Multiple solutions for a degenerate elliptic equation involving sublinear terms at infinity ${ }^{\text {* }}$

Alexandru Kristály ${ }^{\text {a,b,* }}$, Csaba Varga ${ }^{\text {c }}$
${ }^{a}$ Babeş-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania
${ }^{\mathrm{b}}$ Central European University, Department of Mathematics, 1051 Budapest, Hungary
${ }^{\text {c }}$ Babeş-Bolyai University, Department of Mathematics and Computer Sciences, 400084 Cluj-Napoca, Romania

Received 24 January 2008
Available online 18 March 2008
Submitted by V. Radulescu

Abstract

Some multiplicity results are presented for the eigenvalue problem $$
\begin{cases}-\operatorname{div}\left(|x|^{-2 a} \nabla u\right)=\lambda|x|^{-2 b} f(u)+\mu|x|^{-2 c} g(u) & \text { in } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}
$$ $$
\left(\mathcal{P}_{\lambda, \mu}\right)
$$

where $\Omega \subset \mathbb{R}^{n}(n \geqslant 3)$ is an open bounded domain with smooth boundary, $0 \in \Omega, 0<a<\frac{n-2}{2}, a \leqslant b, c<a+1$, and $f: \mathbb{R} \rightarrow \mathbb{R}$ is sublinear at infinity and superlinear at the origin. Various cases are treated depending on the behaviour of the nonlinear term g. © 2008 Elsevier Inc. All rights reserved.

Keywords: Degenerate elliptic problem; Caffarelli-Kohn-Nirenberg inequality; Sublinearity at infinity

1. Introduction and main results

We consider the eigenvalue problem

$$
\begin{cases}-\operatorname{div}\left(|x|^{-2 a} \nabla u\right)=\lambda|x|^{-2 b} f(u(x)) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega,\end{cases}
$$

where $\Omega \subset \mathbb{R}^{n}(n \geqslant 3)$ is an open bounded domain with smooth boundary, $0 \in \Omega, 0<a<\frac{n-2}{2}, a \leqslant b<a+1$, and $\lambda \in \mathbb{R}$ is a parameter.

Equations like $\left(\mathcal{P}_{\lambda}\right)$ are introduced as model for several physical phenomena related to equilibrium of anisotropic media, see [6]. Due to this fact, problem $\left(\mathcal{P}_{\lambda}\right)$ has been widely studied by several authors, see [1-3,7,13] and references therein. Usually, the nonlinear term $f: \mathbb{R} \rightarrow \mathbb{R}$ is considered to be superlinear at infinity or simply, $f(s)=|s|^{\theta-2} s$

[^0]with $\theta>2$. The common assumption in these papers is the well-known Ambrosetti-Rabinowitz condition: denoting by $F(s)=\int_{0}^{s} f(t) d t$, there exist $s_{0}>0$ and $\theta>2$ such that
\[

$$
\begin{equation*}
0<\theta F(s) \leqslant s f(s), \quad \forall s \in \mathbb{R},|s| \geqslant s_{0} . \tag{AR}
\end{equation*}
$$

\]

A simple computation shows that (AR) implies

$$
|f(s)| \geqslant c|s|^{\theta-1}, \quad \forall s \in \mathbb{R},|s| \geqslant s_{0}
$$

with $c>0$, i.e., f is superlinear at infinity.
Our aim is to handle the counterpart of the above case, i.e., when $f: \mathbb{R} \rightarrow \mathbb{R}$ is sublinear at infinity. More precisely, we assume:
$\left(f_{1}\right) \lim _{|s| \rightarrow \infty} \frac{f(s)}{s}=0$.
The presence of the parameter $\lambda \in \mathbb{R}$ is essential in our problem; indeed, if beside of $\left(f_{1}\right)$, the nonlinear term f is uniformly Lipschitz (with Lipschitz constant $L>0$), then problem $\left(\mathcal{P}_{\lambda}\right)$ has only the trivial solution whenever $|\lambda|<\left(L C_{2,2 b}^{2}\right)^{-1}$; the constant $C_{2,2 b}>0$ is introduced after relation (3).

In order to state our main results, we introduce the weighted Sobolev space $\mathcal{D}_{a}^{1,2}(\Omega)$ where the solutions of $\left(\mathcal{P}_{\lambda}\right)$ are going to be sought, which is the completion of $\mathcal{C}_{0}^{\infty}(\Omega)$ with respect to the norm

$$
\|u\|_{a}=\left(\int_{\Omega}|x|^{-2 a}|\nabla u|^{2} d x\right)^{1 / 2}
$$

Beside of $\left(f_{1}\right)$, we assume
(f_{2}) $\lim _{s \rightarrow 0} \frac{f(s)}{s}=0$ (superlinearity at zero);
$\left(f_{3}\right) \sup _{s \in \mathbb{R}} F(s)>0$.
Theorem 1.1. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies $\left(f_{1}\right),\left(f_{2}\right)$ and $\left(f_{3}\right)$. Then, there exist an open interval $\Lambda \subset(0, \infty)$ and a constant $v>0$ such that for every $\lambda \in \Lambda \operatorname{problem}\left(\mathcal{P}_{\lambda}\right)$ has at least two nontrivial weak solutions in $\mathcal{D}_{a}^{1,2}(\Omega)$ whose $\|\cdot\|_{a}$-norms are less than ν.

Now, we consider the perturbation of the problem $\left(\mathcal{P}_{\lambda}\right)$ in the form

