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Abstract. We consider nonlinear elliptic problems driven by the p-Laplacian
with a nonsmooth potential depending on a parameter λ > 0. The main
result guarantees the existence of two positive, two negative and a nodal (sign-
changing) solution for the studied problem whenever λ belongs to a small
interval (0, λ∗) and p ≥ 2. We do not impose any symmetry hypothesis on
the nonlinear potential. The constant-sign solutions are obtained by using
variational techniques based on nonsmooth critical point theory (minimization
argument, Mountain Pass theorem, and a Brézis-Nirenberg type result for C1-
minimizers), while the nodal solution is constructed by an upper-lower solutions
argument combined with the Zorn lemma and a nonsmooth second deformation
theorem.

1. Introduction. Let Z ⊂ R
N be a bounded domain with C2-boundary ∂Z and

consider the nonlinear elliptic problem
{

−△px(z) = f(z, x(z), λ), z ∈ Z;
x|∂Z = 0,

(P oλ)

where 1 < p < ∞, △p(·) = div(‖D(·)‖p−2
RN D(·)) is the p-Laplacian, f : Z × R ×

(0, λ) → R is a nonlinear function, λ ∈ (0, λ) being a parameter.
The aim of this paper is to prove multiplicity results for problem (P oλ), establish-

ing precisely the sign of the solutions. We emphasize that we do not impose any
symmetry hypothesis on the nonlinearity f . Moreover, our study includes the case
when the function x 7→ f(z, x, λ) has jumping discontinuities away from the origin.
However, in order to materialize the type of results we obtain, let us consider here
the z-independent (autonomous) case, i.e., f : R × (0, λ) → R, and assume for the
moment that f is continuous. We further assume that
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(f1) for all (x, λ) ∈ R × (0, λ), we have

|f(x, λ)| ≤ a(λ) + c|x|r−1

with a ∈ L∞(0, λ)+, limλ→0 a(λ) = 0, c > 0, p < r < p∗;

(f2) λ2 < limx→0
f(x,λ)
|x|p−2x

< +∞ for every λ ∈ (0, λ) (here, λ2 > 0 is the second

eigenvalue of (−△p,W
1,p
0 (Z)));

(f3) for every λ ∈ (0, λ) there exist M = M(λ) > 0 and µ = µ(λ) > p such that

0 < µF (x, λ) ≤ f(x, λ)x for all |x| ≥M,

where F (x, λ) =
∫ x

0 f(s, λ)ds;

(f4) for all (x, λ) ∈ R × (0, λ), we have f(x, λ)x ≥ 0 (sign condition).

As a simple consequence of our main result (Theorem 4.2), we obtain the following

Theorem 1.1. Let f : R × (0, λ) → R be a continuous function which satisfies
(f1) − (f4) and 2 ≤ p < ∞. Then, there exists λ∗ ∈ (0, λ) such that for every
λ ∈ (0, λ∗), the problem

{

−△px(z) = f(x(z), λ), z ∈ Z;
x|∂Z = 0,

(P ′
λ)

has at least five nontrivial smooth solutions; namely, two positive, two negative, and
a nodal (sign-changing) solution.

A simple (non-odd) function f : R× (0, λ) → R fulfilling the hypotheses (f1)− (f4)
is

f(x, λ) = (2 + sgn(x)) ·

{

C1|x|
p−2x, if |x| ≤ λ

C2|x|r−2x+ g(λ)sgn(x), if |x| > λ,

with λ2 < C1, 0 < C2, 2 ≤ p < r < p∗, and g(λ) = λp−1[C1−C2λ
r−p]. On the other

hand, if g : (0, λ) → R is any continuous function, different from the above choice,
f will not be continuous. In such a case, (P ′

λ) need not have a solution which is
not satisfactory for our purpose. In order to overcome this difficulty, we ’fill in the
discontinuity gaps’ of f by a well-chosen interval. In the sequel we describe roughly
this procedure in the framework of the initial problem (P 0

λ).
We assume that x 7→ f(z, x, λ) has jumping discontinuities and f fulfills certain

measurability and boundedness conditions which will be specified later (for details,
see hypotheses (Hf )). We replace f(z, x, λ) by an interval [fl(z, x, λ), fu(z, x, λ)],
where

fl(z, x, λ) = lim inf
x′→x

f(z, x′, λ) and fu(z, x, λ) = lim sup
x′→x

f(z, x′, λ).

In this way, instead of (P oλ) we are dealing with a set-valued problem. The as-
sumptions on f allow us to define the function j(z, x, λ) =

∫ x

0
f(z, s, λ)ds, and

x 7→ j(z, x, λ) becomes locally Lipschitz. Moreover, the generalized subdifferential
of j(z, ·, λ) (in the sense of Clarke) is ∂j(z, x, λ) = [fl(z, x, λ), fu(z, x, λ)] for every
x ∈ R. (For details, see Remark 5.) This fact motivates the formulation of the dif-
ferential inclusion problem (or, hemivariational inequality), whose study constitutes
the main objective of our paper:

{

−△px(z) ∈ ∂j(z, x(z), λ), z ∈ Z;
x|∂Z = 0.

(Pλ)
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We emphasize that hemivariational inequalities are used in the study of problems
with discontinuities (see Chang [12], Gasiński-Papageorgiou [26]), as well as in var-
ious engineering problems in which the corresponding energy (Euler) functional is
nonsmooth and nonconvex. For various applications, we refer reader to Motreanu-
Panagiotopoulos [40], Motreanu-Rădulescu [39], Naniewicz-Panagiotopoulos [41],
and references therein.

Recently, multiplicity results for the p-Laplacian without any symmetry condition
on the continuous right hand side nonlinearity f in (P oλ) were proved by Jiu-Su [31],
Liu [36], and Liu-Liu [37], using Morse theory (critical groups). Their multiplicity
results do not provide any information about the sign of the solutions.

The existence of multiple positive solutions in the recent decades was investigated
primarily in the context of semilinear problems (i.e., p = 2). We mention the papers
of Amann [1], Dancer [16], Dancer-Du [17], Lions [35] and references therein. For
problems driven by the scalar ordinary p-Laplacian, we have the works of De Coster
[22], Filippakis-Papageorgiou [24] and He-Ge [29]. For problems driven by the
partial p-Laplacian, we refer the reader to the works of Ambrosetti-Garcia Azorero-
Peral Alonso [3], Cammaroto-Chinǹı-Di Bella [8], Garcia Azorero-Manfredi-Peral
Alonso [25], Kyritsi-Papageorgiou [32] and Motreanu-Motreanu-Papageorgiou [38].
In Ambrosetti-Garcia Azorero-Peral Alonso [3] and in Garcia Azorero-Manfredi-
Peral Alonso [25], the right hand side nonlinearity has the form λ|x|q−2x+ |x|r−2x
with 1 < q < p < r < p∗, λ > 0, and the authors prove the existence of λ∗ > 0
such that for all λ ∈ (0, λ∗) the problem has two positive solutions. In [3], the
authors used the radial p-Laplacian and the main tool in their method of proof is
the Leray-Schauder degree theory. In [25], Z ⊂ R

N is an arbitrary bounded domain
with a smooth boundary and the approach is variational. Cammaroto-Chinǹı-Di
Bella [8], under a different set of rather technical hypotheses involving oscillatory
nonlinearities near the origin, produce a whole sequence of small positive solutions
which converges uniformly to zero. Their method of proof is completely different
than those of [3], [25], and is based on an abstract variational principle of Ricceri
[42]. Finally, Kyritsi-Papageorgiou [32] and Motreanu-Motreanu-Papageorgiou [38]
considered problems with nonsmooth potentials (hemivariational inequality) which
are non-resonance, resonance and near resonance at the principal eigenvalue λ1 > 0.
They handled the problem by using nonsmooth critical point theory.

The question of nodal (sign-changing) solutions has been investigated in detail in
the semilinear case (p = 2).We mention the works of Dancer-Du [18, 19, 20], Dancer-
Zhang [21], Li-Wang [33, 34] and Zhang-Li [46] (see also the references therein).
Roughly speaking, from these works emerged two approaches to the problem: (a)
combining the method of upper-lower solutions with variational techniques (see
Dancer-Du [18, 19, 20]); (b) using invariance properties of the negative gradient
flow associated to a well-chosen pseudo-gradient vector field (see Bartsch-Liu-Weth
[5], Dancer-Zhang [21], Li-Wang [34], Zhang-Chen-Li [45], and Zhang-Li [46, 47]).
Recently, Carl-Motreanu [9] and Carl-Perera [10] extended the work of Dancer-Du
[19] to a nonsmooth setting which involves the p-Laplacian. The hypotheses in
Carl-Motreanu [9] were given in the terms of the principal eigenvalue λ1 > 0 as
well as the Fuc̆ik spectrum of the p-Laplacian. Carl-Perera [10] assumed that the
studied problem admits an ordered pair of upper and lower solution.
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Note that none of the aforementioned multiplicity results for p-Laplacian pro-
duced five nontrivial solutions with precise sign (in smooth or nonsmooth con-
text). Clearly, here we mean that the right hand side has no symmetry proper-
ties; otherwise, as usual, if one assumes that the nonlinear term is odd, a suitable
adaptation of the Lusternik-Schnirelmann theory produces infinitely many posi-
tive/negative/nodal solutions. In the best case however, the authors obtain three
solutions: a positive, a negative and a nodal solution (see Bartsch-Liu [4], Bartsch-
Liu-Weth [5], Carl-Motreanu [9], Zhang-Chen-Li [45], and Zhang-Li [47]). Our main
result complements [5], [9], [45] and [47] also from the point of view of the nonlin-
earity. In [9, 45, 47], the authors considered asymptotically (p− 1)-linear problems
(at infinity), while we are dealing with a superlinear (and subcritical) problem at
infinity, see the Ambrosetti-Rabinowitz type hypothesis (f3) (or (Hf )(v) below). In
[5], the authors assumed that lim supx→0 |f(z, x, λ)|/|x|p−1 < λ1 uniformly for a.a.
z ∈ Z (and all λ > 0); here, we require λ2 < lim infx→0 |f(z, x, λ)|/|x|p−1 uniformly
for a.a. z ∈ Z (see (Hf )(iv), (vi), or (f2), (f4), respectively).

Our strategy is to employ variational techniques based on the nonsmooth crit-
ical point theory (see for instance Gasiński-Papageorgiou [26]), together with the
method of upper-lower solutions, which are constructed using the hypotheses on
the nonsmooth potential. Our method of proof is closer to that of Dancer-Du [19]
and Carl-Perera [10]. In this process, valuable tools are the nonsmooth version of
the second deformation lemma (theorem) due to Corvellec [14] and an alternative

variational characterization of the second eigenvalue λ2 > 0 of (−△p,W
1,p
0 (Z)), due

to Cuesta-De Figueiredo-Gossez [15].
In the next section we recall various notions and results which will be used later.

In §3, we first prove the existence of two constant-sign solutions for problem (Pλ),
see Theorems 3.1. Next, by means of a careful modification of the energy functional
associated with (Pλ) we prove the existence of two more solutions for problem (Pλ)
with constant sign whenever p ≥ 2, see Theorem 3.2. Finally, in §4, besides of the
constant-sign solutions, we prove the existence of a nodal solution for problem (Pλ)
by using the Zorn lemma and the second deformation theorem.

2. Mathematical background. The nonsmooth critical point theory, which will
be used in the variational techniques, is based mainly on the subdifferential theory
for the locally Lipschitz functions. We first recall some basic notions from this
theory.

Let X be a Banach space. By X∗ we denote its topological dual and by 〈·, ·〉 the
duality bracket for the pair (X∗, X). If ϕ : X → R is a locally Lipschitz function,
the generalized directional derivative ϕ0(x;h) of ϕ at x ∈ X in the direction h ∈ X ,
is defined by

ϕ0(x;h) = lim sup
x′→x;λ→0+

ϕ(x′ + λh) − ϕ(x′)

λ
.

It is easy to see that h 7→ ϕ0(x;h) is sublinear continuous and so it is the support
function of a nonempty, convex and w∗-compact set ∂ϕ(x) ⊆ X∗ defined by

∂ϕ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ ϕ0(x;h) for all h ∈ X}.

The multifunction x 7→ ∂ϕ(x) is called the generalized subdifferential of ϕ. Note that
if ϕ : X → R is continuous convex, then ϕ is locally Lipschitz and the generalized
subdifferential of ϕ coincides with the subdifferential in the sense of convex analysis,
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given by

∂cϕ(x) = {x∗ ∈ X∗ : 〈x∗, y − x〉 ≤ ϕ(y) − ϕ(x) for all y ∈ X}.

Also, if ϕ ∈ C1(X), then clearly ϕ is locally Lipschitz and ∂ϕ(x) = {ϕ′(x)}. We say
that x ∈ X is a critical point of ϕ, if 0 ∈ ∂ϕ(x); in this case, c = ϕ(x) is a critical
value of ϕ. It is easy to check that if x ∈ X is a local extremum of ϕ (i.e., a local
minimum or a local maximum), then x is a critical point of ϕ. Further details on
the subdifferential theory of locally Lipschitz functions can be found in Clarke [13].

Given a locally Lipschitz function ϕ : X → R, we say that ϕ satisfies the
nonsmooth Palais-Smale condition at level c ∈ R (the nonsmooth PSc-condition,
for short), if every sequence {xn}n≥1 ⊂ X such that ϕ(xn) → c and mϕ(xn) =
inf{‖x∗‖ : x∗ ∈ ∂ϕ(xn)} → 0 as n → ∞, has a strongly convergent subsequence.
We say that ϕ satisfies the nonsmooth PS-condition, if it satisfies the nonsmooth
PSc-condition at every level c ∈ R.

