mathcal{D}_a^{1,2}(\Omega)$ be a (PS)-sequence, i.e., $\{\mathcal{E}_{\lambda}(u_k)\}$ is bounded and $\mathcal{E}'_{\lambda}(u_k) \to 0$ in $(\mathcal{D}_a^{1,2}(\Omega))^*$ as $k \to \infty$. Since the function \mathcal{E}_{λ} is coercive, it follows that the sequence $\{u_k\}$ is bounded in $\mathcal{D}_a^{1,2}(\Omega)$. Up to a subsequence, we may suppose that $u_k \to u$ weakly in $\mathcal{D}_a^{1,2}(\Omega)$, and $u_k \to u$ strongly in $L^1(\Omega; |x|^{-2b}) \cap L^2(\Omega; |x|^{-2b})$ for some $u \in \mathcal{D}_a^{1,2}(\Omega)$, see Lemma A. On the other hand, we have

$$\|u_{k} - u\|_{a}^{2} = \mathcal{E}_{\lambda}'(u_{k})(u_{k} - u) + \mathcal{E}_{\lambda}'(u)(u - u_{k}) + \lambda \int_{\Omega} |x|^{-2b} \Big[f\big(u_{k}(x)\big) - f\big(u(x)\big) \Big] \big(u_{k}(x) - u(x)\big) \, dx.$$

It is clear the first two terms from the last expression tend to 0, while by means of (4) and Hölder's inequality, one has

$$\int_{\Omega} |x|^{-2b} |f(u_k(x)) - f(u(x))| |u_k(x) - u(x)| dx$$

$$\leq M [2||u_k - u||_{1,2b} + (||u_k||_{2,2b} + ||u||_{2,2b}) ||u_k - u||_{2,2b}] \to 0$$

as $k \to \infty$. Thus, we have $||u_k - u||_a \to 0$ as $k \to \infty$.

Let $s_0 \in \mathbb{R}$ such that $F(s_0) > 0$, see (f_3) . Here and in the sequel, let $x_0 \in \Omega$ and $r_0 > 0$ so small such that $|x_0| > r_0$ and $B(x_0, r_0) \subset \Omega$. Then, clearly, $B(x_0, r_0) \subset \Omega \setminus \{0\}$. As usual $B(x_0, r_0)$ denotes the *n*-dimensional open ball with center in x_0 and radius $r_0 > 0$.

For $\sigma \in (0, 1)$ we define

$$u_{\sigma}(x) = \begin{cases} 0, & \text{if } x \in \Omega \setminus B(x_0, r_0); \\ \frac{s_0}{1 - \sigma} - \frac{s_0}{r_0(1 - \sigma)} |x - x_0|, & \text{if } x \in B(x_0, r_0) \setminus B(x_0, \sigma r_0); \\ s_0, & \text{if } x \in B(x_0, \sigma r_0). \end{cases}$$
(8)

It is clear that $u_{\sigma} \in \mathcal{D}_{a}^{1,2}(\Omega)$. Moreover, one has

$$\|u_{\sigma}\|_{a}^{2} \ge s_{0}^{2} (|x_{0}| + r_{0})^{-2a} (1 - \sigma)^{-2} (1 - \sigma^{n}) \omega_{n} r_{0}^{n-2}$$

$$\tag{9}$$

and

$$\mathcal{F}(u_{\sigma}) \geqslant K_{s_0, x_0, r_0}(\sigma),\tag{10}$$

where

$$K_{s_0,x_0,r_0}(\sigma) = \left[F(s_0)(|x_0|+r_0)^{-2b}\sigma^n - \max_{|t| \le |s_0|} |F(t)|(|x_0|-r_0)^{-2b}(1-\sigma^n)\right]\omega_n r_0^n$$

and ω_n denotes the volume of the *n*-dimensional unit ball. For σ close enough to 1, the right-hand side of (10) becomes strictly positive; choose such a number, say σ_0 .

Now, we recall a recent result from critical point theory, due to Ricceri [9,10], and Bonanno [4].

