Contents lists available at ScienceDirect

# Nonlinear Analysis

journal homepage: www.elsevier.com/locate/na

# A variational inequality on the half line

## Alexandru Kristály<sup>a,\*</sup>, Ioana Lazăr<sup>b</sup>, Nikolaos S. Papageorgiou<sup>c</sup>

<sup>a</sup> Babeş-Bolyai University, Department of Economics, 400591 Cluj-Napoca, Romania

<sup>b</sup> Babeş-Bolyai University, Department of Mathematics and Computer Sciences, 400084 Cluj-Napoca, Romania

<sup>c</sup> National Technical University, Department of Mathematics, Zografou Campus, Athens, 15780, Greece

#### ARTICLE INFO

Article history: Received 10 February 2009 Accepted 25 March 2009

*Keywords:* Variational inequality Critical points Non-smooth functionals

#### 1. Introduction

Variational inequalities either on bounded or unbounded domains describe real life phenomena from Mechanics and Mathematical Physics. A comprehensive monograph dealing with various forms of variational inequalities is due to Duvaut–Lions [1]. Motivated also by some mechanical problems where certain non-differentiable term perturbs the classical function, Panagiotopoulos [2] developed the so-called theory of hemivariational inequalities; see also Motreanu–Rădulescu [3].

The aim of the present paper is to study a variational inequality which is defined on the half line  $(0, \infty)$  by exploiting variational arguments described below. The natural functional space we are dealing with is the well-known Sobolev space  $W^{1,p}(0,\infty), p > 1$ . Since the domain is not bounded, the continuous embedding  $W^{1,p}(0,\infty) \hookrightarrow L^{\infty}(0,\infty)$  is not compact. Moreover, since the domain is one-dimensional, the compactness cannot be regained from a symmetrization argument as in Esteban [4], Esteban–Lions [5], Kobayashi–Ôtani [6], Kristály [7]. However, bearing in mind a specific construction from [5], it is convenient to introduce the closed, convex cone

 $K = \{u \in W^{1,p}(0,\infty) : u \ge 0, u \text{ is nonincreasing on } (0,\infty)\}.$ 

The main result of Section 2 is to prove that the embedding  $W^{1,p}(0, \infty) \hookrightarrow L^{\infty}(0, \infty)$  transforms the closed bounded sets from *K* into compact sets,  $p \in (1, \infty)$ . This fact will be exploited (particularly, for p = 2) to obtain nontrivial solutions for a variational inequality defined on  $(0, \infty)$ , involving concave–convex nonlinearities. To be more precise, we consider the problem, denoted by  $(P_{\lambda})$ : Find  $(u, \lambda) \in K \times (0, \infty)$  such that

$$Au(v-u) - \lambda \int_0^\infty a(x) |u(x)|^{q-2} u(x)(v(x) - u(x)) dx - \int_0^\infty b(x) f(u(x))(v(x) - u(x)) dx \ge 0, \quad \forall v \in K,$$

where

$$Au(v-u) = \int_0^\infty u'(x)(v'(x) - u'(x))dx + \int_0^\infty u(x)(v(x) - u(x))dx,$$

and  $q \in (1, 2)$ ,  $a, b \in L^1(0, \infty)$  and  $f : \mathbb{R} \to \mathbb{R}$  has a suitable growth.

\* Corresponding author. E-mail address: alexandrukristaly@yahoo.com (A. Kristály).

#### ABSTRACT

Multiple solutions are obtained for a variational inequality defined on the half line  $(0, \infty)$ . Our approach is based on a key embedding result as well as on the non-smooth critical point theory for Szulkin-type functionals.

© 2009 Elsevier Ltd. All rights reserved.





<sup>0362-546</sup>X/\$ - see front matter © 2009 Elsevier Ltd. All rights reserved. doi:10.1016/j.na.2009.03.077

By using the Ekeland variational principle and a non-smooth version of the Mountain Pass theorem for Szulkin-type functionals, we are able to guarantee the existence of  $\lambda_0 > 0$  such that  $(P_{\lambda})$  has two nontrivial solutions whenever  $\lambda \in (0, \lambda_0)$ .

The structure of the paper is as follows. In the next section we prove a compactness result; in Section 3 we recall some elements from the non-smooth critical point theory for Szulkin-type functionals; in Section 4 we state our main theorem and we prove some auxiliary results; and, in Section 5 we prove our main theorem.