$$
\begin{cases}-\operatorname{div}\left(|x|^{-2 a} \nabla u\right)=\lambda|x|^{-2 b} f(u)+\mu|x|^{-2 c} g(u) & \text { in } \Omega, \\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where $0<a<\frac{n-2}{2}, a \leqslant b, c<a+1$ and for the continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ we introduce the hypotheses:
$\left(g_{1}\right)$ there exist $p \in\left(2,2_{a, c}^{\star}\right)$ with $2_{a, c}^{\star}=\min \left\{\frac{2 n}{n-2}, \frac{2(n-2 c)}{n-2(a+1)}\right\}$ and $c_{g}>0$ such that $|g(s)| \leqslant c_{g}\left(1+|s|^{p-1}\right)$ for every $s \in \mathbb{R}$;
(g_{2}) $\lim _{|s| \rightarrow \infty} \frac{|g(s)|}{|s|}=l<+\infty$ (asymptotically linear at infinity).
It is clear that $\left(g_{2}\right)$ implies $\left(g_{1}\right)$.
Theorem 1.2. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a continuous function which satisfies the conditions $\left(f_{1}\right),\left(f_{2}\right),\left(f_{3}\right)$. Then, there exists a nondegenerate compact interval $A \subset[0, \infty)$ with the following properties:
(i) there exists a number $\nu_{1}>0$ such that for every $\lambda \in A$ and every continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ verifying (g_{1}), there exists $\delta_{1}>0$ with the property that for each $\mu \in\left(0, \delta_{1}\right)$ the problem ($\mathcal{P}_{\lambda, \mu}$) has at least two distinct weak solutions whose $\|\cdot\|_{a}$-norms are less than ν_{1};
(ii) there exists a number $\nu_{2}>0$ such that for every $\lambda \in A$ and every continuous function $g: \mathbb{R} \rightarrow \mathbb{R}$ verifying (g_{2}), there exists $\delta_{2}>0$ with the property that for each $\mu \in\left(0, \delta_{2}\right)$ the problem $\left(\mathcal{P}_{\lambda, \mu}\right)$ has at least three distinct weak solutions whose $\|\cdot\|_{a}$-norms are less than ν_{2}.

It is worth to notice that problem $\left(\mathcal{P}_{\lambda, \mu}\right)$ may be viewed in particular as a degenerate elliptic problem involving concave-convex nonlinearities whenever $\left(g_{1}\right)$ holds; indeed, f has a sublinear growth at infinity, while g can be superlinear (and subcritical) at infinity.

The main ingredient for the proof of Theorem 1.1 is a recent critical point result due to Bonanno [4] which is actually a refinement of a result of Ricceri [9,10]. In the proof of Theorem 1.2 we use a recent result of Ricceri [11] and a version of the mountain pass theorem due to Pucci and Serrin [8].

2. Preliminaries

The starting point of the variational approach to problems $\left(\mathcal{P}_{\lambda}\right)$ and $\left(\mathcal{P}_{\lambda, \mu}\right)$ is the weighted Sobolev-Hardy inequality due to Caffarelli, Kohn, Nirenberg [5]: for all $u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, there is a constant $K_{a, b}>0$ such that

$$
\begin{equation*}
\left(\int_{\mathbb{R}^{n}}|x|^{-b q}|u|^{q} d x\right)^{2 / q} \leqslant K_{a, b} \int_{\mathbb{R}^{n}}|x|^{-2 a}|\nabla u|^{2} d x, \tag{1}
\end{equation*}
$$

where

$$
-\infty<a<\frac{n-2}{2}, \quad a \leqslant b<a+1, \quad q=2^{\star}(a, b)=\frac{2 n}{n-2 d}, \quad d=1+a-b .
$$

From the boundedness of Ω and standard approximations argument, it is easy to see that (1) holds on $\mathcal{D}_{a}^{1,2}(\Omega)$; more precisely, for every

$$
\begin{equation*}
1 \leqslant r \leqslant \frac{2 n}{n-2} \quad \text { and } \quad \frac{\alpha}{r} \leqslant(1+a)+n\left(\frac{1}{r}-\frac{1}{2}\right), \tag{2}
\end{equation*}
$$

we have

$$
\left(\int_{\Omega}|x|^{-\alpha}|u|^{r} d x\right)^{2 / r} \leqslant C \int_{\Omega}|x|^{-2 a}|\nabla u|^{2} d x, \quad u \in \mathcal{D}_{a}^{1,2}(\Omega)
$$

that is, the embedding $\mathcal{D}_{a}^{1,2}(\Omega) \hookrightarrow L^{r}\left(\Omega ;|x|^{-\alpha}\right)$ is continuous, where $L^{r}\left(\Omega ;|x|^{-\alpha}\right)$ is the weighted L^{r}-space with the norm

$$
\begin{equation*}
\|u\|_{r, \alpha}=\|u\|_{L^{r}\left(\Omega ;|x|^{-\alpha}\right)}=\left(\int_{\Omega}|x|^{-\alpha}|u|^{r} d x\right)^{1 / r} \tag{3}
\end{equation*}
$$

We denote by $C_{r, \alpha}>0$ the best Sobolev constant of the embedding $\mathcal{D}_{a}^{1,2}(\Omega) \hookrightarrow L^{r}\left(\Omega ;|x|^{-\alpha}\right)$.
The following version of the Rellich-Kondrachov compactness theorem can be stated, see Xuan [12,13].
Lemma A. Suppose that $\Omega \subset \mathbb{R}^{n}$ is an open bounded domain with C^{1} boundary and $0 \in \Omega, n \geqslant 3,-\infty<a<\frac{n-2}{2}$. The embedding $\mathcal{D}_{a}^{1,2}(\Omega) \hookrightarrow L^{r}\left(\Omega ;|x|^{-\alpha}\right)$ is compact if $1 \leqslant r<\frac{2 n}{n-2}$ and $\alpha<(1+a) r+n\left(1-\frac{r}{2}\right)$.

First, we associate the energy functional $\mathcal{E}_{\lambda}: \mathcal{D}_{a}^{1,2}(\Omega) \rightarrow \mathbb{R}$ to problem $\left(\mathcal{P}_{\lambda}\right)$, given by

$$
\mathcal{E}_{\lambda}(u)=\frac{1}{2}\|u\|_{a}^{2}-\lambda \mathcal{F}(u), \quad u \in \mathcal{D}_{a}^{1,2}(\Omega)
$$

where $\mathcal{F}(u)=\int_{\Omega}|x|^{-2 b} F(u(x)) d x$ and $F(s)=\int_{0}^{s} f(t) d t$.
Proposition 2.1. Assume $\left(f_{1}\right)$ and $\left(f_{2}\right)$ hold. Then, for every $\lambda \in \mathbb{R}$ the functional \mathcal{E}_{λ} is well defined, of class C^{1} on $\mathcal{D}_{a}^{1,2}(\Omega)$, sequentially weakly lower semicontinuous, and coercive. Moreover, every critical point of \mathcal{E}_{λ} is a weak solution of $\left(\mathcal{P}_{\lambda}\right)$.