Theorem R1. (See [4, Theorem 2.1].) Let X be a separable and reflexive real Banach space, and let $\mathcal{A}, \mathcal{F} : X \to \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_0 \in X$ such that $\mathcal{A}(x_0) = \mathcal{F}(x_0) = 0$ and $\mathcal{A}(x) \ge 0$ for every $x \in X$ and that there exist $x_1 \in X$, $\rho > 0$ such that

(i)
$$\rho < \mathcal{A}(x_1);$$

(ii) $\sup_{\mathcal{A}(x) < \rho} \mathcal{F}(x) < \rho \frac{\mathcal{F}(x_1)}{\mathcal{A}(x_1)}.$

Further, put

$$\bar{a} = \frac{\zeta \rho}{\rho \frac{\mathcal{F}(x_1)}{\mathcal{A}(x_1)} - \sup_{\mathcal{A}(x) < \rho} \mathcal{F}(x)},$$

with $\zeta > 1$, assume that the functional $\mathcal{A} - \lambda \mathcal{F}$ is sequentially weakly lower semicontinuous, satisfies the Palais– Smale condition and

(iii) $\lim_{\|x\|\to\infty} (\mathcal{A}(x) - \lambda \mathcal{F}(x)) = \infty$ for every $\lambda \in [0, \overline{a}]$.

Then there is an open interval $\Lambda \subset [0, \overline{a}]$ and a number $\nu > 0$ such that for each $\lambda \in \Lambda$, the equation $\mathcal{A}'(x) - \lambda \mathcal{F}'(x) = 0$ admits at least three distinct solutions in X having norm less than ν .

Proof of Theorem 1.1 completed. On account of Lemma 3.1, (9) and (10), we may choose $\rho_0 > 0$ so small such that

$$\frac{2\rho_0 < \|u_{\sigma_0}\|_a^2}{\sum_{\rho_0} \left\{\mathcal{F}(u): \|u\|_a^2 < 2\rho_0\right\}} < \frac{2K_{s_0, x_0, r_0}(\sigma_0)}{\|u_{\sigma_0}\|_a^2}$$

By choosing $X = \mathcal{D}_a^{1,2}(\Omega), \ \mathcal{A} = \frac{1}{2} \| \cdot \|_a^2, \ x_0 = 0, \ x_1 = u_{\sigma_0}, \ \text{and}$

$$\bar{a} = \frac{1 + \rho_0}{\frac{2\mathcal{F}(u_{\sigma_0})}{\|u_{\sigma_0}\|_a^2} - \frac{\sup\{\mathcal{F}(u): \|u\|_a^2 < 2\rho_0\}}{\rho_0}},$$

all the hypotheses of Theorem R1 are verified, see also Proposition 2.1 and Lemma 3.2.

Thus there exist an open interval $\Lambda \subset [0, \overline{a}]$ and a number $\nu > 0$ such that for each $\lambda \in \Lambda$, the equation $\mathcal{E}'_{\lambda}(u) \equiv \mathcal{A}'(u) - \lambda \mathcal{F}'(u) = 0$ admits at least three distinct solutions in $\mathcal{D}^{1,2}_a(\Omega)$ having $\mathcal{D}^{1,2}_a(\Omega)$ -norm less than ν . Since one of them may be the trivial one (f(0) = 0, see (f_2)), we still have at least two nontrivial solutions of (\mathcal{P}_{λ}) with the required properties. \Box

4. Proof of Theorems 1.2

Throughout of this section, we assume that the assumptions of Theorem 1.2 are fulfilled. Let us define the function

$$\beta(t) = \sup \{ \mathcal{F}(u) \colon \|u\|_a^2 < 2t \}, \quad t > 0.$$

Then, Lemma 3.1 yields that

$$\lim_{t \to 0^+} \frac{\beta(t)}{t} = 0.$$
 (11)