#### **2.** A compactness result on $(0, \infty)$

We endow the space  $W^{1,p}(0,\infty)$  by its natural norm

$$||u|| = \left[\int_0^\infty |u|^p + \int_0^\infty |u'|^p\right]^{1/p},$$

and the space  $L^{\infty}(0, \infty)$  by the standard sup-norm. The main result of this section is as follows.

**Proposition 2.1.** Let  $p \in (1, \infty)$ . The embedding  $W^{1,p}(0, \infty) \hookrightarrow L^{\infty}(0, \infty)$  transforms the closed bounded sets from K into compact sets.

**Proof.** We notice that every function  $u \in W^{1,p}(0, \infty)$  (p > 1) admits a continuous representation, see Brézis [8]; in what follows, we will replace u by this element. It is enough to consider a bounded sequence  $\{u_n\}$  in K and prove that there is a subsequence of it which converges strongly in  $L^{\infty}(0, \infty)$ . Taking a subsequence if necessary we may assume that  $u_n \to u$  weakly in  $W^{1,p}(0, \infty)$  for some  $u \in W^{1,p}(0, \infty)$ . Moreover, since K is strongly closed and convex, then it is weakly closed; in particular  $u \in K$ .

Let us fix y > 0. Then

$$\begin{aligned} |u_n(y) - u(y)|^p y &\leq 2^p [u_n^p(y) + u^p(y)] y \\ &\leq 2^p \int_0^y [u_n^p(x) + u^p(x)] dx \\ &< 2^p [\|u_n\|_{W^{1,p}}^p + \|u\|_{W^{1,p}}^p]. \end{aligned}$$

Since  $\{u_n\}$  is bounded in  $W^{1,p}(0,\infty)$ , dividing by y > 0 the above inequality, then for every  $\varepsilon > 0$  there exits  $R_{\varepsilon} > 0$  such that

 $|u_n(y) - u(y)| < 2[\|u_n\|_{W^{1,p}}^p + \|u\|_{W^{1,p}}^p]^{1/p}y^{-1/p} < \varepsilon/2$ 

for every  $y > R_{\varepsilon}$  and for every  $n \in \mathbb{N}$ . Thus

$$\|u_n-u\|_{L^{\infty}(R_{c},\infty)}<\varepsilon,\quad\forall n\in\mathbb{N}.$$

On the other hand, by Rellich theorem,  $W^{1,p}(0, R_{\varepsilon}) \hookrightarrow C^0[0, R_{\varepsilon}](p > 1)$  is compact. Since  $u_n \rightharpoonup u$  in  $W^{1,p}(0, \infty)$ , in particular,  $u_n \rightarrow u$  (strongly) in  $C^0[0, R_{\varepsilon}]$ , up to a subsequence, i.e., there exists  $n_{\varepsilon} \in \mathbb{N}$  such that

(2.1)

 $\|u_n-u\|_{C^0[0,R_{\varepsilon}]}<\varepsilon,\quad \forall n\geq n_{\varepsilon}.$ 

Combining this fact with (2.1), we obtain

 $\|u_n-u\|_{L^{\infty}(0,\infty)} < \varepsilon, \quad \forall n \ge n_{\varepsilon},$ 

and thus the claim is proven.  $\Box$ 

#### 3. Szulkin-type functionals

Let *X* be a real Banach space and  $X^*$  its dual. Let  $E : X \to \mathbb{R}$  be a functional of class  $C^1$  and let  $\psi : X \to \mathbb{R} \cup \{+\infty\}$  be a proper (i.e.  $\neq +\infty$ ), convex, lower semicontinuous function. Then,  $I = E + \psi$  is a *Szulkin-type functional*, see [9]. An element  $u \in X$  is called a *critical point of*  $I = E + \psi$  if

$$E'(u)(v-u) + \psi(v) - \psi(u) \ge 0 \quad \text{for all } v \in X,$$
(3.1)

or equivalently,

 $0 \in E'(u) + \partial \psi(u)$  in  $X^*$ ,

where  $\partial \psi(u)$  stands for the subdifferential of the convex functional  $\psi$  at  $u \in X$ .

**Proposition 3.1** ([9, p. 80]). Every local minimum point of  $I = E + \psi$  is a critical point of I in the sense of (3.1).