Proof. Fix $\lambda \in \mathbb{R}$. Combining $\left(f_{1}\right)$ and $\left(f_{2}\right)$, there exists $M>0$ such that

$$
\begin{equation*}
|f(s)| \leqslant M(1+|s|) \quad \text { for all } s \in \mathbb{R} \tag{4}
\end{equation*}
$$

Then, for every $u \in \mathcal{D}_{a}^{1,2}(\Omega)$, we have

$$
\begin{equation*}
|\mathcal{F}(u)| \leqslant M\left(C_{1,2 b}\|u\|_{a}+C_{2,2 b}^{2}\|u\|_{a}^{2}\right)<\infty . \tag{5}
\end{equation*}
$$

Note that the pairs $r=1, \alpha=2 b$ and $r=2, \alpha=2 b$ verify relation (2). Consequently, \mathcal{E}_{λ} is well defined.
One can see in a standard way that \mathcal{E}_{λ} is of class C^{1} on $\mathcal{D}_{a}^{1,2}(\Omega)$ and every critical point of \mathcal{E}_{λ} is a weak solution of $\left(\mathcal{P}_{\lambda}\right)$.

We prove that \mathcal{F} is sequential weak continuous which clearly implies the sequential weak lower semicontinuity of \mathcal{E}_{λ}. To do this, we argue by contradiction; let $\left\{u_{k}\right\} \subset \mathcal{D}_{a}^{1,2}(\Omega)$ be a sequence which converges weakly to $u \in$ $\mathcal{D}_{a}^{1,2}(\Omega)$ but $\left\{\mathcal{F}\left(u_{k}\right)\right\}$ does not converge to $\mathcal{F}(u)$ as $k \rightarrow \infty$. Therefore, up to a subsequence, one can find a number $\varepsilon_{0}>0$ such that

$$
0<\varepsilon_{0} \leqslant\left|\mathcal{F}\left(u_{k}\right)-\mathcal{F}(u)\right| \quad \text { for every } k \in \mathbb{N},
$$

and $\left\{u_{k}\right\}$ converges strongly to u in $L^{1}\left(\Omega ;|x|^{-2 b}\right) \cap L^{2}\left(\Omega ;|x|^{-2 b}\right)$. Here, the pairs $r=1, \alpha=2 b$, and $r=2, \alpha=2 b$ verify relations from Lemma A. Using Hölder inequality and (4), for every $k \in \mathbb{N}$ one has $0<\theta_{k}<1$ such that

$$
\begin{aligned}
0<\varepsilon_{0} & \leqslant\left|\mathcal{F}\left(u_{k}\right)-\mathcal{F}(u)\right| \leqslant \int_{\Omega}|x|^{-2 b}\left|f\left(u+\theta_{k}\left(u_{k}-u\right)\right)\right|\left|u_{k}-u\right| d x \\
& \leqslant M\left(\left\|u_{k}-u\right\|_{1,2 b}+\left\|u_{k}+\theta_{k}\left(u_{k}-u\right)\right\|_{2,2 b}\left\|u_{k}-u\right\|_{2,2 b}\right) .
\end{aligned}
$$

Since $\left\{u_{k}\right\}$ converges strongly to u in $L^{1}\left(\Omega ;|x|^{-2 b}\right) \cap L^{2}\left(\Omega ;|x|^{-2 b}\right)$, both terms in the right-hand side tend to 0 as $k \rightarrow \infty$, contradicting $\varepsilon_{0}>0$.

We prove now that \mathcal{E}_{λ} is coercive. By $\left(f_{1}\right)$ there exists $\delta_{0}=\delta(\lambda)>0$ such that

$$
|f(s)| \leqslant C_{2,2 b}^{-2}(1+|\lambda|)^{-1}|s| \quad \text { for every }|s| \geqslant \delta_{0} .
$$

Integrating the above inequality we get that

$$
|F(s)| \leqslant \frac{1}{2} C_{2,2 b}^{-2}(1+|\lambda|)^{-1}|s|^{2}+\max _{|t| \leqslant \delta_{0}}|f(t)||s| \quad \text { for every } s \in \mathbb{R} .
$$

Thus, for every $u \in \mathcal{D}_{a}^{1,2}(\Omega)$, we have

$$
\begin{equation*}
|\mathcal{F}(u)| \leqslant \frac{1}{2}(1+|\lambda|)^{-1}\|u\|_{a}^{2}+C_{1,2 b} \max _{|t| \leqslant \delta_{0}}|f(t)|\|u\|_{a} \tag{6}
\end{equation*}
$$

Using (6), we obtain the inequality

$$
\mathcal{E}_{\lambda}(u) \geqslant \frac{1}{2}\|u\|_{a}^{2}-|\lambda||\mathcal{F}(u)| \geqslant \frac{1}{2(1+|\lambda|)}\|u\|_{a}^{2}-|\lambda| C_{1,2 b} \max _{|t| \leqslant \delta_{0}}|f(t)|\|u\|_{a} .
$$

Consequently, if $\|u\|_{a} \rightarrow \infty$ then $\mathcal{E}_{\lambda}(u) \rightarrow \infty$ as well, i.e., \mathcal{E}_{λ} is coercive.

3. Proof of Theorem 1.1

Throughout of this section, we assume that the assumptions of Theorem 1.1 are fulfilled. First, we prove two lemmas.

Lemma 3.1. $\lim _{\rho \rightarrow 0^{+}} \frac{\sup \left\{\mathcal{F}(u):\|u\|_{a}^{2}<2 \rho\right\}}{\rho}=0$.
Proof. Due to $\left(f_{2}\right)$, for an arbitrary small $\varepsilon>0$, there exists $\delta=\delta(\varepsilon)>0$ such that

$$
|f(s)|<\frac{\varepsilon}{2} C_{2,2 b}^{-2}|s| \quad \text { for every }|s|<\delta
$$

Combining the above inequality with (4), we obtain

$$
\begin{equation*}
|F(s)| \leqslant \varepsilon C_{2,2 b}^{-2}|s|^{2}+K(\delta)|s|^{q} \quad \text { for every } s \in \mathbb{R} \tag{7}
\end{equation*}
$$

where $q \in\left(2, \min \left\{\frac{2 n}{n-2}, \frac{2(n-2 b)}{n-2(a+1)}\right\}\right)$ is fixed and $K(\delta)>0$ does not depend on s.