Take the function from (8) for $\sigma_0 > 0$ fixed in the previous section; thus, $u_{\sigma_0} \in \mathcal{D}_a^{1,2}(\Omega) \setminus \{0\}$ and $\mathcal{F}(u_{\sigma_0}) > 0$. Therefore it is possible to choose a number $\eta > 0$ such that

$$0 < \eta < \mathcal{F}(u_{\sigma_0}) \frac{2}{\|u_{\sigma_0}\|_a^2}.$$

From (11) we get the existence of a number $t_0 \in (0, ||u_{\sigma_0}||_a^2/2)$ such that $\beta(t_0) < \eta t_0$. Thus

$$\beta(t_0) < \frac{2}{\|u_{\sigma_0}\|_a^2} \mathcal{F}(u_{\sigma_0}) t_0.$$
(12)

Due to the choice of t_0 and using (12), we conclude that there exists $\rho_0 > 0$ such that

$$\beta(t_0) < \rho_0 < \mathcal{F}(u_{\sigma_0}) \frac{2}{\|u_{\sigma_0}\|_a^2} t_0 < \mathcal{F}(u_{\sigma_0}).$$
(13)

Define now the function $\mathcal{H}: \mathcal{D}_a^{1,2}(\Omega) \times \mathbb{I} \to \mathbb{R}$ by

$$\mathcal{H}(u,\lambda) = \mathcal{E}_{\lambda}(u) + \lambda \rho_0,$$

where $\mathbb{I} = [0, \infty)$. We prove that the following inequality holds:

$$\sup_{\lambda \in \mathbb{I}} \inf_{u \in \mathcal{D}_a^{1,2}(\Omega)} \mathcal{H}(u,\lambda) < \inf_{u \in \mathcal{D}_a^{1,2}(\Omega)} \sup_{\lambda \in \mathbb{I}} \mathcal{H}(u,\lambda).$$
(14)

The function

$$\lambda \in \mathbb{I} \mapsto \inf_{u \in \mathcal{D}_a^{1,2}(\Omega)} \left[\frac{1}{2} \|u\|_a^2 + \lambda \left(\rho_0 - \mathcal{F}(u) \right) \right]$$

is obviously upper semicontinuous on \mathbb{I} . It follows from (13) that

$$\lim_{\lambda \to +\infty} \inf_{u \in \mathcal{D}_a^{1,2}(\Omega)} \mathcal{H}(u,\lambda) \leq \lim_{\lambda \to +\infty} \left\lfloor \frac{1}{2} \|u_{\sigma_0}\|_a^2 + \lambda \left(\rho_0 - \mathcal{F}(u_{\sigma_0})\right) \right\rfloor = -\infty.$$

Thus we find an element $\overline{\lambda} \in \mathbb{I}$ such that

$$\sup_{\lambda \in \mathbb{I}} \inf_{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \mathcal{H}(u,\lambda) = \inf_{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \left[\frac{1}{2} \|u\|_{a}^{2} + \bar{\lambda} (\rho_{0} - \mathcal{F}(u)) \right].$$
(15)

Since $\beta(t_0) < \rho_0$, it follows that for all $u \in \mathcal{D}_a^{1,2}(\Omega)$ with $||u||_a^2 < 2t_0$ we have $\mathcal{F}(u) < \rho_0$. Hence

$$t_0 \leqslant \inf\left\{\frac{1}{2} \|u\|_a^2; \ \mathcal{F}(u) \geqslant \rho_0\right\}.$$
(16)

On the other hand,

$$\inf_{u\in\mathcal{D}_a^{1,2}(\Omega)}\sup_{\lambda\in\mathbb{I}}\mathcal{H}(u,\lambda)=\inf_{u\in\mathcal{D}_a^{1,2}(\Omega)}\left[\frac{1}{2}\|u\|_a^2+\sup_{\lambda\in\mathbb{I}}\left(\lambda\left(\rho_0-\mathcal{F}(u)\right)\right)\right]=\inf_{u\in\mathcal{D}_a^{1,2}(\Omega)}\left\{\frac{1}{2}\|u\|_a^2\colon\mathcal{F}(u)\geq\rho_0\right\}.$$