**Definition 3.1.** The functional  $I = E + \psi$  satisfies the *Palais–Smale condition at level*  $c \in \mathbb{R}$ , (shortly,  $(PSZ)_c$ -condition) if every sequence  $\{u_n\} \subset X$  such that  $\lim_n I(u_n) = c$  and

$$\langle E'(u_n), v - u_n \rangle_X + \psi(v) - \psi(u_n) \ge -\varepsilon_n ||v - u_n||$$
 for all  $v \in X$ ,

where  $\varepsilon_n \rightarrow 0$ , possesses a convergent subsequence.

The following version of the Mountain Pass theorem will be used in Section 5.1.

**Theorem 3.1.** Let X be a Banach space,  $I = E + \psi : X \to \mathbb{R} \cup \{+\infty\}$  a Szulkin-type functional and we assume that

(i)  $I(x) \ge \alpha$  for all  $||x|| = \rho$  with  $\alpha, \rho > 0$ , and I(0) = 0;

(ii) there is  $e \in X$  with  $||e|| > \rho$  and  $I(e) \le 0$ .

If I satisfies the  $(PSZ)_c$ -condition for

$$c = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)),$$

$$\Gamma = \{ \gamma \in C([0, 1], X) : \gamma(0) = 0, \gamma(1) = e \},\$$

then c is a critical value of I and  $c \geq \alpha$ .

### 4. Main theorem and related results

Let  $f : \mathbb{R} \to \mathbb{R}$  be a continuous function. We denote by  $F(s) = \int_0^s f(t) dt$ . We assume that

(**f1**): There exists p > 2 such that  $f(s) = O(|s|^{p-1})$  as  $s \to 0$ .

(**f2**): There exists v > p such that

 $\nu F(s) - f(s)s \leq 0, \quad \forall s \in \mathbb{R}.$ 

(**f3**): There exists R > 0 such that

 $\max_{s\in[0,R]}F(s)>0.$ 

We shall prove the following theorem which represents the main result of this paper.

**Theorem 4.1.** Let  $f : \mathbb{R} \to \mathbb{R}$  be a continuous function which satisfies (f1)– (f3),  $q \in (1, 2)$ , and  $a, b \in L^1(0, \infty)$  with a, b > 0. Then there exists  $\lambda_0 > 0$  such that  $(P_{\lambda})$  has at least two nontrivial, distinct solutions  $u_{\lambda}^1, u_{\lambda}^2 \in K$  whenever  $\lambda \in (0, \lambda_0)$ .

For every  $\lambda > 0$ , we define the functional  $E_{\lambda} : W^{1,2}(0, \infty) \to \mathbb{R}$  by

$$E_{\lambda}(u) = \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \int_0^\infty a(x) |u|^q \mathrm{d}x - \mathcal{F}(u),$$

where

$$\mathcal{F}(u) = \int_0^\infty b(x) F(u(x)) \mathrm{d}x.$$

Due to the continuous embedding  $W^{1,2}(0,\infty) \hookrightarrow L^{\infty}(0,\infty)$ , and  $a, b \in L^1(0,\infty)$ , the functional  $E_{\lambda}$  is well defined and of class  $C^1$  on  $W^{1,2}(0,\infty)$ .

We define the indicator function of the set *K*, i.e.

$$\psi_{K}(u) = \begin{cases} 0, & \text{if } u \in K, \\ +\infty, & \text{if } u \notin K. \end{cases}$$

The function  $\psi_K$  is convex, proper, and lower semicontinuous. In conclusion,  $I_{\lambda} = E_{\lambda} + \psi_K$  is a Szulkin-type functional. Moreover, one easily obtains the following

**Proposition 4.1.** Fix  $\lambda > 0$  arbitrarily. Every critical point  $u \in W^{1,2}(0, \infty)$  of  $I_{\lambda} = E_{\lambda} + \psi_{K}$  is a solution of  $(P_{\lambda})$ .

**Proof.** Since  $u \in W^{1,2}(0, \infty)$  is a critical point of  $I_{\lambda} = E_{\lambda} + \psi_{K}$ , one has

$$E'_{\lambda}(u)(v-u)+\psi_{K}(v)-\psi_{K}(u)\geq 0,\quad\forall v\in W^{1,2}(0,\infty).$$

In particular, *u* necessarily belongs to *K*. In case *u* does not belong to *K* we get  $\psi_K(u) = +\infty$ . Taking then, for instance  $v = 0 \in K$  in the above inequality, we reach a contradiction. Now, we fix  $v \in K$  arbitrarily. Since

$$E'_{\lambda}(u)(v-u) = Au(v-u) - \lambda \int_0^\infty a(x)|u(x)|^{q-2}u(x)(v(x) - u(x))dx - \int_0^\infty b(x)f(u(x))(v(x) - u(x))dx,$$

the desired inequality follows.  $\Box$ 

We shall show next that  $I_{\lambda} = E_{\lambda} + \psi_K$  fulfills the  $(PSZ)_c$ -condition for every  $c \in \mathbb{R}$ .