From (7) we get

$$
\mathcal{F}(u) \leqslant \varepsilon C_{2,2 b}^{-2} \int_{\Omega}|x|^{-2 b}|u|^{2} d x+K(\delta) \int_{\Omega}|x|^{-2 b}|u|^{q} d x \leqslant \varepsilon\|u\|_{a}^{2}+K(\delta) C_{q, 2 b}^{q}\|u\|_{a}^{q} .
$$

From the above relation we obtain that

$$
\sup \left\{\mathcal{F}(u):\|u\|_{a}^{2}<2 \rho\right\} \leqslant 2 \varepsilon \rho+K(\delta) C_{q, 2 b}^{q}(2 \rho)^{\frac{q}{2}} .
$$

Because $q>2$ and $\varepsilon>0$ is arbitrarily, we obtain

$$
\lim _{\rho \rightarrow 0^{+}} \frac{\sup \left\{\mathcal{F}(u):\|u\|_{a}^{2}<2 \rho\right\}}{\rho}=0 .
$$

Lemma 3.2. For every $\lambda \in \mathbb{R}$ the functional \mathcal{E}_{λ} satisfies the usual (PS)-condition.
Proof. Let $\left\{u_{k}\right\} \subset \mathcal{D}_{a}^{1,2}(\Omega)$ be a (PS)-sequence, i.e., $\left\{\mathcal{E}_{\lambda}\left(u_{k}\right)\right\}$ is bounded and $\mathcal{E}_{\lambda}^{\prime}\left(u_{k}\right) \rightarrow 0$ in $\left(\mathcal{D}_{a}^{1,2}(\Omega)\right)^{*}$ as $k \rightarrow \infty$. Since the function \mathcal{E}_{λ} is coercive, it follows that the sequence $\left\{u_{k}\right\}$ is bounded in $\mathcal{D}_{a}^{1,2}(\Omega)$. Up to a subsequence, we may suppose that $u_{k} \rightarrow u$ weakly in $\mathcal{D}_{a}^{1,2}(\Omega)$, and $u_{k} \rightarrow u$ strongly in $L^{1}\left(\Omega ;|x|^{-2 b}\right) \cap L^{2}\left(\Omega ;|x|^{-2 b}\right)$ for some $u \in \mathcal{D}_{a}^{1,2}(\Omega)$, see Lemma A. On the other hand, we have

$$
\left\|u_{k}-u\right\|_{a}^{2}=\mathcal{E}_{\lambda}^{\prime}\left(u_{k}\right)\left(u_{k}-u\right)+\mathcal{E}_{\lambda}^{\prime}(u)\left(u-u_{k}\right)+\lambda \int_{\Omega}|x|^{-2 b}\left[f\left(u_{k}(x)\right)-f(u(x))\right]\left(u_{k}(x)-u(x)\right) d x .
$$

It is clear the first two terms from the last expression tend to 0 , while by means of (4) and Hölder's inequality, one has

$$
\begin{aligned}
& \int_{\Omega}|x|^{-2 b}\left|f\left(u_{k}(x)\right)-f(u(x)) \| u_{k}(x)-u(x)\right| d x \\
& \quad \leqslant M\left[2\left\|u_{k}-u\right\|_{1,2 b}+\left(\left\|u_{k}\right\|_{2,2 b}+\|u\|_{2,2 b}\right)\left\|u_{k}-u\right\|_{2,2 b}\right] \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$. Thus, we have $\left\|u_{k}-u\right\|_{a} \rightarrow 0$ as $k \rightarrow \infty$.
Let $s_{0} \in \mathbb{R}$ such that $F\left(s_{0}\right)>0$, see $\left(f_{3}\right)$. Here and in the sequel, let $x_{0} \in \Omega$ and $r_{0}>0$ so small such that $\left|x_{0}\right|>r_{0}$ and $B\left(x_{0}, r_{0}\right) \subset \Omega$. Then, clearly, $B\left(x_{0}, r_{0}\right) \subset \Omega \backslash\{0\}$. As usual $B\left(x_{0}, r_{0}\right)$ denotes the n-dimensional open ball with center in x_{0} and radius $r_{0}>0$.

For $\sigma \in(0,1)$ we define

$$
u_{\sigma}(x)= \begin{cases}0, & \text { if } x \in \Omega \backslash B\left(x_{0}, r_{0}\right) ; \tag{8}\\ \frac{s_{0}}{1-\sigma}-\frac{s_{0}}{r_{0}(1-\sigma)}\left|x-x_{0}\right|, & \text { if } x \in B\left(x_{0}, r_{0}\right) \backslash B\left(x_{0}, \sigma r_{0}\right) ; \\ s_{0}, & \text { if } x \in B\left(x_{0}, \sigma r_{0}\right) .\end{cases}
$$

It is clear that $u_{\sigma} \in \mathcal{D}_{a}^{1,2}(\Omega)$. Moreover, one has

$$
\begin{equation*}
\left\|u_{\sigma}\right\|_{a}^{2} \geqslant s_{0}^{2}\left(\left|x_{0}\right|+r_{0}\right)^{-2 a}(1-\sigma)^{-2}\left(1-\sigma^{n}\right) \omega_{n} r_{0}^{n-2} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{F}\left(u_{\sigma}\right) \geqslant K_{s_{0}, x_{0}, r_{0}}(\sigma), \tag{10}
\end{equation*}
$$

where

$$
K_{s_{0}, x_{0}, r_{0}}(\sigma)=\left[F\left(s_{0}\right)\left(\left|x_{0}\right|+r_{0}\right)^{-2 b} \sigma^{n}-\max _{|t| \leqslant\left|s_{0}\right|}|F(t)|\left(\left|x_{0}\right|-r_{0}\right)^{-2 b}\left(1-\sigma^{n}\right)\right] \omega_{n} r_{0}^{n}
$$

and ω_{n} denotes the volume of the n-dimensional unit ball. For σ close enough to 1 , the right-hand side of (10) becomes strictly positive; choose such a number, say σ_{0}.

Now, we recall a recent result from critical point theory, due to Ricceri [9,10], and Bonanno [4].

Theorem R1. (See [4, Theorem 2.1].) Let X be a separable and reflexive real Banach space, and let $\mathcal{A}, \mathcal{F}: X \rightarrow \mathbb{R}$ be two continuously Gâteaux differentiable functionals. Assume that there exists $x_{0} \in X$ such that $\mathcal{A}\left(x_{0}\right)=\mathcal{F}\left(x_{0}\right)=0$ and $\mathcal{A}(x) \geqslant 0$ for every $x \in X$ and that there exist $x_{1} \in X, \rho>0$ such that
(i) $\rho<\mathcal{A}\left(x_{1}\right)$;
(ii) $\sup _{\mathcal{A}(x)<\rho} \mathcal{F}(x)<\rho \frac{\mathcal{F}\left(x_{1}\right)}{\mathcal{A}\left(x_{1}\right)}$.