Thus inequality (16) is equivalent to

$$t_0 \leq \inf_{u \in \mathcal{D}_a^{1,2}(\Omega)} \sup_{\lambda \in \mathbb{I}} \mathcal{H}(u, \lambda).$$
(17)

We consider the following two cases:

(I) If
$$0 \leq \overline{\lambda} < \frac{t_0}{\rho_0}$$
, then we have that

$$\inf_{u \in \mathcal{D}_a^{1,2}(\Omega)} \left[\frac{1}{2} \|u\|_a^2 + \overline{\lambda} (\rho_0 - \mathcal{F}(u)) \right] \leq \mathcal{H}(0, \overline{\lambda}) = \overline{\lambda} \rho_0 < t_0.$$

Combining this inequality with (15) and (17) we obtain (14).

(II) If $\frac{t_0}{\rho_0} \leq \overline{\lambda}$, then from the fact that $\rho_0 < \mathcal{F}(u_{\sigma_0})$ and from (13), it follows that

$$\inf_{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \left[\frac{1}{2} \|u\|_{a}^{2} + \bar{\lambda} (\rho_{0} - \mathcal{F}(u)) \right] \leq \frac{1}{2} \|u_{\sigma_{0}}\|_{a}^{2} + \bar{\lambda} (\rho_{0} - \mathcal{F}(u_{\sigma_{0}})) \leq \frac{1}{2} \|u_{\sigma_{0}}\|_{a}^{2} + \frac{t_{0}}{\rho_{0}} (\rho_{0} - \mathcal{F}(u_{\sigma_{0}})) < t_{0},$$

which proves (14).

Now, we are in the position to apply the following result of Ricceri:

Theorem R2. (See [11, Theorem 5].) Let X be a reflexive real Banach space, $\mathbb{I} \subset \mathbb{R}$ an interval, and let $\Psi : X \times \mathbb{I} \to \mathbb{R}$ be a function such that $\Psi(x, \cdot)$ is concave on \mathbb{I} for all $x \in X$, and $\Psi(\cdot, \lambda)$ is continuous, coercive and sequentially weakly lower semicontinuous on X for all $\lambda \in \mathbb{I}$. Further, assume that

 $\sup_{\lambda\in\mathbb{I}}\inf_{x\in X}\Psi(x,\lambda)<\inf_{x\in X}\sup_{\lambda\in\mathbb{I}}\Psi(x,\lambda).$

Then, for each $\gamma > \sup_{\lambda \in \mathbb{I}} \inf_{x \in X} \Psi(x, \lambda)$, there exists a nonempty open set $C \subset \mathbb{I}$ with the following property: For every $\lambda \in C$ and every sequentially weakly lower semicontinuous functional $\Phi : X \to \mathbb{R}$ there exists $\delta > 0$ such that, for each $\mu \in (0, \delta)$, the functional $\Psi(\cdot, \lambda) + \mu \Phi(\cdot)$ has at least two distinct local minima lying in the set $\{x \in X : \Psi(x, \lambda) < \gamma\}$.

Proof of Theorem 1.2(i) completed. We choose in Theorem R2: $X = \mathcal{D}_a^{1,2}(\Omega)$, $\mathbb{I} = [0, \infty)$ and $\Psi = \mathcal{H}$. It is clear that for each $u \in \mathcal{D}_a^{1,2}(\Omega)$ the functional $\mathcal{H}(u, \cdot)$ is concave on \mathbb{I} . Obviously $\mathcal{H}(\cdot, \lambda)$ is continuous, and it follows from Proposition 2.1 that $\mathcal{H}(\cdot, \lambda)$ is coercive and sequentially weakly lower semicontinuous on $\mathcal{D}_a^{1,2}(\Omega)$. The minimax inequality is precisely relation (14).