The topological notion of linking sets is crucial in the minimax characterization
of the critical values of a locally Lipschitz function.

Definition 2.1. Let Y be a Hausdorff topological space, E0, E andD are nonempty,
closed subsets of Y , with E0 ⊂ E. We say that the pair {E0, E} is linking with D
in Y if

(a) E0 ∩D = ∅;
(b) for any γ ∈ C(E, Y ) such that γ|E0

= id|E0
, we have γ(E) ∩D 6= ∅.

Using this notion, we have the following general minimax theorem for the critical
values of a locally Lipschitz function (see Gasiński-Papageorgiou [26]).

Theorem 2.2. Let X be a Banach space, E0, E and D nonempty, closed subsets
of X such that {E0, E} is linking with D in X. Let ϕ : X → R be a locally Lipschitz
function such that supE0

ϕ < infD ϕ, and Γ = {γ ∈ C(E,X) : γ|E0
= id|E0

}, c =
infγ∈Γ supv∈E ϕ(γ(v)), ϕ satisfying the nonsmooth PSc-condition. Then c ≥ infD ϕ
and c is a critical value of ϕ.

Employing particular choices of linking sets, from the above theorem we may gener-
ate nonsmooth versions of the mountain pass theorem, of the saddle point theorem
and of the generalized mountain pass theorem. For future use, let us state the
nonsmooth mountain pass theorem.

Theorem 2.3. Let X be a Banach space, ϕ : X → R a locally Lipschitz function,
x0, x1 ∈ X, ρ > 0 such that max{ϕ(x0), ϕ(x1)} < inf{ϕ(x) : ‖x − x0‖ = ρ} =
β, ‖x1 − x0‖ > ρ, and Γ0 = {γ ∈ C([0, 1], X) : γ(0) = x0, γ(1) = x1}, c =
infγ∈Γ0

supt∈[0,1] ϕ(γ(t)), ϕ satisfying the nonsmooth PSc-condition. Then c ≥ β
and c is a critical value of ϕ.

Remark 1. It is easy to see that Theorem 2.3 can be deduced from Theorem 2.2
if we choose E0 = {x0, x1}, E = [x0, x1] = {x ∈ X : x = tx0 + (1 − t)x1, t ∈ [0, 1]}
and D = ∂Bρ(x0) = {x ∈ X : ‖x− x0‖ = ρ}.

Definition 2.4. Let X be a Banach space and Y a nonempty subset of X . A
deformation of Y is a continuous map h : [0, 1]× Y → Y such that h(0, ·) = id|Y .

(a) If Z ⊂ Y , then we say that Z is a strong deformation retract of Y , if there
exists a deformation h of Y such that h(1, Y ) ⊆ Z and h(t, x) = x for all (t, x) ∈
[0, 1]× Z.

(b) If Z ⊂ Y , then we say that Z is a weak deformation retract of Y , if there
exists a deformation h of Y such that h(1, Y ) ⊆ Z and h(t, Z) ⊆ Z for all t ∈ [0, 1].
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Remark 2. Clearly, every strong deformation retract of Y is a weak deformation
retract of Y .

Given a locally Lipschitz function ϕ : X → R and c ∈ R, we define

ϕ<c = {x ∈ X : ϕ(x) < c}, ϕc = {x ∈ X : ϕ(x) ≤ c} and

Kc = {x ∈ X : 0 ∈ ∂ϕ(x), ϕ(x) = c}.

The next theorem is a partial extension to a nonsmooth setting of the so-called
second deformation theorem (see Chang [11, p.23] and Gasiński-Papageorgiou [27,
p. 628]) and it is due to Corvellec [14]. In fact, Corvellec’s result is formulated in
a more general framework; namely, for continuous functionals (or, even for lower
semicontiuous functionals) on metric spaces. In particular, if X is a Banach space
and ϕ : X → R is continuous, one can define the set

Kws
c = {x ∈ X : |dϕ|(x) = 0, ϕ(x) = c},

where |dϕ|(x) denotes the weak slope of ϕ at x, see [14]. In the case when ϕ : X → R

is locally Lipschitz, we have

|dϕ|(x) ≥ inf{‖x∗‖ : x∗ ∈ ∂ϕ(x)} = mϕ(x),

thus Kws
c ⊆ Kc (with strict inclusion, in general). For our purposes, it suffices a

particular form of the result from [14], which we state next.

Theorem 2.5. Let X be a Banach space, ϕ : X → R a locally Lipschitz function
which satisfies the nonsmooth PS-condition, a ∈ R, b ∈ R ∪ {+∞}, a < b, ϕ has
no critical points in ϕ−1(a, b) and Ka = Kws

a 6= ∅ is discrete. Then there exists a
deformation h : [0, 1] × ϕ<b → ϕ<b of the set ϕ<b such that

(a) h(t, ·)|Ka
= id|Ka

for all t ∈ [0, 1];
(b) h(1, ϕ<b) ⊆ ϕ<a ∪Ka;
(c) ϕ(h(t, x)) ≤ ϕ(x) for all t ∈ [0, 1] and all x ∈ ϕ<b.

In particular, the set ϕ<a ∪Ka is a weak deformation retract of ϕ<b.

Remark 3. In the corresponding smooth second deformation theorem, the conclu-
sion is that ϕa is a strong deformation retract of ϕb \Kb (see Chang [11, p. 23] and
Gasiński-Papageorgiou [27, p. 628]).

In the analysis of problem (Pλ) we will use some basic facts about the spectrum
of the Dirichlet negative p-Laplacian. So, let m ∈ L∞(Z)+, m 6= 0, and consider
the following nonlinear weighted (with weight m) eigenvalue problem

−△px(z) = λ̂m(z)|x(z)|p−2x(z) a.e. on Z; x|∂Z = 0. (1)

The smallest number λ̂ ∈ R for which problem (1) has a nontrivial solution, is

the first eigenvalue of (−△p,W
1,p
0 (Z),m) and it is denoted by λ̂1(m). We know

that λ̂1(m) > 0, it is isolated and also it is simple (i.e., the corresponding eigen-

space is one-dimensional). Moreover, λ̂1(m) > 0 admits the following variational
characterization

λ̂1(m) = min

{

‖Dx‖pp
∫

Z
m|x|pdz

: x ∈W 1,p
0 (Z), x 6= 0

}

. (2)

In (2) the minimum is attained on the one-dimensional eigenspace corresponding

to λ̂1(m) > 0. Let u1 ∈ W 1,p
0 (Z) be the eigenfunction such that

∫

Z
m|u1|pdz =

1. Evidently, |u1| also realizes the minimum in (2) and so we may assume that
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u1(z) ≥ 0 a.e. on Z. In fact, from the nonlinear regularity theory (see for instance
Gasiński-Papageorgiou [27, p. 738]), we have

u1 ∈ C1
0 (Z) = {x ∈ C1(Z) : x|∂Z = 0}.

The space C1
0 (Z) is an ordered Banach space with order cone

K+ = {x ∈ C1
0 (Z) : x(z) ≥ 0 for all z ∈ Z}.

We know that

intK+ = {x ∈ K+ : x(z) > 0 for all z ∈ Z, and
∂x

∂n
(z) < 0 for all z ∈ ∂Z}.

Here, by n(z) we denote the unit outward normal at z ∈ ∂Z. Using the strong
maximum principle of Vázquez [43], we have u1 ∈ intK+.

The Lusternik-Schnirelmann theory, in addition to λ̂1(m) > 0, gives a whole

strictly increasing sequence {λ̂n(m)}n≥1 of eigenvalues of (−△p,W
1,p
0 (Z),m) such

that λ̂n(m) → +∞ as n → ∞. These elements are the so-called LS-eigenvalues

of (−△p,W
1,p
0 (Z),m). If p = 2 (linear case), then these are all the eigenvalues of

(−△, H1
0 (Z),m). If p 6= 2 (nonlinear case), we do not know if this is true. However,

since λ̂1(m) > 0 is isolated, we can define

λ̂∗2(m) = {λ̂ : λ̂ is an eigenvalue of (1) and λ̂ 6= λ̂1(m)} > λ̂1(m).

Since the spectrum of (−△p,W
1,p
0 (Z),m) is a closed set, we deduce that λ̂∗2(m) is

the second eigenvalue of (−△p,W
1,p
0 (Z),m). Moreover, we have

λ̂∗2(m) = λ̂2(m),

i.e., the second eigenvalue and the second LS-eigenvalue of (−△p,W
1,p
0 (Z),m) co-

incide. So, for the second eigenvalue λ̂2(m) we have a variational expression coming

from the Lusternik-Schnirelmann theory. Both eigenvalues λ̂1(m) and λ̂2(m) ex-
hibit certain monotonicity properties with respect to the weight function m. More
precisely, we have:

(a) If m1(z) ≤ m2(z) a.e. on Z and m1 6= m2, then λ̂1(m2) < λ̂1(m1);

(a) If m1(z) < m2(z) a.e. on Z, then λ̂2(m2) < λ̂2(m1).

Ifm = 1, then we write λ̂1(1) = λ1 and λ̂2(1) = λ2. Recently, Cuesta-De Figueiredo-
Gossez [15] presented an alternative variational characterization of λ2. Namely, let

∂B
Lp(Z)
1 = {x ∈ Lp(Z) : ‖x‖p = 1}, U = W 1,p

0 (Z) ∩ ∂B
Lp(Z)
1 and ΓU = {γ0 ∈

C([−1, 1], U) : γ0(−1) = −u1, γ0(1) = u1}. Then

λ2 = inf
γ0∈ΓU

sup
x∈γ0([−1,1])

‖Dx‖pp. (3)

We will use (3) in the proof of the existence of a nodal solution for problem (Pλ).
Finally, let us recall what we mean by upper and lower solutions for problem (Pλ).

Definition 2.6. (a) An upper solution for problem (Pλ) is a function x ∈W 1,p(Z)

such that x|∂Z ≥ 0 and
∫

Z
‖Dx‖p−2(Dx,Dy)RN dz ≥

∫

Z
uydz for all y ∈ W 1,p

0 (Z),

y(z) ≥ 0 a.e. on Z for some u ∈ Lθ(Z), u(z) ∈ ∂j(z, x(z), λ) a.e. on Z and
1 < θ < p∗. We say that x is a strict upper solution for problem (Pλ), if it is not a
solution of (Pλ).

(b) A lower solution for problem (Pλ) is a function x ∈ W 1,p(Z) such that

x|∂Z ≤ 0 and
∫

Z
‖Dx‖p−2(Dx,Dy)RN dz ≤

∫

Z
uydz for all y ∈ W 1,p

0 (Z), y(z) ≥ 0
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a.e. on Z for some u ∈ Lθ(Z), u(z) ∈ ∂j(z, x(z), λ) a.e. on Z and 1 < θ < p∗. We
say that x is a strict lower solution for problem (Pλ), if it is not a solution of (Pλ).

As usual, p∗ denotes the critical exponent, i.e., p∗ = Np/(N − p) if p < N , and
p∗ = +∞ if p ≥ N. In the sequel, we denote by “⇀” and “→” the weak and strong
convergence, respectively. Moreover, we use the notations r± = max{±r, 0} for

every r ∈ R, and ‖x‖ = ‖Dx‖p for x ∈W 1,p
0 (Z).

3. Four constant-sign solutions for problem (Pλ). In this section we establish
the existence of four nontrivial solutions of constant sign for problem (Pλ) whenever
λ belongs to a small interval of the form (0, λ∗). To do this, we assume the following
hypotheses on the nonsmooth potential:

(Hj): j : Z × R × (0, λ) → R, with λ > 0, is a function such that

(i) for all (x, λ) ∈ R × (0, λ) the function z 7→ j(z, x, λ) is measurable;

(ii) for almost all z ∈ Z and all λ ∈ (0, λ), the function x 7→ j(z, x, λ) is
locally Lipschitz and j(z, 0, λ) = 0;

(iii) for almost all z ∈ Z, all (x, λ) ∈ R× (0, λ) and all u ∈ ∂j(z, x, λ), we have

|u| ≤ a(z, λ) + c|x|r−1

with a(·, λ) ∈ L∞(Z)+, ‖a(·, λ)‖∞ → 0 as λ→ 0+, c > 0, p < r < p∗;
(iv) for every λ ∈ (0, λ) there exists a function η = η(λ) ∈ L∞(Z)+ such that

η(z) ≥ λ1 a.e. on Z, η 6= λ1, and

η(z) ≤ lim inf
x→0

u

|x|p−2x
uniformly for a.a. z ∈ Z;

(v) for every λ ∈ (0, λ) there exist M = M(λ) > 0 and µ = µ(λ) > p such
that

0 < µj(z, x, λ) ≤ −j0(z, x, λ;−x) for a.a. z ∈ Z, all |x| ≥M ;

(vi) for a.a. z ∈ Z, all x ∈ R, all λ ∈ (0, λ) and all u ∈ ∂j(z, x, λ), we have

ux ≥ 0 (sign condition)

and ∂j(z, 0, λ) = {0}.

Let ϕλ : W 1,p
0 (Z) → R be the Euler functional for problem (Pλ) which is defined by

ϕλ(x) =
1

p
‖Dx‖pp −

∫

Z

j(z, x(z), λ)dz for all x ∈ W 1,p
0 (Z).

We know that ϕλ is locally Lipschitz on bounded sets of W 1,p
0 (Z), hence locally

Lipschitz (see Clarke [13, p. 83]).
In the next theorem we produce the first two solutions of constant sign for prob-

lem (Pλ).

Theorem 3.1. If hypotheses (Hj) hold, then there exists λ∗ ∈ (0, λ) such that
for every λ ∈ (0, λ∗), problem (Pλ) has two solutions x0 = x0(λ) ∈ intK+ and
v0 = v0(λ) ∈ −intK+ which are local minimizers of ϕλ.