**Proposition 4.2.** If the continuous function  $f : \mathbb{R} \to \mathbb{R}$  verifies (**f2**) then  $I_{\lambda} = E_{\lambda} + \psi_{K}$  satisfies (PSZ)<sub>c</sub> for every  $\lambda > 0$  and  $c \in \mathbb{R}$ .

**Proof.** Let  $\lambda > 0$  and  $c \in \mathbb{R}$  be some fixed numbers. Let  $\{u_n\}$  be a sequence in  $W^{1,2}(0,\infty)$  such that

$$I_{\lambda}(u_n) = E_{\lambda}(u_n) + \psi_K(u_n) \to c;$$
(4.1)

$$E'_{\lambda}(u_n)(v - u_n) + \psi_K(v) - \psi_K(u_n) \ge -\varepsilon_n \|v - u_n\|, \quad \forall v \in W^{1,2}(0,\infty),$$
(4.2)

5006

 $\{\varepsilon_n\}$  being a sequence in  $[0, \infty)$  with  $\varepsilon_n \to 0$ . By (4.1) one concludes that the sequence  $\{u_n\}$  belongs entirely to *K*. Setting  $v = 2u_n$  in (4.2), we obtain

$$E'_{\lambda}(u_n)(u_n) \geq -\varepsilon_n \|u_n\|.$$

Therefore, we derive

$$\|u_n\|^2 - \lambda \int_0^\infty a(x)|u_n|^q dx - \int_0^\infty b(x)f(u_n(x))u_n(x)dx \ge -\varepsilon_n \|u_n\|.$$
(4.3)

By (4.1) for large  $n \in \mathbb{N}$  we get

$$c+1 \ge \frac{1}{2} \|u_n\|^2 - \frac{\lambda}{q} \int_0^\infty a(x) |u_n|^q dx - \int_0^\infty b(x) F(u_n(x)) dx.$$
(4.4)

Multiplying (4.3) by  $\nu^{-1}$ , adding this one to (4.4) and applying the Hölder inequality, for large  $n \in \mathbb{N}$  we obtain

$$c + 1 + \frac{1}{\nu} \|u_n\| \ge \left(\frac{1}{2} - \frac{1}{\nu}\right) \|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{\nu}\right) \int_0^\infty a(x) |u_n|^q dx - \frac{1}{\nu} \int_0^\infty b(x) [-f(u_n(x))u_n(x) + \nu F(u_n(x))] dx \stackrel{(12)}{\ge} \left(\frac{1}{2} - \frac{1}{\nu}\right) \|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{\nu}\right) \|a\|_{L^1} \|u_n\|_{L^\infty}^q \ge \left(\frac{1}{2} - \frac{1}{\nu}\right) \|u_n\|^2 - \lambda \left(\frac{1}{q} - \frac{1}{\nu}\right) \|a\|_{L^1} k_\infty^q \|u_n\|^q,$$

where  $k_{\infty} > 0$  is the best Sobolev constant of the embedding  $W^{1,2}(0, \infty) \hookrightarrow L^{\infty}(0, \infty)$ . Since  $q < 2 < \nu$ , from the above estimation we derive that the sequence  $\{u_n\}$  is bounded in *K*. Therefore, due to Proposition 2.1, up to a subsequence, we can suppose that

$$u_n \to u \quad \text{weakly in } W^{1,2}(0,\infty);$$
(4.5)

$$u_n \to u$$
 strongly in  $L^{\infty}(0,\infty)$ . (4.6)

As K is (weakly) closed,  $u \in K$ . Setting v = u in (4.2), we obtain

$$Au_{n}(u-u_{n}) + \int_{0}^{\infty} b(x)f(u_{n}(x))(u_{n}(x)-u(x))dx - \lambda \int_{0}^{\infty} a(x)|u_{n}|^{q-2}u_{n}(u-u_{n})dx \ge -\varepsilon_{n}||u-u_{n}||.$$