Assume that *g* satisfies (g_1) , and $a \leq c < a + 1$. We denote by

$$\mathcal{G}(u) = -\int_{\Omega} |x|^{-2c} G(u(x)) dx, \quad u \in \mathcal{D}_a^{1,2}(\Omega),$$

where $G(s) = \int_0^s g(t) dt$. The functional \mathcal{G} is well defined, of class C^1 , and sequentially weakly continuous on $\mathcal{D}_a^{1,2}(\Omega)$. The first two facts follow in a standard way; we deal only with the sequential weak continuity of \mathcal{G} . We suppose that there exists a sequence $\{u_k\} \subset \mathcal{D}_a^{1,2}(\Omega)$ which converges weakly to $u \in \mathcal{D}_a^{1,2}(\Omega)$ but $\{\mathcal{G}(u_k)\}$ does not converge to $\mathcal{G}(u)$ as $k \to \infty$. So, up to a subsequence, we can find a number $\varepsilon_0 > 0$ such that

$$0 < \varepsilon_0 \leq |\mathcal{G}(u_k) - \mathcal{G}(u)|$$
 for every $k \in \mathbb{N}$,

and $\{u_k\}$ converges strongly to u in $L^1(\Omega; |x|^{-2c}) \cap L^p(\Omega; |x|^{-2c})$, where $p \in (2, 2^*_{a,c})$ is from (g_1) . Note that the pairs r = 1, $\alpha = 2c$, and r = p, $\alpha = 2c$ verify relations from Lemma A. Using Hölder inequality and (g_1) , for every $k \in \mathbb{N}$ one has $0 < \theta_k < 1$ such that

$$0 < \varepsilon_0 \leq |\mathcal{G}(u_k) - \mathcal{G}(u)| \\ \leq \int_{\Omega} |x|^{-2c} |g(u + \theta_k(u_k - u))| |u_k - u| dx \\ \leq c_g(||u_k - u||_{1,2c} + ||u + \theta_k(u_k - u)||_{p,2c}^{p-1} ||u_k - u||_{p,2c}).$$

Since u_k converges strongly to u in $L^1(\Omega; |x|^{-2c}) \cap L^p(\Omega; |x|^{-2c})$, both terms in the right-hand side tend to 0 as $k \to \infty$, contradicting $\varepsilon_0 > 0$. Therefore, the functional \mathcal{G} is sequential weak continuous.

Now, for a fixed $\gamma > \sup_{\lambda \in \mathbb{I}} \inf_{u \in \mathcal{D}_a^{1,2}(\Omega)} \mathcal{H}(u, \lambda)$, Theorem R2 assures that there exists a nonempty open set $C \subset \mathbb{I}$ with the property that for every $\lambda \in C$ there exists $\delta_1 > 0$ such that for each $\mu \in (0, \delta_1)$ the function $u \mapsto \mathcal{H}(u, \lambda) + \mu \mathcal{G}(u)$ has at least two local minima $u_{\lambda,\mu}^1$ and $u_{\lambda,\mu}^2$ belonging to the set $\{u \in \mathcal{D}_a^{1,2}(\Omega): \mathcal{H}(u, \lambda) < \gamma\}$. Therefore, the energy functional $\mathcal{E}_{\lambda,\mu}$ associated to the problem $(\mathcal{P}_{\lambda,\mu})$, which is nothing but

$$\mathcal{E}_{\lambda,\mu}(u) = \mathcal{H}(u,\lambda) + \mu \mathcal{G}(u) - \lambda \rho_0$$

has two local minima in the set $\{u \in \mathcal{D}_a^{1,2}(\Omega): \mathcal{H}(u,\lambda) < \gamma\}$. Consequently, $u_{\lambda,\mu}^1$ and $u_{\lambda,\mu}^2$ are weak solutions for the problem $(\mathcal{P}_{\lambda,\mu})$.