If we assume p ≥ 2 we have two more solutions for (Pλ). More precisely, we have

Theorem 3.2. If hypotheses (Hj) hold and 2 ≤ p <∞, then there exists λ∗ ∈ (0, λ)
such that for every λ ∈ (0, λ∗), problem (Pλ) has at least four solutions of constant
sign x0 = x0(λ) ∈ intK+, x̂ = x̂(λ) ∈ intK+, x0 ≤ x̂, x0 6= x̂, and v0 = v0(λ) ∈
−intK+, v̂ = v̂(λ) ∈ −intK+, v̂ ≤ v0, v0 6= v̂.
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This section deals with the proof of Theorems 3.1 and 3.2, respectively. To this
end, we prove some lemmas and propositions.

Lemma 3.3. Let X be an ordered Banach space, K is an order cone of X, intK 6= ∅
and x0 ∈ intK. Then, for every y ∈ X, there exists t = t(y) > 0 such that tx0 − y ∈
intK.

Proof. Since x0 ∈ intK, we can find δ > 0 such that Bδ(x0) = {x ∈ X : ‖x− x0‖ ≤
δ} ⊂ intK. Let y ∈ X, y 6= 0 (if y = 0, then clearly the lemma holds for all t > 0).
We have x0 − δy/‖y‖ ∈ intK. Thus, choosing t = ‖y‖/δ, we have tx0 − y ∈ intK. �

Let us recall the following notion from nonlinear operator theory (see Gasiński-
Papageorgiou [27, p. 338] and Zeidler [44, p. 583].

Definition 3.4. Let X be a reflexiv Banach space and A : X → X∗. We say that
A is of type (S)+, if for any sequence {xn}n≥1 ⊂ X for which xn ⇀ x in X and
lim supn→∞〈A(xn), xn − x〉 ≤ 0, one has xn → x in X.

By 〈·, ·〉 we denote the duality brackets for the pair (W−1,p′(Z),W 1,p
0 (Z)) (1/p+

1/p′ = 1). Let A : W 1,p
0 (Z) → W−1,p′(Z) be the nonlinear operator defined by

〈A(x), y〉 =

∫

Z

‖Dx‖p−2
RN (Dx,Dy)RN dz for all x, y ∈ W 1,p

0 (Z). (4)

Lemma 3.5. A : W 1,p
0 (Z) →W−1,p′(Z) defined by (4) is of type (S)+.

Proof. Let {xn}n≥1 ⊂ W 1,p
0 (Z) be a sequence such that xn ⇀ x in W 1,p

0 (Z) and
assume that

lim sup
n→∞

〈A(xn), xn − x〉 ≤ 0. (5)

It is clear from (4) that A is demicontinuous monotone, hence it is maximal mono-
tone. But a maximal monotone operator is generalized pseudomonotone
(see Gasiński-Papageorgiou [27, p. 330]). So from (5) it follows that

‖Dxn‖
p
p = 〈A(xn), xn〉 → 〈A(x), x〉 = ‖Dx‖pp.

Since Dxn ⇀ Dx in Lp(Z,RN ) and the space Lp(Z,RN ) is uniformly convex, from
the Kadec-Klee property, we have Dxn → Dx in Lp(Z,RN ), hence xn → x in

W 1,p
0 (Z). �

Proof of Theorem 3.1. As we already observed, the nonlinear operator
A : W 1,p

0 (Z) → W−1,p′(Z) defined by (4) is maximal monotone. Since 〈A(x), x〉 =

‖Dx‖pp, it is also coercive. Therefore, it is surjective and so we can find e ∈W 1,p
0 (Z),

e 6= 0 such that A(e) = 1. Acting with the test function −e− ∈ W 1,p
0 (Z) we obtain

‖De−‖pp ≤ 0. Hence e− = 0 and so e ≥ 0. We have

−△pe(z) = 1 a.e. on Z, e|∂Z = 0. (6)

From nonlinear regularity theory (see for instance Gasiński-Papageorgiou [27, p.
738]) we have e ∈ C1

0 (Z) and then by the strong maximum principle of Vázquez
[43], we have e ∈ intK+.

We claim that we can find λ∗ ∈ (0, λ) such that for every λ ∈ (0, λ∗) we may
choose ξ1 = ξ1(λ) > 0 satisfying

‖a(·, λ)‖∞ + c(ξ1‖e‖∞)r−1 < ξp−1
1 . (7)
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We argue by contradiction. So, suppose that we cannot find ξ1 > 0 for which (7)
holds. This means that there exists a sequence {λn}n≥1 ⊂ (0, λ) such that λn → 0+

and
ξp−1 ≤ ‖a(·, λn)‖∞ + c(ξ‖e‖∞)r−1 for all n ≥ 1, and all ξ > 0.

We let n→ ∞, and using hypothesis (Hj)(iii), we get

1 ≤ cξr−p‖e‖r−1
∞ for all ξ > 0.

Since r > p, letting ξ → 0+, we have a contradiction. This shows that (7) is true.
We fix λ ∈ (0, λ∗) and let ξ1 = ξ1(λ) > 0 be as in (7). We set x = ξ1e ∈ intK+.

Then

−△px(z) = −ξp−1
1 △pe(z)

= ξp−1
1 (see (6))

> ‖a(·, λ)‖∞ + c(ξ1‖e‖∞)r−1 (see (7))

≥ u(z) a.e. on Z, (8)

for all u ∈ Lr
′

(Z) (1/r + 1/r′ = 1), u ∈ ∂j(z, x(z), λ) a.e. on Z (see hypothesis
(Hj)(iii)). Due to (8), x ∈ intK+ is a strict upper solution for problem (Pλ).

Evidently, x = 0 is a lower solution for problem (Pλ) (since ∂j(z, 0, λ) = {0}, see
(Hj)(vi)). We introduce the following truncation of j:

j̃+(z, x, λ) =







0, if x < 0
j(z, x, λ), if 0 ≤ x ≤ x(z)
j(z, x(z), λ), if x(z) < x.

(9)

From the nonsmooth chain rule (see Clarke [13, p. 42]), we have

∂j̃+(z, x, λ) ⊆























{0}, if x < 0
{τ∂j(z, 0, λ) : τ ∈ [0, 1]} = {0}, if x = 0
∂j(z, x, λ), if 0 < x < x(z)
{τ∂j(z, x(z), λ) : τ ∈ [0, 1]}, if x = x(z)
{0}, if x(z) < x.

(10)

We consider the functional ϕ̃λ : W 1,p
0 (Z) → R defined by

ϕ̃λ(x) =
1

p
‖Dx‖pp −

∫

Z

j̃+(z, x(z), λ) for all x ∈W 1,p
0 (Z).

We know that ϕ̃λ is locally Lipschitz. Also exploiting the compact embedding
of W 1,p

0 (Z) into Lp(Z), we can easily check that ϕ̃λ is sequentially weakly lower
semicontinuous. Moreover, from (9) and hypothesis (Hj)(iii), we see that for every

x ∈ W 1,p
0 (Z) one has

ϕ̃λ(x) ≥
1

p
‖Dx‖pp − c1‖Dx‖p

for some c1 > 0. Consequently, ϕ̃λ is coercive and bounded from below.
Let I+ = [0, x] = {x ∈W 1,p

0 (Z) : 0 ≤ x(z) ≤ x(z) a.e. on Z}. In a standard way,
we can find x0 ∈ I+ such that

ϕ̃λ(x0) = inf
I+
ϕ̃λ = m̃λ ≤ ϕ̃λ(0) = 0.

We claim that m̃λ < 0. To this end, let β0 =
∫

Z
(λ1 − η(z))up1(z)dz. Note that

β0 < 0 (see hypothesis (Hj)(iv)). Now, fix ε ∈ (0,−β0). By virtue of the hypothesis
(Hj)(iv), we can find δ = δ(ε, λ) > 0 such that

(η(z) − ε)xp−1 ≤ u for a.a. z ∈ Z, all x ∈ [0, δ] and all u ∈ ∂j(z, x, λ). (11)
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Because of hypothesis (Hj)(ii) and Rademacher’s theorem, for almost all z ∈ Z,
the function x 7→ j(z, x, λ) is differentiable at almost every x ∈ R. Moreover, at any
such point of differentiability, we have d

dx
j(z, x, λ) ∈ ∂j(z, x, λ). So, from (11), we

have

(η(z) − ε)xp−1 ≤
d

dx
j(z, x, λ) for a.a. z ∈ Z and a.a. x ∈ [0, δ].

Integrating and taking into account that j(z, 0, λ) = 0, we have

1

p
(η(z) − ε)xp ≤ j(z, x, λ) for a.a. z ∈ Z and all x ∈ [0, δ]. (12)

Since x, u1 ∈ intK+, using Lemma 3.3 we can find t > 0 small such that

tu1(z) ≤ x(z) and tu1(z) ∈ [0, δ] for all z ∈ Z. (13)

By using (12), (13) and (9), it follows that

tp

p
(η(z) − ε)u1(z)

p ≤ j(z, tu1(z), λ) = j̃+(z, tu1(z), λ) for a.a. z ∈ Z. (14)

Hence we have

ϕ̃λ(tu1) =
tp

p
‖Du1‖

p
p −

∫

Z

j̃+(z, tu1(z), λ)dz

≤
tp

p
λ1‖u1‖

p
p −

tp

p

∫

Z

ηup1dz +
tp

p
ε‖u1‖

p
p (see (14))

=
tp

p

[
∫

Z

(λ1 − η(z))up1(z)dz + ε

]

(since ‖u1‖p = 1)

=
tp

p
[β0 + ε]

< 0.

In conclusion, ϕ̃λ(x0) = m̃λ < 0 = ϕ̃λ(0), thus, x0 6= 0.
Given y ∈ I+, we consider the function β1 : [0, 1] → R defined by

β1(t) = ϕ̃λ(ty + (1 − t)x0).

Evidently, β1 is a locally Lipschitz function and 0 is a local minimum of it. In
particular, we have

ϕ̃0
λ(x0; y − x0) ≥ 0.

Moreover, due to Chang [12, p. 106], we find u0 ∈ Lr
′

(Z), u0(z) ∈ ∂j̃+(z, x0(z), λ)
a.e. on Z, such that

0 ≤ 〈A(x0), y − x0〉 −

∫

Z

u0(z)(y − u0)(z)dz. (15)

For every h ∈W 1,p
0 (Z) and ε > 0 we define

yε,h(z) =







0, if z ∈ {x0 + εh ≤ 0}
x0(z) + εh(z), if z ∈ {0 < x0 + εh < x}

x(z), if z ∈ {x ≤ x0 + εh}.
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Clearly, yε,h ∈ I+. Using y = yε,h in (15), we have

0 ≤ ε

∫

{0<x0+εh<x}

‖Dx0‖
p−2

RN (Dx0,Dh)RN dz − ε

∫

{0<x0+εh<x}

u0hdz

−

∫

{x0+εh≤0}

‖Dx0‖
p

RN dz +

∫

{x0+εh≤0}

u0x0dz

+

∫

{x≤x0+εh}

‖Dx0‖
p−2

RN (Dx0,D(x− x0))RN dz −

∫

{x≤x0+εh}

u0(x− x0)dz

= ε

∫

Z

‖Dx0‖
p−2

RN (Dx0,Dh)RN dz − ε

∫

Z

u0hdz

−

∫

{x≤x0+εh}

‖Dx‖p−2

RN (Dx,D(x0 + εh− x))RN dz

+

∫

{x≤x0+εh}

u(x0 + εh− x)dz

(

with u ∈ Lr′

(Z), u(z) ∈ ∂j(z, x(z), λ) a.e. on Z,
u0(z) = τ (z)u(z) a.e. on {x0 = x}, τ : Z → [0, 1] measurable, see (10)

)

+

∫

{x0+εh≤0}

u0(x0 + εh)dz +

∫

{x≤x0+εh}

(u− u0)(x− x0 − εh)dz

−

∫

{x0+εh≤0}

‖Dx0‖
p

RN dz − ε

∫

{x0+εh≤0}

‖Dx0‖
p−2

RN (Dx0, Dh)RN dz

+

∫

{x≤x0+εh}

(‖Dx‖p−2

RN Dx− ‖Dx0‖
p−2

RN Dx0, D(x0 − x))RN dz

+ε

∫

{x≤x0+εh}

(‖Dx‖p−2

RN Dx− ‖Dx0‖
p−2

RN Dx0,Dh)RN dz. (16)

Since x ∈ intK+ is an upper solution for the problem (Pλ), we have

−

∫

{x≤x0+εh}

‖Dx‖p−2

RN (Dx,D(x0 +εh−x))RN dz+

∫

{x≤x0+εh}

u(x0 +εh−x)dz ≤ 0. (17)

Due to hypothesis (Hj)(vi) (sign condition) and (10), we have
∫

{x0+εh≤0}

u0(x0 + εh)dz ≤ 0. (18)

Recall that x ∈ intK+ and x0 ≤ x. Hence
∫

{x≤x0+εh}

(u − u0)(x− x0 − εh)dz =

∫

{x0≤x≤x0+εh}

(u− u0)(x − x0 − εh)dz =

=

∫

{x0=x; x≤x0+εh}

(u − u0)(x − x0 − εh)dz+

+

∫

{x0<x≤x0+εh}

(u − u0)(x − x0 − εh)dz

≤

∫

{x0<x≤x0+εh}

(u− u0)(x− x0 − εh)dz

(since u0(z) = τ(z)u(z) a.e. on {x0 = x} with τ : Z → [0, 1] measurable)

≤ c1

∫

{x0<x≤x0+εh}

(x0 + εh− x)dz for some c1 > 0 (see (Hj)(iii))

≤ εc1

∫

{x0<x≤x0+εh}

hdz (since x0 ≤ x). (19)
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Recalling that the operator A is monotone (in fact, strictly monotone), we have
∫

{x≤x0+εh}

(‖Dx‖p−2
RN Dx− ‖Dx0‖

p−2
RN Dx0, D(x0 − x))RN dz ≤ 0. (20)

We return to the estimation (16) and use (17)-(20), obtaining

0 ≤ ε

∫

Z

‖Dx0‖
p−2
RN (Dx0, Dh)RNdz − ε

∫

Z

u0h

+εc1

∫

{x0<x≤x0+εh}

hdz − ε

∫

{x0+εh≤0}

‖Dx0‖
p−2
RN (Dx0, Dh)RNdz

+ε

∫

{x≤x0+εh}

(‖Dx‖p−2
RN Dx− ‖Dx0‖

p−2
RN Dx0, Dh)RNdz. (21)

By | · |N we denote the Lebesgue measure on R
N . We have

|{x0 + εh ≥ x > x0}|N → 0 as ε→ 0+. (22)

By applying Stampacchia’s theorem (see Gasiński-Papageorgiou [27, p. 195-196]),
we know that

Dx0(z) = 0 a.e. on {x0 = 0} and Dx0(z) = Dx(z) a.e. on {x0 = x}. (23)

So, if we divide (21) with ε > 0 and let ε→ 0+, using (22) and (23), we obtain

0 ≤ 〈A(x0), h〉 −

∫

Z

u0hdz. (24)

Since h ∈ W 1,p
0 (Z) was arbitrary, from (24) we infer that A(x0) = u0, i.e.,

−△px0(z) = u0(z) a.e. on Z, x0|∂Z = 0, x0 6= 0.