Therefore, for large  $n \in \mathbb{N}$ , we have

$$\begin{aligned} \|u - u_n\|^2 &\leq Au(u - u_n) + \int_0^\infty b(x) f(u_n(x)) (u_n(x) - u(x)) dx - \lambda \int_0^\infty a(x) |u_n|^{q-2} u_n(u - u_n) dx + \varepsilon_n \|u - u_n\| \\ &\leq Au(u - u_n) + \|b\|_{L^1} \max_{s \in [-M,M]} |f(s)| \cdot \|u - u_n\|_{L^\infty} + \lambda \|a\|_{L^1} M^{q-1} \|u - u_n\|_{L^\infty} + \varepsilon_n \|u - u_n\|, \end{aligned}$$

where  $M = ||u||_{L^{\infty}} + 1$ . Due to (4.5), we have

$$\lim_n Au(u-u_n)=0.$$

Taking into account (4.6), the second and the third term in the last expression also tend to 0. Finally, since  $\varepsilon_n \to 0^+$ ,  $\{u_n\}$  converges strongly to *u* in  $W^{1,2}(0, \infty)$ . This completes the proof.  $\Box$ 

### 5. Proof of Theorem 4.1

We assume throughout this section that all the hypotheses of Theorem 4.1 are fulfilled. The present section is divided into two parts; in the first subsection we guarantee the existence of a solution for problem  $(P_{\lambda})$  by using the Mountain Pass theorem (see Theorem 3.1); the second subsection proves the existence of a second solution for the problem  $(P_{\lambda})$  by applying a local minimization argument based on the Ekeland variational principle.

5.1. MP geometry of  $I_{\lambda} = E_{\lambda} + \psi_{K}$ ; the first solution of  $(P_{\lambda})$ 

**Lemma 5.1.** There exist  $c_1, c_2 > 0$  such that

$$F(s) \geq c_1 s^{\nu} - c_2 s^p, \quad \forall s \geq 0.$$

**Proof.** Due to (**f3**), there exists  $\rho_0 \in [0, R]$  such that  $F(\rho_0) > 0$ . Clearly,  $\rho_0 \neq 0$ , since F(0) = 0. We consider the function  $g: (0,\infty) \to \mathbb{R}$  defined by  $g(t) = t^{-\nu}F(t\rho_0)$ . Let t > 1. By using a mean value theorem, there exists  $\tau \in (1,t)$  such that  $g(t) - g(1) = [-\nu \tau^{-\nu-1} F(\tau \rho_0) + \tau^{-\nu} \rho_0 f(\tau \rho_0)](t-1)$ . By (**f2**), one has  $g(t) \ge g(1)$ , i.e.,  $F(t \rho_0) \ge t^{\nu} F(\rho_0)$  for every  $t \ge 1$ . Therefore, we have

$$F(s) \geq \frac{F(\rho_0)}{\rho_0^{\nu}} s^{\nu}, \quad \forall s \geq \rho_0.$$

On the other hand, by (**f1**), there exist  $\delta$ , L > 0 such that  $|F(s)| \le L|s|^p$  for  $|s| \le \delta$ . In particular, we have that

$$F(s) \geq -Ls^p, \quad \forall s \in [0, \delta].$$

It remains to combine these two relations in order to obtain our claim. 

**Proposition 5.1.** There exists  $\lambda_0 > 0$  such that for every  $\lambda \in (0, \lambda_0)$  the following assertions are true:

(i) there exist constants  $\alpha_{\lambda} > 0$  and  $\rho_{\lambda} > 0$  such that  $I_{\lambda}(u) \ge \alpha_{\lambda}$  for all  $||u|| = \rho_{\lambda}$ ;

(ii) there exists  $e_{\lambda} \in W^{1,2}(0,\infty)$  with  $||e_{\lambda}|| > \rho_{\lambda}$  and  $I_{\lambda}(e_{\lambda}) \leq 0$ .