Further, put

$$
\bar{a}=\frac{\zeta \rho}{\rho \frac{\mathcal{F}\left(x_{1}\right)}{\mathcal{A}\left(x_{1}\right)}-\sup _{\mathcal{A}(x)<\rho} \mathcal{F}(x)},
$$

with $\zeta>1$, assume that the functional $\mathcal{A}-\lambda \mathcal{F}$ is sequentially weakly lower semicontinuous, satisfies the PalaisSmale condition and
(iii) $\lim _{\|x\| \rightarrow \infty}(\mathcal{A}(x)-\lambda \mathcal{F}(x))=\infty$ for every $\lambda \in[0, \bar{a}]$.

Then there is an open interval $\Lambda \subset[0, \bar{a}]$ and a number $v>0$ such that for each $\lambda \in \Lambda$, the equation $\mathcal{A}^{\prime}(x)-$ $\lambda \mathcal{F}^{\prime}(x)=0$ admits at least three distinct solutions in X having norm less than ν.

Proof of Theorem 1.1 completed. On account of Lemma 3.1, (9) and (10), we may choose $\rho_{0}>0$ so small such that

$$
\begin{aligned}
& 2 \rho_{0}<\left\|u_{\sigma_{0}}\right\|_{a}^{2}, \\
& \frac{\sup \left\{\mathcal{F}(u):\|u\|_{a}^{2}<2 \rho_{0}\right\}}{\rho_{0}}<\frac{2 K_{s_{0}, x_{0}, r_{0}}\left(\sigma_{0}\right)}{\left\|u_{\sigma_{0}}\right\|_{a}^{2}} .
\end{aligned}
$$

By choosing $X=\mathcal{D}_{a}^{1,2}(\Omega), \mathcal{A}=\frac{1}{2}\|\cdot\|_{a}^{2}, x_{0}=0, x_{1}=u_{\sigma_{0}}$, and

$$
\bar{a}=\frac{1+\rho_{0}}{\frac{2 \mathcal{F}\left(u_{\sigma_{0}}\right)}{\left\|u_{\sigma_{0}}\right\|_{a}^{2}}-\frac{\sup \left\{\mathcal{F}(u):\|u\|_{a}^{2}<2 \rho_{0}\right\}}{\rho_{0}}},
$$

all the hypotheses of Theorem R1 are verified, see also Proposition 2.1 and Lemma 3.2.
Thus there exist an open interval $\Lambda \subset[0, \bar{a}]$ and a number $v>0$ such that for each $\lambda \in \Lambda$, the equation $\mathcal{E}_{\lambda}^{\prime}(u) \equiv$ $\mathcal{A}^{\prime}(u)-\lambda \mathcal{F}^{\prime}(u)=0$ admits at least three distinct solutions in $\mathcal{D}_{a}^{1,2}(\Omega)$ having $\mathcal{D}_{a}^{1,2}(\Omega)$-norm less than v. Since one of them may be the trivial one $\left(f(0)=0\right.$, see $\left(f_{2}\right)$), we still have at least two nontrivial solutions of $\left(\mathcal{P}_{\lambda}\right)$ with the required properties.

4. Proof of Theorems 1.2

Throughout of this section, we assume that the assumptions of Theorem 1.2 are fulfilled.
Let us define the function

$$
\beta(t)=\sup \left\{\mathcal{F}(u):\|u\|_{a}^{2}<2 t\right\}, \quad t>0 .
$$

Then, Lemma 3.1 yields that

$$
\begin{equation*}
\lim _{t \rightarrow 0^{+}} \frac{\beta(t)}{t}=0 . \tag{11}
\end{equation*}
$$

Take the function from (8) for $\sigma_{0}>0$ fixed in the previous section; thus, $u_{\sigma_{0}} \in \mathcal{D}_{a}^{1,2}(\Omega) \backslash\{0\}$ and $\mathcal{F}\left(u_{\sigma_{0}}\right)>0$. Therefore it is possible to choose a number $\eta>0$ such that

$$
0<\eta<\mathcal{F}\left(u_{\sigma_{0}}\right) \frac{2}{\left\|u_{\sigma_{0}}\right\|_{a}^{2}} .
$$

From (11) we get the existence of a number $t_{0} \in\left(0,\left\|u_{\sigma_{0}}\right\|_{a}^{2} / 2\right)$ such that $\beta\left(t_{0}\right)<\eta t_{0}$. Thus

$$
\begin{equation*}
\beta\left(t_{0}\right)<\frac{2}{\left\|u_{\sigma_{0}}\right\|_{a}^{2}} \mathcal{F}\left(u_{\sigma_{0}}\right) t_{0} \tag{12}
\end{equation*}
$$

Due to the choice of t_{0} and using (12), we conclude that there exists $\rho_{0}>0$ such that

$$
\begin{equation*}
\beta\left(t_{0}\right)<\rho_{0}<\mathcal{F}\left(u_{\sigma_{0}}\right) \frac{2}{\left\|u_{\sigma_{0}}\right\|_{a}^{2}} t_{0}<\mathcal{F}\left(u_{\sigma_{0}}\right) . \tag{13}
\end{equation*}
$$

Define now the function $\mathcal{H}: \mathcal{D}_{a}^{1,2}(\Omega) \times \mathbb{I} \rightarrow \mathbb{R}$ by

$$
\mathcal{H}(u, \lambda)=\mathcal{E}_{\lambda}(u)+\lambda \rho_{0},
$$

where $\mathbb{I}=[0, \infty)$. We prove that the following inequality holds:

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{I}} \inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \mathcal{H}(u, \lambda)<\inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \sup _{\lambda \in \mathbb{I}} \mathcal{H}(u, \lambda) . \tag{14}
\end{equation*}
$$

The function

$$
\lambda \in \mathbb{I} \mapsto \inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)}\left[\frac{1}{2}\|u\|_{a}^{2}+\lambda\left(\rho_{0}-\mathcal{F}(u)\right)\right]
$$

is obviously upper semicontinuous on \mathbb{I}. It follows from (13) that

$$
\lim _{\lambda \rightarrow+\infty} \inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \mathcal{H}(u, \lambda) \leqslant \lim _{\lambda \rightarrow+\infty}\left[\frac{1}{2}\left\|u_{\sigma_{0}}\right\|_{a}^{2}+\lambda\left(\rho_{0}-\mathcal{F}\left(u_{\sigma_{0}}\right)\right)\right]=-\infty .
$$

Thus we find an element $\bar{\lambda} \in \mathbb{I}$ such that

$$
\begin{equation*}
\sup _{\lambda \in \mathbb{I}} \inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \mathcal{H}(u, \lambda)=\inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)}\left[\frac{1}{2}\|u\|_{a}^{2}+\bar{\lambda}\left(\rho_{0}-\mathcal{F}(u)\right)\right] . \tag{15}
\end{equation*}
$$