As before, nonlinear regularity theory and the strong maximum principle imply
that x0 ∈ intK+ (note that by hypothesis (Hj)(vi) and (10), u0(z) ≥ 0 a.e. on Z).

Since λ ∈ (0, λ∗) and u0(z) ∈ ∂j̃+(z, x0(z), λ) a.e. on Z, from (10) and hypothesis
(Hj)(iii) we have

u0(z) ≤ a(z, λ) + c|x0(z)|
r−1

≤ ‖a(·, λ)‖∞ + c‖x0‖
r−1
∞

≤ ‖a(·, λ)‖∞ + c‖x‖r−1
∞

< ξp−1
1 (see (7)). (25)

We know that

−△px0(z) = u0(z) and −△px(z) = ξp−1
1 a.e. on Z. (26)

By (25), (26) and Guedda-Véron [28, Proposition 2.2], we have

x0(z) < x(z) for all z ∈ Z and
∂x

∂n
(z) <

∂x0

∂n
(z) for all z ∈ ∂Z,

i.e., x−x0 ∈ intK+. Also recall that x0 ∈ intK+. Therefore, we can find δ > 0 such
that

x− (x0 +B
C1

0(Z)
δ ) ⊂ intK+ (27)

and

x0 +B
C1

0(Z)
δ ⊂ intK+, (28)

where B
C1

0(Z)
δ = {x ∈ C1

0 (Z) : ‖x‖C1
0
(Z) < δ}.
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Combining (27), (28) and (9), we deduce that x0 ∈ intK+ is a local C1
0 (Z)-

minimizer of ϕλ. Therefore, by Kyritsi-Papageorgiou [32, Proposition 3] (which is
actually a nonsmooth extension of the well-known result of Brézis-Nirenberg [7])

we infer that x0 ∈ intK+ is also a local W 1,p
0 (Z)-minimizer of ϕλ, so a solution of

(Pλ).
Similarly, working on the negative semiaxis, we produce v ∈ −intK+ a lower

solution for problem (Pλ). Now, v = 0 is an upper solution (in fact, it is a solution

due to (Hj)(vi)). Thus, we fix the pair {v, 0}. Introducing a function j̃− in a similar

way as we did in (9) for j̃+, and defining its corresponding functional ϕ̃λ, we obtain
a second solution v0 = v0(λ) ∈ −intK+ of problem (Pλ) which is a local minimizer
of ϕλ. This concludes the proof of Theorem 3.1. �

Using the two solutions x0 and v0 from Theorem 3.1 and considering a suitable
modification of the Euler functional ϕλ, we will produce two more solutions of
constant sign, one positive and the other negative, as we stated in Theorem 3.2.
Our goal will be achieved by proving three Propositions.

For this purpose, let σ± : R → R be the truncation functions defined by

σ+(x) =

{

0, if x ≤ 0
x, if x > 0

and σ−(x) =

{

x, if x < 0
0, if x ≥ 0.

Let

ĵ+(z, x, λ) = j(z, σ+(x) + x0(z), λ) and ĵ−(z, x, λ) = j(z, σ−(x) + v0(z), λ).

Clearly,
• for all (x, λ) ∈ R × (0, λ), z 7→ ĵ±(z, x, λ) are both measurable;

• for a.a. z ∈ Z and all λ ∈ (0, λ), x 7→ ĵ±(z, x, λ) are both locally Lipschitz.
Moreover, the nonsmooth chain rule implies that

∂ĵ+(z, x, λ) ⊆







{0}, if x < 0
{τj(z, x0(z), λ) : τ ∈ [0, 1]}, if x = 0
∂j(z, x+ x0(z), λ), if x > 0

(29)

and

∂ĵ−(z, x, λ) ⊆







∂j(z, x+ v0(z), λ), if x < 0
{τj(z, v0(z), λ) : τ ∈ [0, 1]}, if x = 0
{0}, if x > 0.

(30)

For every λ ∈ (0, λ) we consider the locally Lipschitz functions ψ±
λ : W 1,p

0 (Z) → R

defined by

ψ+
λ (x) =

1

p

[

‖D(x+ x0)‖
p
p − ‖Dx0‖

p
p

]

−

∫

Z

ĵ+(z, x(z), λ)dz +

∫

Z

u0x
−dz + ξ0λ,

and

ψ−
λ (x) =

1

p

[

‖D(x+ v0)‖
p
p − ‖Dv0‖

p
p

]

−

∫

Z

ĵ−(z, x(z), λ)dz −

∫

Z

w0x
+dz + ξ1λ,

where

ξ0λ =

∫

Z

j(z, x0(z), λ)dz, ξ1λ =

∫

Z

j(z, v0(z), λ)dz

and
A(x0) = u0, A(v0) = w0,

with u0 ∈ Lr
′

(Z), u0(z) ∈ ∂j(z, x0(z), λ) a.e. on Z (as in (26)), and w0 ∈ Lr
′

(Z),
w0(z) ∈ ∂j(z, v0(z), λ) a.e. on Z.
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Proposition 3.1. If hypotheses (Hj) hold and λ ∈ (0, λ∗), then ψ±
λ both satisfy the

nonsmooth PS-condition.

Proof. We do the proof for ψ+
λ , the proof for ψ−

λ being similar. Let {xn}n≥1 ⊂

W 1,p
0 (Z) be a sequence such that |ψ+

λ (xn)| ≤ M1 for some M1 > 0, all n ≥ 1 and

mψ+

λ
(xn) → 0. Clearly, we can find x∗n ∈ ∂ψ+

λ (xn) such that mψ+

λ
(xn) = ‖x∗n‖.

Then

x∗n = A(xn + x0) − un − ûn,

with un ∈ Lr
′

(Z), un(z) ∈ ∂ĵ+(z, xn(z), λ) a.e. on Z and

ûn(z) =







u0(z), if xn(z) < 0
{τu0(z) : τ ∈ [0, 1]}, if xn(z) = 0
0, if xn(z) > 0.

(31)

Hence we have |〈x∗n, v〉| ≤ εn‖v‖ for all v ∈W 1,p
0 (Z) with εn → 0+, i.e.,

∣

∣

∣

∣

〈A(xn + x0), v〉 −

∫

Z

unvdz −

∫

Z

ûnvdz

∣

∣

∣

∣

≤ εn‖v‖. (32)

Put the test function v = −x−n ∈ W 1,p
0 (Z) in (32). Then

∣

∣

∣

∣

〈A(xn + x0),−x
−
n 〉 +

∫

Z

unx
−
n dz +

∫

Z

ûnx
−
n dz

∣

∣

∣

∣

≤ εn‖x
−
n ‖. (33)

Note that

A(xn + x0) = A(x+
n + x0) +A(x0 − x−n ) −A(x0). (34)

Recall that

Dx+
n (z) =

{

Dxn(z), for a.a. z ∈ {xn > 0}
0, for a.a. z ∈ {xn ≤ 0}

Dx−n (z) =

{

0, for a.a. z ∈ {xn ≥ 0}
−Dxn(z), for a.a. z ∈ {xn < 0}.

(35)

Due to (34), we have

〈A(xn + x0),−x
−
n 〉 = 〈A(x+

n + x0),−x
−
n 〉 + 〈A(x0 − x

−
n ),−x−

n 〉

−〈A(x0),−x
−
n 〉

= 〈A(x0 − x
−
n ),−x−

n 〉 (see (35))

≥ ‖D(x0 − x
−
n )‖p

p − ‖D(x0 − x
−
n )‖p−1

p ‖Dx0‖p. (36)

From (29), we have
∫

Z

un(z)x
−
n (z)dz = 0. (37)

Returning to (33) and using (36), (31) and (37), we obtain

‖D(x0 − x−n )‖pp ≤ ‖D(x0 − x−n )‖p−1
p ‖Dx0‖p + c2‖Dx

−
n ‖p (38)

for some c2 > 0 and all n ≥ 1. From (38) it follows that {x−n }n≥1 ⊂ W 1,p
0 (Z) is

bounded. From the choice of the sequence {xn}n≥1 ⊂W 1,p
0 (Z) we have

µ

p

[

‖D(xn + x0)‖
p
p − ‖Dx0‖

p
p

]

−

∫

Z

µj(z, x+
n +x0, λ)dz +

∫

Z

µu0x
−
n dz+µξ

0
λ ≤ µM1 (39)

for all n ≥ 1. Note that

‖D(xn + x0)‖
p
p − ‖Dx0‖

p
p =
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= [‖D(x+
n + x0)‖

p
p − ‖Dx0‖

p
p] + [‖D(x0 − x−n )‖pp − ‖Dx0‖

p
p] (40)

We use (40) in (39). Because {x−n }n≥1 ⊂W 1,p
0 (Z) is bounded, we have

µ

p
‖D(x+

n + x0)‖
p
p −

∫

Z

µj(z, x+
n + x0, λ)dz ≤M2 (41)

for some M2 > 0 and all n ≥ 1. Now, we put the test function x+
n + x0 ∈ W 1,p

0 (Z)
in (32). Then

− ‖D(x+
n + x0)‖

p
p +

∫

Z

un(x
+
n + x0)dz ≤ c3‖x

+
n + x0‖ + c4 (42)

for some c3, c4 > 0 and all n ≥ 1. Since un(z) ∈ ∂ĵ+(z, xn(z), λ) a.e. on Z, because
of (29), we have

un(z)(−(x+
n + x0)) ≤ j0(z, (x+

n + x0)(z), λ;−(x+
n + x0)) a.e. on {xn > 0}.

Therefore,

un(z)(x+
n + x0) ≥ −j0(z, (x+

n + x0)(z), λ;−(x+
n + x0)) a.e. on {xn > 0}. (43)

From hypothesis (Hj)(vi) (sign condition) and (29), we have

un(z)x0(z) ≥ 0 a.e. on {xn = 0}, (44)

and

un(z)(−(x+
n + x0)(z)) = 0 a.e. on {xn < 0}. (45)

Adding (41) and (42) and using (43)-(45), we obtain
(

µ

p
− 1

)

‖D(x+
n + x0)‖

p
p −

∫

{xn>0}

[µj(z, xn + x0, λ) + j
0(z, (xn + x0), λ;−(xn + x0))]dz

≤M3 + c5‖x
+
n + x0‖

for some M3, c5 > 0 and all n ≥ 1. Using hypotheses (Hj)(iii), (v), it follows that
(

µ

p
− 1

)

‖D(x+
n + x0)‖

p
p ≤M4 + c5‖x

+
n + x0‖

for some M4 > 0 and all n ≥ 1. Thus, the sequence {x+
n }n≥1 ⊂W 1,p

0 (Z) is bounded

(recall µ > p). Consequently, the sequence {xn}n≥1 ⊂W 1,p
0 (Z) is bounded.

Now, passing to a suitable subsequence if necessarily, we may assume that xn ⇀ x
in W 1,p

0 (Z), xn → x in Lr(Z), xn(z) → x(z) a.e. on Z and |xn(z)| ≤ k(z) for
a.a. z ∈ Z and all n ≥ 1, with k ∈ Lr(Z)+. From the choice of the sequence

{xn}n≥1 ⊂W 1,p
0 (Z) (see (32)), we have

|〈A(xn + x0), xn − x〉 −

∫

Z

un(xn − x)dz −

∫

Z

ûn(xn − x)dz| ≤ εn‖xn − x‖, (46)

with εn → 0+. Clearly
∫

Z

un(xn − x)dz → 0 and

∫

Z

ûn(xn − x)dz → 0 as n→ ∞.

Therefore, (46) implies

lim
n→∞

〈A(xn + x0), xn − x〉 = 0.

Since xn ⇀ x in W 1,p
0 (Z), from Lemma 3.5, we infer that xn → x in W 1,p

0 (Z), i.e.
ψ+
λ satisfies the nonsmooth PS-condition. �
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Proposition 3.2. If hypotheses (Hj) hold, λ ∈ (0, λ∗) and 2 ≤ p, then we can find
ρ > 0 such that

inf{ψ+
λ (x) : ‖x‖ = ρ} = γ

+
λ (ρ) > 0 and inf{ψ−

λ (x) : ‖x‖ = ρ} = γ
−
λ (ρ) > 0.