**Proof.** (i) Let  $\delta$ , L > 0 from the proof of the previous lemma. For  $u \in W^{1,2}(0,\infty)$  complying with  $||u||_{\ell^{\infty}} < \delta$ , we have

$$\mathcal{F}(u) \leq L \|b\|_{L^1} \|u\|_{L^{\infty}}^p \leq L \|b\|_{L^1} k_{\infty}^p \|u\|^p$$

It suffices to restrict our attention to elements u which belong to K; otherwise  $I_{\lambda}(u)$  would be  $+\infty$ , i.e. (i) holds trivially. Due to the above inequality, for every  $\lambda > 0$  and  $u \in K$  with  $||u||_{L^{\infty}} \leq \delta$ , we have

$$\begin{split} I_{\lambda}(u) &\geq \frac{1}{2} \|u\|^{2} - \lambda \|a\|_{L^{1}} k_{\infty}^{q} \|u\|^{q} - L \|b\|_{L^{1}} k_{\infty}^{p} \|u\|^{2} \\ &= \left(\frac{1}{2} - \lambda A \|u\|^{q-2} - B \|u\|^{p-2}\right) \|u\|^{2}, \end{split}$$

where  $A = ||a||_{L^1} k_{\infty}^q > 0$ , and  $B = L ||b||_{L^1} k_{\infty}^p > 0$ . For every  $0 < \lambda < \frac{\delta^{p-q_B(p-2)}}{A(2-q)}$ , we define the function  $g_{\lambda} : (0, \delta) \to \mathbb{R}$  by

$$g_{\lambda}(t)=\frac{1}{2}-\lambda At^{q-2}-Bt^{p-2}.$$

Clearly,  $g'_{\lambda}(t_{\lambda}) = 0$  if and only if  $t_{\lambda} = (\lambda \frac{2-q}{p-2} \frac{A}{B})^{\frac{1}{p-q}}$ . Moreover,  $g_{\lambda}(t_{\lambda}) = \frac{1}{2} - D\lambda^{\frac{p-2}{p-q}}$ , where D = D(p, q, A, B) > 0. Choosing  $0 < \lambda_0 < \frac{\delta^{p-q}B(p-2)}{A(2-q)}$  so small that  $g_{\lambda_0}(t_{\lambda_0}) > 0$ , one clearly has for every  $\lambda \in (0, \lambda_0)$  that  $g_{\lambda}(t_{\lambda}) > 0$ . Therefore, for every  $\lambda \in (0, \lambda_0)$ , setting  $\rho_{\lambda} = t_{\lambda}/k_{\infty}$  and  $\alpha_{\lambda} = g_{\lambda}(t_{\lambda})t_{\lambda}^2/k_{\infty}^2$ , the assertion from (i) holds true. (ii) By Lemma 5.1 we have  $\mathcal{F}(u) \ge \int_0^\infty b(x)[c_1u^{\nu} - c_2u^p]dx$  for every  $u \in K$ . Then, for every  $u \in K$  we have

$$I_{\lambda}(u) \leq \frac{1}{2} \|u\|^2 - \frac{\lambda}{q} \int_0^\infty a(x) u^q dx - \int_0^\infty b(x) [c_1 u^{\nu} - c_2 u^p] dx.$$
(5.1)

Fix  $u_0(x) = \max(1-x, 0), x > 0$ ; it is clear that  $u_0 \in K$ . Letting  $u = su_0(s > 0)$  in (5.1), we have that  $I_\lambda(su_0) \to -\infty$  as  $s \to +\infty$ , since  $\nu > p > 2 > q$  and b > 0. Thus, for every  $\lambda \in (0, \lambda_0)$ , it is possible to set  $s = s_{\lambda}$  so large that for  $e_{\lambda} = s_{\lambda}u_0$ , we have  $||e_{\lambda}|| > \rho_{\lambda}$  and  $I_{\lambda}(e_{\lambda}) \leq 0$ . This concludes the proof of the proposition.

By Proposition 4.2, the functional  $I_{\lambda}$  satisfies the  $(PSZ)_c$ -condition  $(c \in \mathbb{R})$ , and  $I_{\lambda}(0) = 0$  for every  $\lambda > 0$ . Let us fix  $\lambda \in (0, \lambda_0)$ . By Proposition 5.1 it follows that there exist constants  $\alpha_{\lambda}, \rho_{\lambda} > 0$  and  $e_{\lambda} \in W^{1,2}(0, \infty)$  such that  $I_{\lambda}$  fulfills the properties (i) and (ii) from Theorem 3.1. Therefore, the number

$$c_{\lambda}^{1} = \inf_{\gamma \in \Gamma} \sup_{t \in [0,1]} I_{\lambda}(\gamma(t))$$

is a critical value of  $I_{\lambda}$  with  $c_{\lambda}^{1} \geq \alpha_{\lambda} > 0$ , where

$$\Gamma = \{ \gamma \in C([0, 1], W^{1,2}(0, \infty)) : \gamma(0) = 0, \gamma(1) = e_{\lambda} \}.$$