Finally let $A = [c_0, c_1] \subset C$ be any non-degenerate compact interval with $c_0 > 0$. It is clear that

$$\bigcup_{\lambda \in [c_0,c_1]} \left\{ u \in \mathcal{D}_a^{1,2}(\Omega) \colon \mathcal{H}(u,\lambda) \leq \gamma \right\} \subseteq \left\{ u \in \mathcal{D}_a^{1,2}(\Omega) \colon \mathcal{H}(u,c_0) \leq \gamma \right\} \cup \left\{ u \in \mathcal{D}_a^{1,2}(\Omega) \colon \mathcal{H}(u,c_1) \leq \gamma \right\}.$$

Since $\mathcal{H}(\cdot, \lambda) = \mathcal{E}_{\lambda} + \lambda \rho_0$ is coercive it follows that the set

$$S := \bigcup_{\lambda \in [c_0, c_1]} \left\{ u \in \mathcal{D}_a^{1,2}(\Omega) \colon \mathcal{H}(u, \lambda) \leq \gamma \right\}$$

is bounded. Hence the $\|\cdot\|_a$ -norms of the local minima of $\mathcal{E}_{\lambda,\mu}$ are less or equal than ν_1 , where $\nu_1 = \sup_{u \in S} \|u\|_a$.

Proof of Theorem 1.2(ii) completed. Since (g_2) implies (g_1) , we may consider $\lambda \in A = [c_0, c_1]$ and $\mu \in (0, \delta_1)$ from (i), i.e., the functional $\mathcal{E}_{\lambda,\mu}$ has at least two local minima $u^1_{\lambda,\mu}, u^2_{\lambda,\mu} \in S$.

In order to establish the existence of the third solution, we prove that $\mathcal{E}_{\lambda,\mu}$ is still coercive for $\lambda \in A$ and μ small enough. Condition (g₂) implies the existence of a constant m > 0 such that

$$|G(s)| \leq m|s|^2 + m|s|$$
 for every $s \in \mathbb{R}$.

This inequality yields that

$$\left|\mathcal{G}(u)\right| \leq mC_{2,2c}^{2} \|u\|_{a}^{2} + mC_{1,2c} \|u\|_{a}.$$
(18)

Let $\delta_2 = \min\{\delta_1, 2^{-1}m^{-1}(1+\lambda)^{-1}C_{2,2c}^{-2}\}$ and fix $\mu \in (0, \delta_2)$. Using (6) and (18) we get that

$$\mathcal{E}_{\lambda,\mu}(u) \ge \left(\frac{1}{2(1+\lambda)} - \mu m C_{2,2c}^2\right) \|u\|_a^2 - \left(\lambda C_{1,2b} \max_{|t| \le \delta_0} |f(t)| + \mu m C_{1,2c}^2\right) \|u\|_a$$

Due to the choice of δ_2 , it follows that the functional $\mathcal{E}_{\lambda,\mu}$ is coercive. Thus, as in Lemma 3.2, $\mathcal{E}_{\lambda,\mu}$ satisfies the (PS)-condition whenever $\lambda \in A$ and $\mu \in (0, \delta_2)$.

For $\lambda \in A$ and $\mu \in (0, \delta_2)$ fixed, let us consider the set $\Gamma_{\lambda,\mu}$ of continuous paths $w : [0, 1] \to \mathcal{D}_a^{1,2}(\Omega)$ joining $u^1_{\lambda,\mu}$ and $u^2_{\lambda,\mu}$, and define the minimax value

$$c_{\lambda,\mu} = \inf_{w \in \Gamma_{\lambda,\mu}} \max_{t \in [0,1]} \mathcal{E}_{\lambda,\mu} \big(w(t) \big).$$

Combining [8, Theorem 1] and [8, Corollary 1], there exists a third critical point $u_{\lambda,\mu}^3 \in \mathcal{D}_a^{1,2}(\Omega)$ for $\mathcal{E}_{\lambda,\mu}$ which is different from $u_{\lambda,\mu}^1$ and $u_{\lambda,\mu}^2$ and $\mathcal{E}_{\lambda,\mu}(u_{\lambda,\mu}^3) = c_{\lambda,\mu}$.