Proof. Again we do the proof for ψ+
λ , the proof for ψ−

λ being similar. From Theorem
3.1, we know that x0 ∈ intK+ is a local minimizer of ϕλ. We can always assume
that x0 is an isolated critical point of ϕλ (otherwise, we have a whole sequence of
distinct positive solutions of (Pλ)). Hence we can find a number ρ0 > 0 such that

ϕλ(x0) < ϕλ(y) and 0 /∈ ∂ϕλ(y) for all y ∈ Bρ0(x0) \ {x0}. (47)

We claim that for all ρ ∈ (0, ρ0), we have

inf{ϕλ(x) : Bρ0(x0) \Bρ(x0)} > ϕλ(x0). (48)

We proceed indirectly. So suppose that the claim is not true. Then we can find a
sequence {xn}n≥1 ⊂ Bρ0(x0) \Bρ(x0) such that limn→∞ ϕλ(xn) = ϕλ(x0). Clearly,

{xn}n≥1 ⊂ W 1,p
0 (Z) is bounded and so we may assume that xn ⇀ x̃ in W 1,p

0 (Z)

and xn → x̃ in Lr(Z) (recall that r < p∗). We have x̃ ∈ Bρ0(x0). Recalling that ϕλ
is sequentially weakly lower semicontinuous, we have

ϕλ(x̃) ≤ lim
n→∞

ϕλ(xn) = ϕλ(x0).

Due to (47), x̃ = x0.
By virtue of the Lebourg mean value theorem (see Clarke [13, Theorem 2.3.7]),

we have

ϕλ(xn) − ϕλ

(

xn + x0

2

)

=

〈

x∗n,
xn − x0

2

〉

with x∗n ∈ ∂ϕλ
(

tnxn + (1 − tn)
xn+x0

2

)

, and tn ∈ (0, 1), n ≥ 1. We know that

x∗n = A

(

tnxn + (1 − tn)
xn + x0

2

)

− ũn

with ũn(z) ∈ ∂j
(

z, tnxn(z) + (1 − tn)(
xn+x0

2 )(z), λ
)

a.a on Z, and ũn ∈ Lr
′

(Z)
(1/r + 1/r′ = 1). Hence

ϕλ(xn) − ϕλ

(xn + x0

2

)

=
〈

A
(

tnxn + (1 − tn)
xn + x0

2

)

,
xn − x0

2

〉

−

∫

Z

ũn
xn − x0

2
dz. (49)

Since xn → x0 in Lr(Z) and by hypothesis (Hj)(iii), {ũn}n≥1 ⊂ Lr
′

(Z) is bounded,
we have

lim
n→∞

∫

Z

ũn
xn − x0

2
dz = 0. (50)

Also because xn+x0

2 ⇀ x0 in W 1,p
0 (Z) and ϕλ is sequentially weakly lower semicon-

tinuous, we have

ϕλ(x0) ≤ lim inf
n→∞

ϕλ

(

xn + x0

2

)

. (51)

Returning to (49), passing to the limit as n→ ∞ and using (50), (51) and the fact
that limn→∞ ϕλ(xn) = ϕλ(x0), we obtain

lim sup
n→∞

〈

A

(

tnxn + (1 − tn)
xn + x0

2

)

,
xn − x0

2

〉

≤ 0.
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Multiplying the above inequality by the term (1 + tn) we obtain

lim sup
n→∞

〈

A
(

tnxn + (1 − tn)
xn + x0

2

)

, tnxn + (1 − tn)
xn + x0

2
− x0

〉

≤ 0. (52)

We may assume that tn → t∗ ∈ [0, 1]. Therefore, tnxn + (1 − tn)
xn+x0

2 ⇀ x0 in

W 1,p
0 (Z). From (52) and Lemma 3.5 if follows that

tnxn + (1 − tn)
xn + x0

2
→ x0 in W 1,p

0 (Z). (53)

But note that
∥

∥

∥

∥

tnxn + (1 − tn)
xn + x0

2
− x0

∥

∥

∥

∥

= (1 + tn)

∥

∥

∥

∥

xn − x0

2

∥

∥

∥

∥

≥
ρ

2
, (54)

since {xn}n≥1 ⊂ Bρ0(x0) \Bρ(x0). Comparing (53) with (54), we have a contradic-
tion. This proves that (48) is true.

By definition, for every x ∈ W 1,p
0 (Z) we have

ψ
+
λ (x) =

1

p

[

‖D(x+ x0)‖
p
p − ‖Dx0‖

p
p

]

−

∫

Z

ĵ+(z, x(z), λ)dz +

∫

Z

u0x
−
dz + ξ

0
λ

=
1

p

[

‖D(x+ + x0)‖
p
p − ‖Dx0‖

p
p

]

+
1

p

[

‖D(x0 − x
−)‖p

p − ‖Dx0‖
p
p

]

−

∫

Z

ĵ+(z, x(z), λ)dz +

∫

Z

u0x
−
dz + ξ

0
λ. (55)

Recall that A(x0) = u0. Hence
∫

Z

u0x
−dz =

∫

Z

‖Dx0‖
p−2
RN (Dx0, Dx

−)RN dz. (56)

We use (56) and (55), obtaining

ψ+
λ (x) =

1

p

[

‖D(x0 − x−)‖pp − ‖Dx0‖
p
p

]

+

∫

Z

‖Dx0‖
p−2
RN (Dx0, Dx

−)RNdz

+
1

p

[

‖D(x+ + x0)‖
p
p − ‖Dx0‖

p
p

]

−

∫

Z

j(z, x+ + x0, λ)dz + ξ0λ

=
1

p

[

‖D(x0 − x−)‖pp − ‖Dx0‖
p
p

]

+

∫

Z

‖Dx0‖
p−2
RN (Dx0, Dx

−)RNdz

+ϕλ(x
+ + x0) − ϕλ(x0). (57)

Let ρ ∈ (0, ρ0) and suppose that ‖x‖ = ρ. Then we must have either ‖x+‖ ≥ ρ/2 or
‖x−‖ ≥ ρ/2.

First, we assume that ‖x+‖ ≥ ρ/2. Then from (48) we can find β1
λ = β1

λ(ρ) > 0
such that

ϕλ(x
+ + x0) − ϕλ(x0) ≥ β1

λ > 0. (58)

Also from the monotonicity of the gradient of a convex function, we have

1

p

[

‖D(x0 − x
−)‖p

p − ‖Dx0‖
p
p

]

+

∫

Z

‖Dx0‖
p−2

RN (Dx0,Dx
−)RN dz ≥ 0. (59)

Using (58) and (59) in (57), we obtain

ψ+
λ (x) ≥ β1

λ > 0 for all ‖x‖ = ρ with ‖x+‖ ≥
ρ

2
(ρ ∈ (0, ρ0)). (60)

Now, we assume that ‖x−‖ ≥ ρ/2. Then since ‖x‖ = ρ < ρ0, we have

ϕλ(x
+ + x0) ≥ ϕλ(x0) (see (47)). (61)
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Also, recall that for 2 ≤ p and ξ1, ξ2 ∈ R
N , we have a Clarkson type inequality

‖ξ2‖
p

RN − ‖ξ1‖
p

RN ≥ p‖ξ1‖
p−2
RN (ξ1, ξ2 − ξ1)RN +

1

2p−1 − 1
‖ξ1 − ξ2‖

p

RN . (62)

Applying (62) with

ξ1 = Dx0(z) and ξ2 = D(x0 − x−)(z)

and integrating on Z, we may fix β2
λ = β2

λ(ρ) > 0 such that

1

p

[

‖D(x0 − x−)‖p
p − ‖Dx0‖

p
p

]

+

∫

Z

‖Dx0‖
p−2

RN (Dx0, Dx−)
RN dz ≥ β2

λ > 0. (63)

Thus, using (61) and (63) in (57), then

ψ+
λ (x) ≥ β2

λ > 0 for all ‖x‖ = ρ with ‖x−‖ ≥
ρ

2
(ρ ∈ (0, ρ0)). (64)

From (60) and (64) we conclude that

ψ+
λ (x) ≥ γ+

λ = min{β1
λ, β

2
λ} for all x ∈ W 1,p

0 (Z) with ‖x‖ = ρ.

Similarly, we may show that there exists γ−λ = γ−λ (ρ) > 0 such that

ψ−
λ (x) ≥ γ−λ for all x ∈ W 1,p

0 (Z) with ‖x‖ = ρ.

This concludes our proof. �

Proposition 3.3. If hypotheses (Hj) hold and λ ∈ (0, λ∗), then there exist y+ =

y+(λ, ρ), y− = y−(λ, ρ) ∈ W 1,p
0 (Z) such that ‖y+‖ > ρ, ‖y−‖ > ρ, and

ψ+
λ (y+) < γ+

λ and ψ−
λ (y−) < γ−λ ,

where ρ > 0 and γ±λ are from Proposition 3.2.

Proof. Let N0 be the Lebesgue-null set, outside of which hypotheses (Hj) (ii),
(iii), (v) hold. Let z ∈ Z \N0 and |x| ≥M. We set

kλ(z, t) = j(z, tx, λ).

It is clear that t 7→ kλ(z, t) is a locally Lipschitz function and from the nonsmooth
chain rule (see Clarke [13, p. 45]), we have ∂kλ(z, t) = ∂xj(z, tx, λ)x, thus

t∂kλ(z, t) = ∂xj(z, tx, λ)tx.

Then from [12, p. 106] and hypothesis (Hj)(v), we have µkλ(z, t) ≤ tk′λ(z, t) for all
z ∈ Z \N0 and almost all t ≥ 1. Consequently,

µ

t
≤
k′λ(z, t)

kλ(z, t)
for all z ∈ Z \N0 and almost all t ≥ 1.

Integrating this last inequality from 1 to t0 > 1, we obtain tµ0kλ(z, 1) ≤ kλ(z, t0).
Consequently, we have

tµj(z, x, λ) ≤ j(z, tx, λ) for all z ∈ Z \N0 all |x| ≥M and all t ≥ 1. (65)

For x ≥M, due to (65), we have

j(z, x, λ) = j(z,
x

M
M,λ) ≥

( x

M

)µ

j(z,M, λ) (66)

and for x ≤ −M,

j(z, x, λ) = j(z,
x

−M
(−M), λ) ≥

(

|x|

M

)µ

j(z,−M,λ). (67)
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By virtue of hypothesis (Hj)(iii) we can find c6 = c6(λ) > 0 such that

|j(z, x, λ)| ≤ c6 for all z ∈ Z \N0 and all |x| ≤M. (68)

Combining (66), (67) and (68), we conclude that

j(z, x, λ) ≥ c7|x|
µ − c6 for a.a. z ∈ Z, all x ∈ R and some c7 > 0. (69)

Recall that u1 ∈ intK+. Thus, using Lemma 3.3, we can find t > 0 large enough
such that

tu1 − x0 ∈ K+ and ‖tu1 − x0‖ > ρ.

Then

ψ
+
λ (tu1 − x0) =

1

p

[

t
p‖Du1‖

p
p − ‖Dx0‖

p
p

]

−

∫

Z

j(z, tu1, λ)dz + ξ
0
λ

≤
tp

p
‖Du1‖

p
p − c7t

µ‖u1‖
µ
µ + c8 for some c8 > 0 (see (69))

≤
tp

p
λ1‖u1‖

p
p − c9t

µ‖u1‖
µ
p + c8 for some c9 > 0 (since µ > p).

Since µ > p, for t > 0 large, we have ‖y+‖ > ρ and

ψ+
λ (tu1 − x0) < 0.

Thus, for t > 0 large and y+ = tu1 − x0, we have

ψ+
λ (y+) < 0 < γ+

λ .

Similarly, we obtain y− ∈ W 1,p
0 (Z) such that ψ−

λ (y−) < 0 < γ−λ . �

Proof of Theorem 3.2. From Theorem 3.1, we already have two solutions x0 ∈ intK+

and v0 ∈ −intK+ when λ ∈ (0, λ∗). Note that Propositions 3.1, 3.2 and 3.3 permit
the use of Theorem 2.3 for the functionals ψ±

λ . As before, we consider only the case

of ψ+
λ , the other one is analogous. Therefore, we can find x̃ ∈W 1,p

0 (Z) such that

0 ∈ ∂ψ+
λ (x̃) and ψ+

λ (0) = 0 < γ+
λ ≤ ψ+

λ (x̃). (70)

In particular, x̃ 6= 0. From the inclusion in (70), we have

A(x̃ + x0) = ũ+ û0 (71)

with

ũ ∈ Lr
′

(Z), ũ(z) ∈ ∂ĵ+(z, x̃(z), λ) a.e. on Z (72)

and

û0(z) =







u0(z), if x̃(z) < 0
{τu0(z) : τ ∈ [0, 1]}, if x̃(z) = 0
0, if x̃(z) > 0.

(73)

In (71) we act with the test function −x̃− ∈W 1,p
0 (Z). Hence

〈A(x̃ + x0),−x̃
−〉 =

∫

Z

ũ(−x̃−)dz +

∫

Z

û0(−x̃
−)dz. (74)

By using (72) and (29), we infer that
∫

Z

ũ(−x̃−)dz = 0. (75)

On th other hand, recall that A(x0) = u0. From this fact and (73), it follows that
∫

Z

û0(−x̃
−)dz =

∫

Z

u0(−x̃
−)dz = 〈A(x0),−x̃

−〉. (76)
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Returning to (74) and use (75) and (76), we obtain

〈A(x̃ + x0) −A(x0),−x̃
−〉 = 0. (77)

Now, recall that (see also (34))

A(x̃ + x0) = A(x̃+ + x0) +A(x0 − x̃−) −A(x0). (78)

Using (78) and (77) one has

〈A(x̃+ + x0) −A(x0),−x̃
−〉 + 〈A(x0 − x̃−) −A(x0),−x̃

−〉 = 0. (79)

Due to (35), we have

〈A(x̃+ + x0) −A(x0),−x̃
−〉 = 0.