It is clear that the critical point  $u_{\lambda}^1 \in W^{1,2}(0,\infty)$  which corresponds to  $c_{\lambda}^1$  cannot be trivial since  $I_{\lambda}(u_{\lambda}^1) = c_{\lambda}^1 > 0 = I_{\lambda}(0)$ . It remains to apply Proposition 4.1 which concludes that  $u_{\lambda}^{1}$  is actually an element of K and a solution of  $(P_{\lambda})$ .

#### 5.2. Local minimization; the second solution of $(P_{\lambda})$

Let us fix  $\lambda \in (0, \lambda_0)$  arbitrarily;  $\lambda_0$  was defined in the previous subsection. By Proposition 5.1, there exists  $\rho_{\lambda} > 0$  such that

$$\inf_{\|u\|=\rho_{\lambda}}I_{\lambda}(u)>0.$$
(5.2)

Since a > 0, for  $u_0(x) = \max(1 - x, 0)$ , x > 0, we have  $\int_0^\infty a(x)u_0^q dx > 0$ . Taking into account that  $\nu > p > 2 > q$ , for t > 0 small enough one has

$$I_{\lambda}(tu_0) \leq \frac{t^2}{2} \|u_0\|^2 - \frac{\lambda t^q}{q} \int_0^\infty a(x) u_0^q dx - \int_0^\infty b(x) [c_1 t^{\nu} u_0^{\nu} - c_2 t^p u_0^p] dx < 0.$$

For r > 0, we denote by  $B_r = \{u \in W^{1,2}(0, \infty) : ||u|| \le r\}$  and by  $S_r = \{u \in W^{1,2}(0, \infty) : ||u|| = r\}$ . Using these notations, relation (5.2) and the above inequality can be summarized as

$$c_{\lambda}^{2} = \inf_{u \in B_{\rho_{\lambda}}} I_{\lambda}(u) < 0 < \inf_{u \in S_{\rho_{\lambda}}} I_{\lambda}(u).$$
(5.3)

A simple argument shows that  $c_{\lambda}^2$  is finite. Moreover, we will show that  $c_{\lambda}^2$  is another critical value of  $I_{\lambda}$ . To this end, let  $n \in \mathbb{N} \setminus \{0\}$  such that

$$\frac{1}{n} < \inf_{u \in S_{\rho_{\lambda}}} I_{\lambda}(u) - \inf_{u \in B_{\rho_{\lambda}}} I_{\lambda}(u).$$
(5.4)

By the Ekeland variational principle, applied to the lower semicontinuous functional  $I_{\lambda|_{B_{\rho_{\lambda}}}}$ , which is bounded below (see (5.3)), there exists  $u_{\lambda,n} \in B_{\rho_{\lambda}}$  such that

$$I_{\lambda}(u_{\lambda,n}) \leq \inf_{u \in B_{\rho_{\lambda}}} I_{\lambda}(u) + \frac{1}{n};$$
(5.5)

$$I_{\lambda}(w) \ge I_{\lambda}(u_{\lambda,n}) - \frac{1}{n} \|w - u_{\lambda,n}\|, \quad \forall w \in B_{\rho_{\lambda}}.$$
(5.6)

By (5.4) and (5.5) we have that  $I_{\lambda}(u_{\lambda,n}) < \inf_{u \in S_{\rho_{\lambda}}} I_{\lambda}(u)$ ; therefore  $||u_{\lambda,n}|| < \rho_{\lambda}$ .

Fix an element  $v \in W^{1,2}(0,\infty)$ . It is possible to choose t > 0 small enough such that  $w = u_{\lambda,n} + t(v - u_{\lambda,n}) \in B_{\rho_{\lambda}}$ . Applying (5.6) to this element, using the convexity of  $\psi_K$  and dividing by t > 0, one concludes

$$\frac{E_{\lambda}(u_{\lambda,n}+t(v-u_{\lambda,n}))-E_{\lambda}(u_{\lambda,n})}{t}+\psi_{K}(v)-\psi_{K}(u_{\lambda,n})\geq -\frac{1}{n}\|v-u_{\lambda,n}\|.$$