Since $\beta\left(t_{0}\right)<\rho_{0}$, it follows that for all $u \in \mathcal{D}_{a}^{1,2}(\Omega)$ with $\|u\|_{a}^{2}<2 t_{0}$ we have $\mathcal{F}(u)<\rho_{0}$. Hence

$$
\begin{equation*}
t_{0} \leqslant \inf \left\{\frac{1}{2}\|u\|_{a}^{2}: \mathcal{F}(u) \geqslant \rho_{0}\right\} . \tag{16}
\end{equation*}
$$

On the other hand,

$$
\inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \sup _{\lambda \in \mathbb{I}} \mathcal{H}(u, \lambda)=\inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)}\left[\frac{1}{2}\|u\|_{a}^{2}+\sup _{\lambda \in \mathbb{I}}\left(\lambda\left(\rho_{0}-\mathcal{F}(u)\right)\right)\right]=\inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)}\left\{\frac{1}{2}\|u\|_{a}^{2}: \mathcal{F}(u) \geqslant \rho_{0}\right\} .
$$

Thus inequality (16) is equivalent to

$$
\begin{equation*}
t_{0} \leqslant \inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)} \sup _{\lambda \in \mathbb{I}} \mathcal{H}(u, \lambda) . \tag{17}
\end{equation*}
$$

We consider the following two cases:
(I) If $0 \leqslant \bar{\lambda}<\frac{t_{0}}{\rho_{0}}$, then we have that

$$
\inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)}\left[\frac{1}{2}\|u\|_{a}^{2}+\bar{\lambda}\left(\rho_{0}-\mathcal{F}(u)\right)\right] \leqslant \mathcal{H}(0, \bar{\lambda})=\bar{\lambda} \rho_{0}<t_{0}
$$

Combining this inequality with (15) and (17) we obtain (14).
(II) If $\frac{t_{0}}{\rho_{0}} \leqslant \bar{\lambda}$, then from the fact that $\rho_{0}<\mathcal{F}\left(u_{\sigma_{0}}\right)$ and from (13), it follows that

$$
\inf _{u \in \mathcal{D}_{a}^{1,2}(\Omega)}\left[\frac{1}{2}\|u\|_{a}^{2}+\bar{\lambda}\left(\rho_{0}-\mathcal{F}(u)\right)\right] \leqslant \frac{1}{2}\left\|u_{\sigma_{0}}\right\|_{a}^{2}+\bar{\lambda}\left(\rho_{0}-\mathcal{F}\left(u_{\sigma_{0}}\right)\right) \leqslant \frac{1}{2}\left\|u_{\sigma_{0}}\right\|_{a}^{2}+\frac{t_{0}}{\rho_{0}}\left(\rho_{0}-\mathcal{F}\left(u_{\sigma_{0}}\right)\right)<t_{0},
$$

which proves (14).
Now, we are in the position to apply the following result of Ricceri:

Theorem R2. (See [11, Theorem 5].) Let X be a reflexive real Banach space, $\mathbb{I} \subset \mathbb{R}$ an interval, and let $\Psi: X \times \mathbb{I} \rightarrow \mathbb{R}$ be a function such that $\Psi(x, \cdot)$ is concave on \mathbb{I} for all $x \in X$, and $\Psi(\cdot, \lambda)$ is continuous, coercive and sequentially weakly lower semicontinuous on X for all $\lambda \in \mathbb{I}$. Further, assume that

$$
\sup _{\lambda \in \mathbb{I}} \inf _{x \in X} \Psi(x, \lambda)<\inf _{x \in X} \sup _{\lambda \in \mathbb{I}} \Psi(x, \lambda) .
$$

Then, for each $\gamma>\sup _{\lambda \in \mathbb{I}} \inf _{x \in X} \Psi(x, \lambda)$, there exists a nonempty open set $C \subset \mathbb{I}$ with the following property: For every $\lambda \in C$ and every sequentially weakly lower semicontinuous functional $\Phi: X \rightarrow \mathbb{R}$ there exists $\delta>0$ such that, for each $\mu \in(0, \delta)$, the functional $\Psi(\cdot, \lambda)+\mu \Phi(\cdot)$ has at least two distinct local minima lying in the set $\{x \in X: \Psi(x, \lambda)<\gamma\}$.

Proof of Theorem 1.2(i) completed. We choose in Theorem R2: $X=\mathcal{D}_{a}^{1,2}(\Omega), \mathbb{I}=[0, \infty)$ and $\Psi=\mathcal{H}$. It is clear that for each $u \in \mathcal{D}_{a}^{1,2}(\Omega)$ the functional $\mathcal{H}(u, \cdot)$ is concave on \mathbb{I}. Obviously $\mathcal{H}(\cdot, \lambda)$ is continuous, and it follows from Proposition 2.1 that $\mathcal{H}(\cdot, \lambda)$ is coercive and sequentially weakly lower semicontinuous on $\mathcal{D}_{a}^{1,2}(\Omega)$. The minimax inequality is precisely relation (14).

Assume that g satisfies $\left(g_{1}\right)$, and $a \leqslant c<a+1$. We denote by

$$
\mathcal{G}(u)=-\int_{\Omega}|x|^{-2 c} G(u(x)) d x, \quad u \in \mathcal{D}_{a}^{1,2}(\Omega),
$$

where $G(s)=\int_{0}^{s} g(t) d t$. The functional \mathcal{G} is well defined, of class C^{1}, and sequentially weakly continuous on $\mathcal{D}_{a}^{1,2}(\Omega)$. The first two facts follow in a standard way; we deal only with the sequential weak continuity of \mathcal{G}. We suppose that there exists a sequence $\left\{u_{k}\right\} \subset \mathcal{D}_{a}^{1,2}(\Omega)$ which converges weakly to $u \in \mathcal{D}_{a}^{1,2}(\Omega)$ but $\left\{\mathcal{G}\left(u_{k}\right)\right\}$ does not converge to $\mathcal{G}(u)$ as $k \rightarrow \infty$. So, up to a subsequence, we can find a number $\varepsilon_{0}>0$ such that

$$
0<\varepsilon_{0} \leqslant\left|\mathcal{G}\left(u_{k}\right)-\mathcal{G}(u)\right| \quad \text { for every } k \in \mathbb{N}
$$