So, by (79), it follows that

〈A(x0 − x̃−) −A(x0),−x̃
−〉 = 0. (80)

On the other hand, as we already mentioned, the nonlinear operator A is strictly
monotone. Hence from (80) we deduce that

x0 − x̃− = x0, i.e., x̃− = 0 and so x̃ ≥ 0, x̃ 6= 0.

Let x̂ = x̃+ x0. It is clear that x̂ ≥ x0 and x̂ 6= x0. We have two possibilities:
1) z ∈ {x̃ = 0}. Then

−△px̂(z) = −△px0(z) = A(x0)(z) = u0(z)

∈ ∂j(z, x0(z), λ)

= ∂j(z, x̂(z), λ).

2) z ∈ {x̃ > 0}. In this case we have

−△px̂(z) = ũ(z) + û0(z) (see (71))

= ũ(z) (see (73))

∈ ∂ĵ+(z, x̃(z), λ) (see (72))

⊆ ∂j(z, x̃(z) + x0(z), λ) (see (29))

= ∂j(z, x̂(z), λ).

Therefore, in both cases we have

−△px̂(z) = û(z) ∈ ∂j(z, x̂(z), λ) a.e. on Z, x̂|∂Z = 0,

so, x̂ ∈ intK+ (from the strong maximum principle) and it is a solution for (Pλ).
Similarly working with ψ−

λ and using this time (30), we obtain v̂ ∈ −intK+,
v̂ ≤ v0, v̂ 6= v0 another constant sign solution for (Pλ). �

Remark 4. Let j(z, x, λ) = λ
q
|x|q + 1

r
|x|r with 1 < q < p < r < p∗. Clearly,

j satisfies hypotheses (Hj). Now, ∂j(z, x, λ) = {λ|x|q−2x + |x|r−2x} is the clas-
sical convex-concave nonlinearity. This problem has been extensively studied by
Ambrosetti-Brézis-Cerami [2], Bartsch-Willem [6] (p = 2), Ambrosetti-Garcia Azo-
rero-Peral Alonso [3] (for problem with radial p - Laplacian).

Now, let j(z, x, λ) = (2 + sgn(x))
(

λ
q
|x|q + 1

r
|x|r

)

. It also verifies the hypotheses

(Hj); in addition, it has no symmetry property.
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4. A nodal solution for problem (Pλ). In this section we establish the existence
of a nodal (sign-changing) solution for problem (Pλ) besides the two (respectively,
four) constant-sign solutions from Theorem 3.1 and 3.2, respectively. Here, we
consider the special case when the potential j(z, x, λ) has the form

j(z, x, λ) =

∫ x

0

f(z, s, λ)ds, (81)

where the function x 7→ f(z, x, λ) has possible jumping discontinuities. To be
precise, we assume

(Hf): f : Z × R × (0, λ) → R, with λ > 0, is a function such that

(i) for all λ ∈ (0, λ) the function (z, x) 7→ f(z, x, λ) is measurable;

(ii) for almost all z ∈ Z and all λ ∈ (0, λ), the function x 7→ f(z, x, λ) has
jumping discontinuities and it is continuous at 0;

(iii) for almost all z ∈ Z, all (x, λ) ∈ R × (0, λ), we have

|f(z, x, λ)| ≤ a(z, λ) + c|x|r−1

with a(·, λ) ∈ L∞(Z)+, ‖a(·, λ)‖∞ → 0 as λ→ 0+, c > 0, p < r < p∗;

(iv) for every λ ∈ (0, λ) there exists a function η̂ = η̂(λ) ∈ L∞(Z)+ such that

λ2 < lim inf
x→0

fl(z, x, λ)

|x|p−2x
≤ lim sup

x→0

fu(z, x, λ)

|x|p−2x
≤ η̂(z)

uniformly for a.a. z ∈ Z, where fl(z, x, λ) = lim infx′→x f(z, x′, λ) and
fu(z, x, λ) = lim supx′→x f(z, x′, λ).

(v) for every λ ∈ (0, λ) there exist M = M(λ) > 0 and µ = µ(λ) > p such
that

0 < µj(z, x, λ) ≤ max{fl(z, x, λ)x, fu(z, x, λ)x}

for a.a. z ∈ Z, all |x| ≥M (j being from (81));

(vi) for a.a. z ∈ Z, all x ∈ R and all λ ∈ (0, λ), we have

f(z, x, λ)x ≥ 0 (sign condition).

Remark 5. Under hypotheses (Hf ), the function j defined in (81) is well-defined,

(z, x) 7→ j(z, x, λ) is measurable, and for almost all z ∈ Z and all λ ∈ (0, λ),
x 7→ j(z, x, λ) is locally Lipschitz. Moreover, for a.a. z ∈ Z, all x ∈ R and all

λ ∈ (0, λ) we have
∂j(z, x, λ) = [fl(z, x, λ), fu(z, x, λ)], (82)

(see Chang [12]). In particular, since f(z, ·, λ) is continuous in the origin, we have
∂j(z, 0, λ) = {0}. Consequently, if f verifies (Hf ), then the function j defined by
(81) fulfills (Hj) as well.

Now, we are ready to state the theorems for nodal (sign-changing) solutions. Let
λ∗ > 0 from Theorem 3.1.

Theorem 4.1. If hypotheses (Hf ) hold and λ ∈ (0, λ∗), problem (Pλ) has at least
three nontrivial solutions x0 = x0(λ) ∈ intK+, v0 = v0(λ) ∈ −intK+, and y0 ∈
C1

0 (Z) a nodal solution.

Theorem 4.2. If hypotheses (Hf ) hold, 2 ≤ p < ∞, and λ ∈ (0, λ∗), problem
(Pλ) has at least five nontrivial solutions x0 = x0(λ) ∈ intK+, x̂ = x̂(λ) ∈ intK+,
x0 ≤ x̂, x0 6= x̂, v0 = v0(λ) ∈ −intK+, v̂ = v̂(λ) ∈ −intK+, v̂ ≤ v0, v0 6= v̂, and
y0 ∈ C1

0 (Z) a nodal solution.
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In this section we deal with the proof of these results. To do this, we follow the
approach first suggested by Dancer-Du [19] for semilinear problems (i.e., p = 2),
with a smooth potential (i.e., j(z, ·, λ) ∈ C1(R)).

The strategy of our proof is the following. Using the method of upper-lower
solutions, we produce a smallest positive solution y+ and a biggest negative solu-
tion y− (see Proposition 4.3). Then we form the order interval [y−, y+] and using
variational techniques on suitable truncated functionals, we generate a solution y0
in [y−, y+], different than the two endpoints y−, y+. If y0 6= 0, then necessarily
y0 will be sign-changing. In order to show the nontriviality of y0, we will use the
alternative characterization of the second eigenvalue λ2 > 0 given by Cuesta-De
Figueiredo-Gossez [15] and also Theorem 2.5 (the nonsmooth second deformation
theorem).

Now, we start to implement the strategy outlined above. We say that a nonempty
set S ⊆W 1,p(Z) is downward (upward) directed if for every elements y1, y2 ∈ S there
exists y ∈ S (z ∈ S) such that y ≤ y1 and y ≤ y2 (y1 ≤ z and y2 ≤ z).

Let us fix λ ∈ (0, λ∗).

Lemma 4.3. The set of upper solutions for problem (Pλ) is downward directed.
Moreover, if y1 and y2 are upper solutions for problem (Pλ) then min{y1, y2} is also
an upper solution for problem (Pλ).

Proof. Let y1 and y2 two upper solutions for problem (Pλ). Given ε > 0, we consider
the truncation function ξε : R → R defined by

ξε(s) =







−ε, if s ≤ −ε
s, if s ∈ [−ε, ε]
ε, if s ≥ ε.

The function ξε is clearly Lipschitz continuous, thus the well-known theorem of
Marcus-Mizel implies that ξε((y1 − y2)

−) ∈W 1,p(Z). By the chain rule for Sobolev
functions one has

Dξε((y1 − y2)
−) = ξ′ε((y1 − y2)

−)D(y1 − y2)
−. (83)

Consider the test function ψ ∈ C1
c (Z) with ψ ≥ 0. Then ξε((y1−y2)−)ψ ∈ W 1,p(Z)∩

L∞(Z) and

Dξε((y1 − y2)
−ψ) = ψDξε((y1 − y2)

−) + ξε((y1 − y2)
−)Dψ. (84)

Since y1 and y2 are upper solutions for problem (Pλ), from Definition 2.6 (a), we
have

〈A(y1), ξε((y1 − y2)
−)ψ〉 ≥

∫

Z

u1ξε((y1 − y2)
−)ψdz

and

〈A(y2), (ε− ξε((y1 − y2)
−))ψ〉 ≥

∫

Z

u2(ε− ξε((y1 − y2)
−))ψdz

for some uk ∈ Lr
′

(Z) with uk ∈ ∂j(z, yk(z), λ) a.e. on Z, k = 1, 2. Adding the
above inequalities, we obtain

〈A(y1), ξε((y1 − y2)
−)ψ〉 + 〈A(y2), (ε− ξε((y1 − y2)

−))ψ〉

≥

∫

Z

u1ξε((y1 − y2)
−)ψdz +

∫

Z

u2(ε− ξε((y1 − y2)
−))ψdz. (85)
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Using (83) and (84), we have

〈A(y1), ξε((y1 − y2)
−)ψ〉

=

∫

Z

‖Dy1‖
p−2
RN (Dy1, D((y1 − y2)

−))RN ξ′ε((y1 − y2)
−)ψdz

+

∫

Z

‖Dy1‖
p−2
RN (Dy1, Dψ)RN ξε((y1 − y2)

−)dz

= −

∫

{−ε≤y1−y2≤0}

‖Dy1‖
p−2
RN (Dy1, D(y1 − y2))RNψdz

+

∫

Z

‖Dy1‖
p−2
RN (Dy1, Dψ)RN ξε((y1 − y2)

−)dz (86)

and in a similar way

〈A(y2), (ε− ξε((y1 − y2)
−))ψ〉

=

∫

{−ε≤y1−y2≤0}

‖Dy2‖
p−2
RN (Dy2, D(y1 − y2))RNψdz

+

∫

Z

‖Dy2‖
p−2
RN (Dy2, Dψ)RN (ε− ξε((y1 − y2)

−))dz. (87)

According to (86) and (87), and recalling that ψ ≥ 0, we obtain

〈A(y1), ξε((y1 − y2)
−)ψ〉 + 〈A(y2), (ε− ξε((y1 − y2)

−))ψ〉

=

∫

{−ε≤y1−y2≤0}

(‖Dy2‖
p−2

RN Dy2 − ‖Dy1‖
p−2

RN Dy1,D(y1 − y2))RNψdz

+

∫

Z

‖Dy1‖
p−2

RN (Dy1, Dψ)RN ξε((y1 − y2)
−)dz

+

∫

Z

‖Dy2‖
p−2

RN (Dy2, Dψ)RN (ε− ξε((y1 − y2)
−))dz

≤

∫

Z

‖Dy1‖
p−2

RN (Dy1,Dψ)RN ξε((y1 − y2)
−)dz

+

∫

Z

‖Dy2‖
p−2

RN (Dy2, Dψ)RN (ε− ξε((y1 − y2)
−))dz. (88)

We return to (85) and (88) and dividing by ε > 0, we obtain
∫

Z

‖Dy1‖
p−2
RN (Dy1, Dψ)RN

1

ε
ξε((y1 − y2)

−)dz

+

∫

Z

‖Dy2‖
p−2
RN (Dy2, Dψ)RN (1 −

1

ε
ξε((y1 − y2)

−))dz

≥

∫

Z

u1
1

ε
ξε((y1 − y2)

−)ψdz +

∫

Z

u2

(

1 −
1

ε
ξε((y1 − y2)

−)

)

ψdz. (89)

One can observe that

1

ε
ξε((y1 − y2)

−(z)) → χ
{y1<y2}

(z) a.e. on Z as ε→ 0

and

χ
{y1≥y2}

= 1 − χ
{y1<y2}

.



FIVE SOLUTIONS FOR A p-LAPLACIAN EQUATION 429

Passing to the limit as ε→ 0+ in (89), we obtain
∫

{y1<y2}

‖Dy1‖
p−2

RN (Dy1,Dψ)RN dz +

∫

{y1≥y2}

‖Dy2‖
p−2

RN (Dy2,Dψ)RN dz

≥

∫

{y1<y2}

u1ψdz +

∫

{y1≥y2}

u2ψdz. (90)

Since y = min{y1, y2} ∈W 1,p(Z), we have

Dy(z) =

{

Dy1(z), for a.a. z ∈ {y1 < y2}
Dy2(z), for a.a. z ∈ {y1 ≥ y2}.

Also let u = χ
{y1<y2}

u1 +χ
{y1≥y2}

u2. Then u ∈ Lr
′

(Z) and u(z) ∈ ∂j(z, y(z), λ) a.e.

on Z. Consequently, with these notations, (90) is equivalent to
∫

Z

‖Dy‖p−2
RN (Dy,Dψ)RNdz ≥

∫

Z

uψdz. (91)

But ψ ∈ C1
c (Z)+ was arbitrary and C1

c (Z)+ is dense in W 1,p
0 (Z)+. So, (91) holds for

all ψ ∈ W 1,p
0 (Z), ψ ≥ 0 and this implies that y = min{y1, y2} is an upper solution

for problem (Pλ), which concludes the proof. �

In a similar manner we can prove

Lemma 4.4. The set of lower solutions for problem (Pλ) is upward directed. More-
over, if z1 and z2 are lower solutions for problem (Pλ) then max{z1, z2} is also a
lower solution for problem (Pλ).