Letting  $t \to 0^+$ , we obtain

$$E'_{\lambda}(u_{\lambda,n})(v - u_{\lambda,n}) + \psi_{K}(v) - \psi_{K}(u_{\lambda,n}) \ge -\frac{1}{n} \|v - u_{\lambda,n}\|.$$
(5.7)

On the other hand, by (5.3) and (5.5) it follows

$$I_{\lambda}(u_{\lambda,n}) = E_{\lambda}(u_{\lambda,n}) + \psi_{K}(u_{\lambda,n}) \to c_{\lambda}^{2}$$
(5.8)

as  $n \to \infty$ . Since v is arbitrarily fixed in (5.7), the sequence  $\{u_{\lambda,n}\}$  fulfills (4.1) and (4.2), respectively. Therefore, in a similar manner as in Proposition 4.2, we may prove that  $\{u_{\lambda,n}\}$  contains a convergent subsequence; we denote it again by  $\{u_{\lambda,n}\}$ , its limit point being  $u_{\lambda}^2$ . It is clear that  $u_{\lambda}^2$  belongs to  $B_{\rho_{\lambda}}$ . By the lower semicontinuity of  $\psi_K$  we have

$$\psi_K(u_{\lambda}^2) \leq \liminf_n \psi_K(u_{\lambda,n}),$$

and due to the fact that  $E_{\lambda}$  is of class  $C^1$  on  $W^{1,2}(0,\infty)$ , we have

$$\lim_{n} E'_{\lambda}(u_{\lambda,n})(v-u_{\lambda,n}) = E'_{\lambda}(u_{\lambda}^2)(v-u_{\lambda}^2).$$

Combining these relations with (5.7) we obtain

$$E'_{\lambda}(u_{\lambda}^{2})(v-u_{\lambda}^{2})+\psi_{\mathcal{K}}(v)-\psi_{K}(u_{\lambda}^{2})\geq 0, \quad \forall v\in W^{1,2}(0,\infty),$$

i.e.  $u_{\lambda}^2$  is a critical point of  $I_{\lambda}$ . Moreover,

$$c_{\lambda}^{2} \stackrel{(5.3)}{=} \inf_{u \in B_{\rho_{\lambda}}} I_{\lambda}(u) \le I_{\lambda}(u_{\lambda}^{2}) \le \liminf_{n} I_{\lambda}(u_{\lambda,n}) \stackrel{(5.8)}{=} c_{\lambda}^{2},$$

i.e.  $I_{\lambda}(u_{\lambda}^2) = c_{\lambda}^2$ . Since  $c_{\lambda}^2 < 0$  (see (5.3)), it follows that  $u_{\lambda}^2$  is not trivial. We apply again Proposition 4.1, concluding that  $u_{\lambda}^2$  is another solution of  $(P_{\lambda})$  different from  $u_{\lambda}^1$ . This concludes the proof of Theorem 4.1.

### Acknowledgments

The first and second author's research was supported by the Grant PN II IDEI\_2162 from CNCSIS.

#### References

- G. Duvaut, J.-L. Lions, Inequalities in Mechanics and Physics, Springer-Verlag, Berlin, 1976.
   P.D. Panagiotopoulos, Hemivariational Inequalities: Applications to Mechanics and Engineering, Springer-Verlag, New-York, 1993.
- [3] D. Motreanu, V. Rădulescu, Variational and Non-variational Methods in Nonlinear Analysis and Boundary Value Problems, Kluwer Academic Publisher, Boston, Dordrecht, London, 2003.
- [4] M.J. Esteban, Nonlinear elliptic problems in strip-like domains: Symmetry of positive vortex rings, Nonlinear Anal. TMA 7 (1983) 365–379.
  [5] M.J. Esteban, P.L. Lions, A compactness lemma, Nonlinear Anal. TMA 7 (1983) 381–385.
  [6] J. Kobayashi, M. Ôtani, The principle of symmetric criticality for non-differentiable mappings, J. Funct. Anal. 214 (2) (2004) 428–449.

- [7] A. Kristály, Multiplicity results for an eigenvalue problem for hemivariational inequalities in strip-like domains, Set-Valued Anal. 13 (2005) 85–103.
   [8] H. Brézis, Analyse Fonctionnelle, Masson, 1992.
- [9] A. Szukin, Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems, Ann. Inst. H. Poincaré Anal. Non Linéaire 3 (2) (1986) 77-109.