It remains to find a norm estimate for $u_{\lambda,\mu}^3$ as we did in (i) for $u_{\lambda,\mu}^1$ and $u_{\lambda,\mu}^2$, respectively. To complete this, let us fix the path $w_0 \in \Gamma_{\mu,\lambda}$ defined by

$$w_0(t) = (1-t)u_{\lambda,\mu}^1 + tu_{\lambda,\mu}^2$$
 for all $t \in [0, 1]$

Note that for all $t \in [0, 1]$ we have $||w_0(t)||_a < v_1$. Consequently, due to (5) and (18) we have

$$\mathcal{E}_{\lambda,\mu}(w_0(t)) \leq \frac{1}{2\|w_0(t)\|_a^2} + \lambda |\mathcal{F}(w_0(t))| + \mu |\mathcal{G}(w_0(t))|$$

$$\leq \frac{1}{2}v_1^2 + c_1 M C_{2,2b}^2 v_1^2 + c_1 M C_{1,2b} v_1 + \delta_1 m C_{2,2c}^2 v_1^2 + \delta_1 m C_{1,2c} v_1 =: K.$$

Therefore,

$$\mathcal{E}_{\lambda,\mu}\left(u_{\lambda,\mu}^{3}\right) = c_{\lambda,\mu} \leqslant \sup_{t \in [0,1]} \mathcal{E}_{\lambda,\mu}\left(w_{0}(t)\right) \leqslant K.$$

Now, we introduce for every $\mu \in [0, \delta_2]$ the set

 $Z_{\mu} = \left\{ u \in \mathcal{D}_{a}^{1,2}(\Omega) \colon \mathcal{E}_{\lambda,\mu}(u) \leqslant K \right\}.$

Then, for every $\lambda \in A$ and $\mu \in (0, \delta_2)$ we have

$$u_{\lambda,\mu}^{3} \in Z := \bigcup_{\mu \in (0,\delta_{2})} Z_{\mu} \subset \bigcup_{\mu \in [0,\delta_{2}]} Z_{\mu} \subset Z_{0} \cup Z_{\delta_{2}}$$

On the other hand, the coercivity of $\mathcal{E}_{\lambda,\mu}$ implies the boundedness of the set $Z \subset Z_0 \cup Z_{\delta_2}$. Therefore, there exists $\tilde{\nu} > 0$ such that $||u||_a < \tilde{\nu}$ for all $u \in Z$. Thus $||u_{\lambda,\mu}^i||_a < \max\{\nu_1, \tilde{\nu}\} =: \nu_2$ ($i \in \{1, 2, 3\}$). This concludes the proof. \Box

Acknowledgment

The authors would like to thank the referee for his/her valuable observations and suggestions.

References

- B. Abdellaoui, E. Colorado, I. Peral, Some improved Caffarelli–Kohn–Nirenberg inequalities, Calc. Var. Partial Differential Equations 23 (2005) 327–345.
- [2] B. Abdellaoui, I. Peral, The effect of Harnack inequality on the existence and nonexistence results for quasi-linear parabolic equations related to Caffarelli–Kohn–Nirenberg inequalities, NoDEA Nonlinear Differential Equations Appl. 14 (2007) 335–360.
- [3] T. Bartsch, S. Peng, Z. Zhang, Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations 30 (2007) 113–136.
- [4] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003) 651-665.
- [5] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weight, Compos. Math. 53 (1984) 259-275.
- [6] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1, Physical Origins and Classical Methods, Springer-Verlag, Berlin, 1990.
- [7] L. Iturriaga, Existence and multiplicity results for some quasilinear elliptic equation with weights, J. Math. Anal. Appl. 339 (2008) 1084–1102.
- [8] P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985) 142–149.
- [9] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000) 220-226.
- [10] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000) 1485–1494.
- [11] B. Ricceri, Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set, Topology Appl. 153 (2006) 3308–3312.
- [12] B. Xuan, Multiple solutions to a Caffarelli–Kohn–Nirenberg type equations with asymptotically linear term, Rev. Colombiana Mat. 37 (2003) 65–79.
- [13] B. Xuan, The solvability of quasilinear Brezis–Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (2005) 703–725.