Proposition 4.1. If hypotheses (Hf ) hold and λ ∈ (0, λ∗), then there exists ε0 =
ε0(λ) > 0 such that for every ε ∈ (0, ε0), the element xε = εu1 ∈ intK+ is a strict
lower solution for problem (Pλ). Similarly, vε = −εu1 ∈ −intK+ is a strict upper
solution for problem (Pλ).

Proof. We fix λ ∈ (0, λ∗). Hypothesis (Hf )(iv) implies that we can find ξ0 > λ2

and δ0 > 0 such that

ξ0x
p−1 ≤ fl(z, x, λ) for a.a. z ∈ Z and all x ∈ [0, δ0]. (92)

Recall that u1 ∈ intK+ and let γ0 ∈ (0, 1) be small such that 0 < γ0u1(z) ≤ δ0
for all z ∈ Z. Let x ∈ intK+ be the strict upper solution produced in the proof of
Theorem 3.1. Using Lemma 3.3 we can find t0 > ξ0 such that t0x−γ0ξ0u1 ∈ intK+.
Now, we choose ε0 = γ0ξ0t

−1
0 > 0 and fix ε ∈ (0, ε0). Let xε = εu1 ∈ intK+. It is

clear that 0 < xε(z) ≤ δ0 for all z ∈ Z. Hence

−△pxε(z) = λ1|xε(z)|
p−2xε(z) = λ1xε(z)

p−1

< ξ0xε(z)
p−1 (since λ1 < λ2 < ξ0 and xε ≥ 0, xε 6= 0)

≤ u(z) a.e. on Z (see (92) and (82)) (93)

for all u ∈ Lr
′

(Z) with u(z) ∈ ∂j(z, xε(z), λ) a.e. on Z. From (93) it is clear that
xε ∈ intK+ is a strict lower solution for problem (Pλ). Evidently, x− xε ∈ intK+.

A similar reasoning shows that vε = −εu1 ∈ −intK+ is a strict upper solution
for problem (Pλ). �

In the sequel, we will use the following two intervals in W 1,p
0 (Z):

[x, x] = {x ∈ W 1,p
0 (Z) : x(z) ≤ x(z) ≤ x(z) a.e. on Z};

[v, v] = {v ∈ W 1,p
0 (Z) : v(z) ≤ v(z) ≤ v(z) a.e. on Z},



430 M. FILIPPAKIS, A. KRISTÁLY AND N. S. PAPAGEORGIOU

where x is a fixed strict lower solution for problem (Pλ) (similarly, v is a strict upper
solution for problem (Pλ)), obtained in Proposition 4.1.

Proposition 4.2. If hypotheses (Hf ) hold and λ ∈ (0, λ∗), then problem (Pλ)
admits a smallest solution in [x, x] and a biggest solution in [v, v].

Proof. We deal with the existence of a smallest solution in [x, x]; the proof concern-
ing a biggest solution in [v, v] is similar.

Let S+ be the set of the solutions for problem (Pλ) belonging to the order interval
T+ = [x, x]. Without loosing the generality, we may assume that S+ 6= ∅. Indeed,
taking into account Proposition 4.1, we may fix x so small such that x0−x ∈ intK+,
where x0 ∈ intK+ is a solution for problem (Pλ) (see Theorem 3.1). In this way,
x0 ∈ S+. We divide the proof into three steps.

Step 1. The set S+ is downward directed.
To prove this, we fix x1, x2 ∈ S+. Then x1, x2 are both upper solutions for problem

(Pλ) and so by virtue of Lemma 4.3, x̃ = min{x1, x2} ∈ W 1,p
0 (Z) is also an upper

solution for problem (Pλ). Let

T̃+ = [x, x̃] = {x ∈ W 1,p
0 (Z) : x(z) ≤ x(z) ≤ x̃(z) a.e. on Z}.

Using standard truncation and penalization techniques, we may find x̃0 ∈ T̃+ a
solution for problem (Pλ) (see Gasiński-Papageorgiou [27] and references therein).
Moreover, x̃0 ∈ intK+ and

x ≤ x̃0 ≤ min{x1, x2} ≤ x,

i.e., x̃0 ∈ S+ and so S+ is downward directed.
Step 2. The set S+ contains a minimal element.

Let D be a chain in S+ (i.e., a totally ordered subset of S+). By Dunford-Schwartz
[23, Corollary 7, p. 336], we can find {xn}n≥1 ⊆ D such that

inf
n≥1

xn = inf D.

We may assume that {xn}n≥1 is decreasing. Since {xn}n≥1 ⊆ S+, we see that

‖Dxn‖p ≤M2 for some M2 > 0 and all n ≥ 1.

Hence {xn}n≥1 ⊂W 1,p
0 (Z) is bounded and we may assume that xn ⇀ ŷ in W 1,p

0 (Z)
and xn → ŷ in Lr(Z) as n→ ∞. Since {xn}n≥1 ⊆ S+, we have

A(xn) = un, n ≥ 1, (94)

with un ∈ Lr
′

(Z), un(z) ∈ ∂j(z, xn(z), λ) a.e. on Z. Hypothesis (Hf )(iii) implies

that {un} ⊂ Lr
′

(Z) is bounded. So, we may assume that

un ⇀ û in Lr
′

(Z) as n→ ∞.

From Hu-Papageorgiou [30, p. 695] and since the multifunction x 7→ ∂j(z, x, λ) has
closed graph, we have

û(z) ∈ ∂j(z, ŷ(z), λ) a.e. on Z.

In (94) we act with the test function xn − ŷ ∈ W 1,p
0 (Z) obtaining

〈A(xn), xn − ŷ〉 =

∫

Z

un(xn − ŷ)dz → 0. (95)
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Invoking Lemma 3.5, from (95), we infer that xn → ŷ in W 1,p
0 (Z). So, if in (94) we

pass to the limit as n→ ∞, we obtain

A(ŷ) = û

with û ∈ Lr
′

(Z), û(z) ∈ ∂j(z, ŷ(z), λ) a.e. on Z. Hence ŷ ∈ S+ and ŷ = inf D, i.e., ŷ
is a lower bound of D. Since D ⊆ S+ was fixed arbitrarily, invoking Zorn’s lemma,
we obtain a minimal element x∗ ∈ S+ of the set S+.

Step 3. The minimal element x∗ ∈ S+ is the smallest element of S+.
Suppose the contrary, i.e., there exists an element x∗ ∈ S+ such that x∗ 6≤ x∗.
Since S+ is downward directed (Step 1), there exists x ∈ S+ such that x ≤ x∗ and
x ≤ x∗. Since x∗ is a minimal element of S+ (Step 2), we have necessarily x = x∗,
so, x∗ ≤ x∗. But this contradicts x∗ 6≤ x∗. This concludes our proof. �

Proposition 4.3. If hypotheses (Hf ) hold and λ ∈ (0, λ∗), then problem (Pλ) has a
smallest positive solution y+ ∈ intK+ and a biggest negative solution y− ∈ −intK+.

Proof. As before, we deal only with existence of the smallest positive solution
y+ ∈ intK+; the other part goes in a similar way.

Let xn = εnu1 with εn → 0+ and set T n+ = [xn, x]. Using Proposition 4.2 we
may fix x∗n ∈ T n+ as the smallest solution for problem (Pλ) in the order interval T n+.

Recall that {x∗n}n≥1 ⊂W 1,p
0 (Z) is bounded and so we may assume that

x∗n ⇀ y+ in W 1,p
0 (Z) and x∗n → y+ in Lp(Z) as n→ ∞.

We have

A(x∗n) = u∗n, n ≥ 1, (96)

with u∗n ∈ Lr
′

(Z), u∗n(z) ∈ ∂j(z, x∗n(z), λ) a.e. on Z. In (96) we act with the test
function x∗n − y+ and as before, passing to the limit as n → ∞ and using Lemma
3.5, we have

x∗n → y+ in W 1,p
0 (Z) as n→ ∞.

We divide the proof into three steps.
Step 1. y+ 6= 0.

Suppose that y+ = 0. Then ‖x∗n‖ → 0 as n → ∞. Since x∗n 6= 0, we may set

wn =
x∗

n

‖x∗
n‖ , n ≥ 1. By passing to a suitable subsequence if necessary, we may

assume that

wn ⇀ w in W 1,p
0 (Z) and wn → w in Lp(Z) as n→ ∞.

From (96), we have

A(wn) =
u∗n

‖x∗n‖
p−1

, n ≥ 1. (97)

First, we show that the sequence
{

u∗
n

‖x∗
n‖p−1

}

n≥1
⊂ Lp

′

(Z) is bounded. Hypothesis

(Hf )(iv) implies that we can find δ > 0 such that

η ≤
u

|x|p−2x
≤ η̂(z) + 1 (98)

for a.a. z ∈ Z, 0 < |x| ≤ δ, all u ∈ ∂j(z, x, λ) (see relation (82)) with η > λ2.
Moreover, due to hypothesis (Hf )(iii), we have

|u| ≤

(

a(z, λ)

δr−1
+ c

)

|x|r−1 (99)
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for a.a. z ∈ Z, all |x| ≥ δ and all u ∈ ∂j(z, x, λ). Combining (98) and (99), we have

|u| ≤ c10(|x|
p−1 + |x|r−1)

for a.a. z ∈ Z, all x ∈ R, all u ∈ ∂j(z, x, λ), with c10 > 0. Hence

|u∗n(z)|

‖x∗n‖
p−1

≤ c10
(

1 + |x∗n(z)|r−p
)

|wn(z)|
p−1

≤ c11|wn(z)|p−1 = c11wn(z)p−1

a.e. on Z, with c11 > 0 (recall that 0 ≤ x∗n ≤ x). Consequently, the sequence is
{

u∗
n

‖x∗
n‖p−1

}

n≥1
is bounded in Lp

′

(Z).

Now, acting with the test function wn−w in (97), passing to the limit as n→ ∞

and using Lemma 3.5, we obtain wn → w in W 1,p
0 (Z). In particular, we have that

w ≥ 0 and ‖w‖ = 1.

Since the sequence
{

u∗
n

‖x∗
n‖p−1

}

n≥1
⊂ Lp

′

(Z) is bounded, we may assume that

θn =
u∗n

‖x∗n‖
p−1

⇀ θ in Lp
′

(Z) as n→ ∞. (100)

From the above facts we deduce that

θ(z) = 0 a.e. on {w = 0}. (101)

Now, we are interested on the behaviour of θ on the set {w > 0}. To do this, for
given ε > 0 and n ≥ 1, we introduce the set

En+ =

{

z ∈ Z : η − ε ≤
u∗n

x∗n(z)
p−1

≤ η̂(z) + ε

}

.

Recall that ‖x∗n‖ → 0 and, so, at least for a subsequence, we have x∗n(z) → 0+ a.e.
on {w > 0}. By virtue of hypothesis (Hf )(iv) we have

χ
En

+

(z) → 1 a.e. on {w > 0}

By the dominated convergence theorem we have
∥

∥

∥

∥

(1 − χ
En

+

)
u∗

n

‖x∗
n‖p−1

∥

∥

∥

∥

Lp′
({w>0})

→ 0

as n→ ∞. Therefore, from (100) it follows that

χ
En

+

u∗n
‖x∗n‖

p−1
⇀ θ in Lp

′

({w > 0}).

From the definition of the set En+, we have

χ
En

+

(z)(η − ε)wn(z)p−1 ≤ χ
En

+

(z)
u∗n

x∗n(z)p−1
wn(z)p−1 = χ

En
+

(z)θn(z)

≤ χ
En

+

(z)(η̂(z) + ε)wn(z)p−1 a.e. on {w > 0}.

Taking weak limits in Lp
′

({w > 0}), using Mazur’s lemma and letting ε → 0+, we
obtain

ηw(z)p−1 ≤ θ(z) ≤ η̂(z)w(z)p−1 a.e. on {w > 0}. (102)

Consequently, from (102) and (101), we infer that

θ(z) = ξ̂(z)w(z)p−1 a.e. on Z, (103)
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with ξ̂ ∈ L∞(Z)+, η ≤ ξ̂(z) ≤ η̂(z) a.e. on Z. We pass to the limit as n → ∞ in
(97) and due to (103), we obtain

A(w) = ξ̂wp−1.

Hence, we have that

{

−△pw(z) = ξ̂(z)w(z)p−1 a.e. on Z,
w|∂Z = 0, w ≥ 0.

(104)

Note that λ̂1(ξ̂) < λ̂1(λ2) < λ̂1(λ1) = 1 and so from (104), we see that w ∈ C1
0 (Z)

(nonlinear regularity theory) must be 0. But we know that ‖w‖ = 1, so we have a
contradiction. This proves that we cannot have y+ = 0, i.e., y+ ≥ 0, y+ 6= 0.

Step 2. y+ ∈ intK+.
A similar argument as in Proposition 4.2 (Step 2) shows that

A(y+) = u+ (105)

with u+ ∈ Lr
′

(Z), u+(z) ∈ ∂j(z, y+(z), λ) a.e. on Z. Consequently, from (105) we
have

{

−△py+(z) = u+(z) a.e. on Z,
y+|∂Z

= 0.

Then y+ ∈ K+ \ {0} (nonlinear regularity theory) and by virtue of hypothesis
(Hf )(vi) we have u+(z) ≥ 0 a.e. on Z. So △py+(z) ≤ 0 a.e. on Z. Invoking the
strong maximum principle of Vázquez [43], we conclude that y+ ∈ intK+.