and $\left\{u_{k}\right\}$ converges strongly to u in $L^{1}\left(\Omega ;|x|^{-2 c}\right) \cap L^{p}\left(\Omega ;|x|^{-2 c}\right)$, where $p \in\left(2,2_{a, c}^{*}\right)$ is from $\left(g_{1}\right)$. Note that the pairs $r=1, \alpha=2 c$, and $r=p, \alpha=2 c$ verify relations from Lemma A. Using Hölder inequality and (g_{1}), for every $k \in \mathbb{N}$ one has $0<\theta_{k}<1$ such that

$$
\begin{aligned}
0<\varepsilon_{0} & \leqslant\left|\mathcal{G}\left(u_{k}\right)-\mathcal{G}(u)\right| \\
& \leqslant \int_{\Omega}|x|^{-2 c}\left|g\left(u+\theta_{k}\left(u_{k}-u\right)\right)\right|\left|u_{k}-u\right| d x \\
& \leqslant c_{g}\left(\left\|u_{k}-u\right\|_{1,2 c}+\left\|u+\theta_{k}\left(u_{k}-u\right)\right\|_{p, 2 c}^{p-1}\left\|u_{k}-u\right\|_{p, 2 c}\right) .
\end{aligned}
$$

Since u_{k} converges strongly to u in $L^{1}\left(\Omega ;|x|^{-2 c}\right) \cap L^{p}\left(\Omega ;|x|^{-2 c}\right)$, both terms in the right-hand side tend to 0 as $k \rightarrow \infty$, contradicting $\varepsilon_{0}>0$. Therefore, the functional \mathcal{G} is sequential weak continuous.

Now, for a fixed $\gamma>\sup _{\lambda \in \mathbb{I}} \inf _{u \in \mathcal{D}_{C}^{1,2}(\Omega)} \mathcal{H}(u, \lambda)$, Theorem R2 assures that there exists a nonempty open set $C \subset \mathbb{I}$ with the property that for every $\lambda \in C$ there exists $\delta_{1}>0$ such that for each $\mu \in\left(0, \delta_{1}\right)$ the function $u \mapsto \mathcal{H}(u, \lambda)+$ $\mu \mathcal{G}(u)$ has at least two local minima $u_{\lambda, \mu}^{1}$ and $u_{\lambda, \mu}^{2}$ belonging to the set $\left\{u \in \mathcal{D}_{a}^{1,2}(\Omega): \mathcal{H}(u, \lambda)<\gamma\right\}$. Therefore, the energy functional $\mathcal{E}_{\lambda, \mu}$ associated to the problem $\left(\mathcal{P}_{\lambda, \mu}\right)$, which is nothing but

$$
\mathcal{E}_{\lambda, \mu}(u)=\mathcal{H}(u, \lambda)+\mu \mathcal{G}(u)-\lambda \rho_{0}
$$

has two local minima in the set $\left\{u \in \mathcal{D}_{a}^{1,2}(\Omega): \mathcal{H}(u, \lambda)<\gamma\right\}$. Consequently, $u_{\lambda, \mu}^{1}$ and $u_{\lambda, \mu}^{2}$ are weak solutions for the problem $\left(\mathcal{P}_{\lambda, \mu}\right)$.

Finally let $A=\left[c_{0}, c_{1}\right] \subset C$ be any non-degenerate compact interval with $c_{0}>0$. It is clear that

$$
\bigcup_{\lambda \in\left[c_{0}, c_{1}\right]}\left\{u \in \mathcal{D}_{a}^{1,2}(\Omega): \mathcal{H}(u, \lambda) \leqslant \gamma\right\} \subseteq\left\{u \in \mathcal{D}_{a}^{1,2}(\Omega): \mathcal{H}\left(u, c_{0}\right) \leqslant \gamma\right\} \cup\left\{u \in \mathcal{D}_{a}^{1,2}(\Omega): \mathcal{H}\left(u, c_{1}\right) \leqslant \gamma\right\} .
$$

Since $\mathcal{H}(\cdot, \lambda)=\mathcal{E}_{\lambda}+\lambda \rho_{0}$ is coercive it follows that the set

$$
S:=\bigcup_{\lambda \in\left[c_{0}, c_{1}\right]}\left\{u \in \mathcal{D}_{a}^{1,2}(\Omega): \mathcal{H}(u, \lambda) \leqslant \gamma\right\}
$$

is bounded. Hence the $\|\cdot\|_{a}$-norms of the local minima of $\mathcal{E}_{\lambda, \mu}$ are less or equal than ν_{1}, where $\nu_{1}=\sup _{u \in S}\|u\|_{a}$.
Proof of Theorem 1.2(ii) completed. Since (g_{2}) implies (g_{1}), we may consider $\lambda \in A=\left[c_{0}, c_{1}\right]$ and $\mu \in\left(0, \delta_{1}\right)$ from (i), i.e., the functional $\mathcal{E}_{\lambda, \mu}$ has at least two local minima $u_{\lambda, \mu}^{1}, u_{\lambda, \mu}^{2} \in S$.

In order to establish the existence of the third solution, we prove that $\mathcal{E}_{\lambda, \mu}$ is still coercive for $\lambda \in A$ and μ small enough. Condition $\left(g_{2}\right)$ implies the existence of a constant $m>0$ such that

$$
|G(s)| \leqslant m|s|^{2}+m|s| \quad \text { for every } s \in \mathbb{R}
$$

This inequality yields that

$$
\begin{equation*}
|\mathcal{G}(u)| \leqslant m C_{2,2 c}^{2}\|u\|_{a}^{2}+m C_{1,2 c}\|u\|_{a} . \tag{18}
\end{equation*}
$$

Let $\delta_{2}=\min \left\{\delta_{1}, 2^{-1} m^{-1}(1+\lambda)^{-1} C_{2,2 c}^{-2}\right\}$ and fix $\mu \in\left(0, \delta_{2}\right)$. Using (6) and (18) we get that

$$
\mathcal{E}_{\lambda, \mu}(u) \geqslant\left(\frac{1}{2(1+\lambda)}-\mu m C_{2,2 c}^{2}\right)\|u\|_{a}^{2}-\left(\lambda C_{1,2 b} \max _{|t| \leqslant \delta_{0}}|f(t)|+\mu m C_{1,2 c}^{2}\right)\|u\|_{a}
$$

Due to the choice of δ_{2}, it follows that the functional $\mathcal{E}_{\lambda, \mu}$ is coercive. Thus, as in Lemma 3.2, $\mathcal{E}_{\lambda, \mu}$ satisfies the (PS)-condition whenever $\lambda \in A$ and $\mu \in\left(0, \delta_{2}\right)$.

For $\lambda \in A$ and $\mu \in\left(0, \delta_{2}\right)$ fixed, let us consider the set $\Gamma_{\lambda, \mu}$ of continuous paths $w:[0,1] \rightarrow \mathcal{D}_{a}^{1,2}(\Omega)$ joining $u_{\lambda, \mu}^{1}$ and $u_{\lambda, \mu}^{2}$, and define the minimax value

$$
c_{\lambda, \mu}=\inf _{w \in \Gamma_{\lambda, \mu}} \max _{t \in[0,1]} \mathcal{E}_{\lambda, \mu}(w(t)) .
$$

Combining [8, Theorem 1] and [8, Corollary 1], there exists a third critical point $u_{\lambda, \mu}^{3} \in \mathcal{D}_{a}^{1,2}(\Omega)$ for $\mathcal{E}_{\lambda, \mu}$ which is different from $u_{\lambda, \mu}^{1}$ and $u_{\lambda, \mu}^{2}$ and $\mathcal{E}_{\lambda, \mu}\left(u_{\lambda, \mu}^{3}\right)=c_{\lambda, \mu}$.

It remains to find a norm estimate for $u_{\lambda, \mu}^{3}$ as we did in (i) for $u_{\lambda, \mu}^{1}$ and $u_{\lambda, \mu}^{2}$, respectively. To complete this, let us fix the path $w_{0} \in \Gamma_{\mu, \lambda}$ defined by

$$
w_{0}(t)=(1-t) u_{\lambda, \mu}^{1}+t u_{\lambda, \mu}^{2} \quad \text { for all } t \in[0,1] .
$$

Note that for all $t \in[0,1]$ we have $\left\|w_{0}(t)\right\|_{a}<\nu_{1}$. Consequently, due to (5) and (18) we have

$$
\begin{aligned}
\mathcal{E}_{\lambda, \mu}\left(w_{0}(t)\right) & \leqslant \frac{1}{2\left\|w_{0}(t)\right\|_{a}^{2}}+\lambda\left|\mathcal{F}\left(w_{0}(t)\right)\right|+\mu\left|\mathcal{G}\left(w_{0}(t)\right)\right| \\
& \leqslant \frac{1}{2} v_{1}^{2}+c_{1} M C_{2,2 b}^{2} \nu_{1}^{2}+c_{1} M C_{1,2 b} v_{1}+\delta_{1} m C_{2,2 c}^{2} v_{1}^{2}+\delta_{1} m C_{1,2 c} \nu_{1}=: K .
\end{aligned}
$$

Therefore,

$$
\mathcal{E}_{\lambda, \mu}\left(u_{\lambda, \mu}^{3}\right)=c_{\lambda, \mu} \leqslant \sup _{t \in[0,1]} \mathcal{E}_{\lambda, \mu}\left(w_{0}(t)\right) \leqslant K
$$

Now, we introduce for every $\mu \in\left[0, \delta_{2}\right]$ the set

$$
Z_{\mu}=\left\{u \in \mathcal{D}_{a}^{1,2}(\Omega): \mathcal{E}_{\lambda, \mu}(u) \leqslant K\right\} .
$$

Then, for every $\lambda \in A$ and $\mu \in\left(0, \delta_{2}\right)$ we have

$$
u_{\lambda, \mu}^{3} \in Z:=\bigcup_{\mu \in\left(0, \delta_{2}\right)} Z_{\mu} \subset \bigcup_{\mu \in\left[0, \delta_{2}\right]} Z_{\mu} \subset Z_{0} \cup Z_{\delta_{2}} .
$$

On the other hand, the coercivity of $\mathcal{E}_{\lambda, \mu}$ implies the boundedness of the set $Z \subset Z_{0} \cup Z_{\delta_{2}}$. Therefore, there exists $\tilde{v}>0$ such that $\|u\|_{a}<\tilde{v}$ for all $u \in Z$. Thus $\left\|u_{\lambda, \mu}^{i}\right\|_{a}<\max \left\{\nu_{1}, \tilde{v}\right\}=: \nu_{2}(i \in\{1,2,3\})$. This concludes the proof.

Acknowledgment

The authors would like to thank the referee for his/her valuable observations and suggestions.

References

[1] B. Abdellaoui, E. Colorado, I. Peral, Some improved Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations 23 (2005) 327-345.
[2] B. Abdellaoui, I. Peral, The effect of Harnack inequality on the existence and nonexistence results for quasi-linear parabolic equations related to Caffarelli-Kohn-Nirenberg inequalities, NoDEA Nonlinear Differential Equations Appl. 14 (2007) 335-360.
[3] T. Bartsch, S. Peng, Z. Zhang, Existence and non-existence of solutions to elliptic equations related to the Caffarelli-Kohn-Nirenberg inequalities, Calc. Var. Partial Differential Equations 30 (2007) 113-136.
[4] G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Anal. 54 (2003) 651-665.
[5] L. Caffarelli, R. Kohn, L. Nirenberg, First order interpolation inequalities with weight, Compos. Math. 53 (1984) $259-275$.
[6] R. Dautray, J.L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. 1, Physical Origins and Classical Methods, Springer-Verlag, Berlin, 1990.
[7] L. Iturriaga, Existence and multiplicity results for some quasilinear elliptic equation with weights, J. Math. Anal. Appl. 339 (2008) $1084-1102$.
[8] P. Pucci, J. Serrin, A mountain pass theorem, J. Differential Equations 60 (1985) 142-149.
[9] B. Ricceri, On a three critical points theorem, Arch. Math. (Basel) 75 (2000) 220-226.
[10] B. Ricceri, Existence of three solutions for a class of elliptic eigenvalue problems, Math. Comput. Modelling 32 (2000) $1485-1494$.
[11] B. Ricceri, Minimax theorems for limits of parametrized functions having at most one local minimum lying in a certain set, Topology Appl. 153 (2006) 3308-3312.
[12] B. Xuan, Multiple solutions to a Caffarelli-Kohn-Nirenberg type equations with asymptotically linear term, Rev. Colombiana Mat. 37 (2003) 65-79.
[13] B. Xuan, The solvability of quasilinear Brezis-Nirenberg-type problems with singular weights, Nonlinear Anal. 62 (2005) $703-725$.

[^0]: T) Research for this article was supported by the Grant PN II, ID_527/2007 and CEEX 130/2006.

 * Corresponding author at: Babeş-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania. E-mail address: alexandrukristaly @yahoo.com (A. Kristály).