Step 3. y+ is the smallest positive solution for problem (Pλ).
Let us assume that ŷ is a nontrivial positive solution with ŷ ≤ x. As before, via the
sign changing condition (hypothesis (Hf )(vi)) and the strong maximum principle,
we check that ŷ ∈ intK+. Then Lemma 3.3 implies that we can find ε0 > 0 small
such that ε0u1 ≤ ŷ. Consequently, for large n ≥ 1, we have εnu1 ≤ ε0u1 ≤ ŷ ≤ x.
This fact implies that ŷ is a solution for problem (Pλ) in the ordered interval T n+.
On the other hand, x∗n is the smallest solution for problem (Pλ) in T n+. Thus, x∗n ≤ ŷ
for enough large n ≥ 1. Passing to the limit, we have y+ ≤ ŷ, i.e., y+ is indeed the
smallest positive solution for problem (Pλ).

In a similar way, working on T n− = [v, vn] with vn = εn(−u1), we obtain y− ∈
−intK+, the biggest negative solution for problem (Pλ). In this case, if we denote

by v∗n the biggest solution for the problem (Pλ) in T n−, instead of wn =
x∗

n

‖x∗
n‖ and

En+, we have to work with w̃n =
v∗n

‖v∗n‖ and

En− =

{

z ∈ Z : η − ε ≤
u∗n

|v∗n(z)|p−2v∗n(z)
≤ η̂(z) + ε

}

,

respectively, where u∗n = A(v∗n) with u∗n ∈ Lr
′

(Z), u∗n(z) ∈ ∂j(z, v∗n(z), λ) a.e. on
Z. �

Remark 6. In order to prove Propositions 4.1 and 4.3, in hypothesis (Hf )(iv) it
is enough to have the first eigenvalue λ1 instead of λ2. However, the presence of λ2

in (Hf )(iv) is crucial in the proof of the main results (Theorems 4.1 and 4.2), see
below.

Proof of Theorem 4.1. Fix λ ∈ (0, λ∗). From Theorem 3.1 we already have two
solutions x0 = x0(λ) ∈ intK+ and v0 = v0(λ) ∈ −intK+.
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Now, let y+ ∈ intK+ be the smallest positive solution and y− ∈ intK+the biggest
negative solution for problem (Pλ) obtained in Proposition 4.3. We have

A(y±) = u± (106)

with u± ∈ Lr
′

(Z), u±(z) ∈ ∂j(z, y±(z), λ) a.e. on Z. Then, we introduce the
modifications of the discontinuous nonlinearity f as follows:

f+(z, x, λ) =







0, if x < 0
f(z, x, λ), if 0 ≤ x ≤ y+(z)
u+(z), if y+(z) < x,

f−(z, x, λ) =







u−(z), if x < y−(z)
f(z, x, λ), if y−(z) ≤ x ≤ 0
0, if 0 < x,

and

f̂(z, x, λ) =







u−(z), if x < y−(z)
f(z, x, λ), if y−(z) ≤ x ≤ y+(z)
u+(z), if y+(z) < x.

Using these functions, we introduce the corresponding potentials, defined by

j±(z, x, λ) =

∫ x

0

f±(z, s, λ)ds and ĵ(z, x, λ) =

∫ x

0

f̂(z, s, λ)ds.

Finally, using these potentials we introduce the corresponding locally Lipschitz Eu-
ler functionals defined on W 1,p

0 (Z) :

ϕ±(x, λ) =
1

p
‖Dx‖pp −

∫

Z

j±(z, x(z), λ)dz

and

ϕ̂(x, λ) =
1

p
‖Dx‖pp −

∫

Z

ĵ(z, x(z), λ)dz

for all x ∈ W 1,p
0 (Z) and all λ ∈ (0, λ∗).

We also introduce the following order intervals in W 1,p
0 (Z)

J± = [0, y±], and Ĵ = [y−, y+].

We divide the proof into four steps.
Step 1. The critical points of ϕ±(·, λ) are in J±. Similarly, the critical points of

ϕ̂(·, λ) are in Ĵ .
We show this for ϕ+(·, λ), the proof for ϕ−(·, λ) and ϕ̂(·, λ) being similar. So, let

x ∈ W 1,p
0 (Z) be a critical point of ϕ+(·, λ), i.e., 0 ∈ ∂ϕ+(x, λ). Then

A(x) = u (107)

with u ∈ Lr
′

(Z), u(z) ∈ ∂j+(z, x(z), λ) a.e. on Z. Acting with the test function

(x− y+)+ ∈ W 1,p
0 (Z) in (107) we obtain

〈A(x), (x − y+)+〉 =

∫

Z

u(x− y+)+dz

=

∫

{x>y+}

u(x− y+)dz

=

∫

Z

u+(x− y+)+dz (recall the definition of f+)

= 〈A(y+), (x− y+)+〉 (see (106)).
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Consequently, 〈A(x) −A(y+), (x− y+)+〉 = 0. Thus,
∫

{x>y+}

(‖Dx‖p−2
RN Dx− ‖Dy+‖

p−2
RN Dy+, Dx−Dy+)RN dz = 0.

Due to strict monotonicity, we should have |{x > y+}|N = 0, i.e., x ≤ y+.
Now, acting with the test function x− in (107) we have 〈A(x), x−〉 = 0, due to

the definition of f+. Therefore, x− = 0, i.e., x ≥ 0.
Step 2. The set of critical points of ϕ±(·, λ) is {0, y±}.

Again, we deal only with ϕ+(·, λ). Assume the contrary, i.e., there exists a critical
point y of ϕ+(·, λ) different of 0 and y+. Using Step 1, the element y belongs to
J+ = [0, y+]. In particular, by (Hf )(vi) and the strong maximum principle, y is
a positive solution for (Pλ). But this contradicts the fact that y+ is the smallest
positive solution for (Pλ).

Step 3. The elements y+ and y− are local minimizers of ϕ̂(·, λ).
Because of hypothesis (Hf )(iv) and relation (82) we can find δ > 0 small such that

λ2x
p−1 ≤ u for a.a. z ∈ Z, all 0 ≤ x ≤ δ and all u ∈ ∂j(z, x, λ). (108)

We choose ε > 0 small such that

εu1(z) ≤ min{y+(z), δ} for all z ∈ Z. (109)

Using (108), (109), (82) and recalling the definition of j+, we have

j+(z, εu1(z), λ) =

∫ εu1(z)

0

f(z, s, λ)ds ≥
λ2

p
εpu1(z)

p (110)

a.e. on Z and all λ ∈ (0, λ∗). Hence

ϕ+(εu1, λ) =
εp

p
‖Du1‖

p
p −

∫

Z

j+(z, εu1(z), λ)dz

≤
εp

p

∫

Z

(λ1 − λ2)u1(z)
pdz < 0 (see (110)).

Consequently,
inf ϕ+(·, λ) < 0 = ϕ+(0, λ). (111)

From hypothesis (Hf )(iii) and the definition of j+(z, x, λ), for some a ∈ L∞(Z)+,
we have

|j+(z, x, λ)| ≤ a(z)|x| for a.a. z ∈ Z, all x ∈ R and all λ ∈ (0, λ∗). (112)

From (112) and Poincaré’s inequality we deduce that the functional ϕ+(·, λ) is
coercive. It is easy to see that ϕ+(·, λ) is sequentially weakly lower semicontinuous

on W 1,p
0 (Z). Thus, we can find y0

+ ∈W 1,p
0 (Z) a minimizer of ϕ+(·, λ). We have

ϕ+(y0
+, λ) < 0 = ϕ+(0, λ) (see (111)),

i.e., y0
+ 6= 0.

Since y0
+ is a nonzero critical point of ϕ+(·, λ), on account of Step 2, we must

have y0
+ = y+. On the other hand, since y+ ∈ intK+, we see that y+ = y0

+ is a local

minimizer of ϕ+(·, λ) in the C1
0 (Z)-topology, and on a small C1

0 (Z)-neighborhood
of y+ = y0

+ the function ϕ+(·, λ) coincides with ϕ̂(·, λ), see the definitions of f+
and f̂ . Therefore, y+ is a local minimizer of ϕ̂(·, λ) in the C1

0 (Z)-topology. Hence,
invoking again the result of Kyritsi-Papageorgiou [32, Proposition 3], y+ is also a

localW 1,p
0 (Z)-minimizer of ϕ̂(·, λ). The same property holds for y−, which concludes

the proof of Step 3.
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Step 4. There exists a critical point y0 of ϕ̂(·, λ), different from 0 and y±. In
particular, y0 is a nodal solution for problem (Pλ).
We may assume that y+ and y− are isolated critical points (actually, minimizers) of
ϕ̂(·, λ). Indeed, let us assume the contrary for y+ (a similar argument works clearly

for y−). So, let {xn}n≥1 ⊂ W 1,p
0 (Z) be such that xn /∈ {0, y+, y−} for all n ≥ 1,

xn → y+ in W 1,p
0 (Z) and 0 ∈ ∂ϕ̂(xn, λ) for all n ≥ 1. Due to Step 1, xn ∈ Ĵ for all

n ≥ 1. Moreover, xn should be nodal for all n ≥ 1. Otherwise, let xn0
≥ 0. By the

strong maximum principle, we have xn0
∈ intK+ and by the definition of f̂ , xn0

is
a positive solution for (Pλ). Since xn0

≤ y+, and xn0
6= y+, we have a contradiction

to the fact that y+ is the smallest positive solution for problem (Pλ). Therefore, in
this way we produced a whole sequence of distinct nodal solutions for problem (Pλ)
and Theorem 4.1 is proved.

Assume without loosing the generality that ϕ̂(y−, λ) ≤ ϕ̂(y+, λ). Arguing exactly
as we did in the proof of Proposition 3.2 (see (47)-(54), and note that the hypothesis
2 ≤ p was not used there), we may choose ρ > 0 small enough that

ϕ̂(y+, λ) < inf{ϕ̂(x, λ) : x ∈ ∂Bρ(y+)} ≤ 0,

where ∂Bρ(y+) = {x ∈W 1,p
0 (Z) : ‖x− y+‖ = ρ}. Now, we consider the sets

D = ∂Bρ(y+), J = [y−, y+], and J0 = {y−, y+}.

Clearly, {J0, J} is linking with D in W 1,p
0 (Z) (see Definition 2.1). Moreover, ϕ̂(·, λ)

is coercive and from this it follows easily that ϕ̂(·, λ) satisfies the nonsmooth PS-
condition. So, we can apply Theorem 2.2 and obtain a critical point y0 of ϕ̂(·, λ)
such that

ϕ̂(y−, λ) ≤ ϕ̂(y+, λ) < ϕ̂(y0, λ) = inf
γ∈Γ

max
t∈[−1,1]

ϕ̂(γ(t), λ), (113)

where

Γ = {γ ∈ C([−1, 1],W 1,p
0 (Z)) : γ(−1) = y−, γ(1) = y+}.

It is clear from (113) that y0 6= y±, while from Step 1, we have y0 ∈ J. In particular,

due to the definition of f̂ , the element y0 is a solution for problem (Pλ).
It remains to prove that y0 6= 0; in this way, y0 is a nodal solution for problem

(Pλ), since it is located between y− and y+, and y0 6= y±. To this end, it is enough
to show that ϕ̂(y0, λ) < 0 = ϕ̂(0, λ). This will be achieved once we produce a path
γ0 ∈ Γ such that

ϕ̂(γ0(t), λ) < 0 for all t ∈ [−1, 1].

In what follows, we construct such a path γ0 ∈ Γ. First, because of hypothesis
(Hf )(iv) we can find δ0 > 0 such that

λ2 + δ0 <
fl(z, x, λ)

|x|p−2x
for a.a z ∈ Z, all 0 < |x| ≤ δ0. (114)

By Rademacher’s theorem, d
dx
j(z, x, λ) exists for a.a. z ∈ Z and all x ∈ R. More-

over, d
dx
j(z, x, λ) ∈ ∂j(z, x, λ) = [fl(z, x, λ), fu(z, x, λ)]. So, integrating in (114), we

obtain

1

p
(λ2 + δ0)|x|

p < j(z, x, λ) for a.a z ∈ Z and all 0 < |x| ≤ δ0. (115)

Let ∂B
Lp(Z)
1 = {x ∈ Lp(Z) : ‖x‖p = 1} and U = W 1,p

0 (Z) ∩ ∂B
Lp(Z)
1 endowed

with relative W 1,p
0 (Z)-topology. Also let Uc = U ∩C1

0 (Z) equipped with the relative
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C1
0 (Z)-topology. Recall that ΓU = {γ0 ∈ C([−1, 1], U) : γ0(−1) = −u1, γ0(1) =

u1}, see (3). Also, let

ΓUc
= {γ0 ∈ C([−1, 1], Uc) : γ0(−1) = −u1, γ0(1) = u1}.

The density of Uc in U (for the W 1,p
0 (Z)-topology) implies the density of ΓUc

in ΓU
(for the C([−1, 1], U)-topology). Due to (3), we can find γ̂0 ∈ ΓUc

such that

max{‖Dx‖pp : x ∈ γ̂0([−1, 1])} ≤ λ2 + δ0, (116)

δ0 > 0 being from (114). Since γ̂0 ∈ C([−1, 1], Uc) and −y−, y+ ∈ intK+, we can
find ε > 0 small such that

ε|x(z)| ≤ δ0 for all z ∈ Z, all x ∈ γ̂0([−1, 1])

and

εx ∈ [y−, y+] for all x ∈ γ̂0([−1, 1]).

If x ∈ γ̂0([−1, 1]), then

ϕ̂(εx, λ) = ϕλ(εx)

=
εp

p
‖Dx‖pp −

∫

Z

j(z, εx(z), λ)dz

<
εp

p
‖Dx‖pp −

εp

p
(λ2 + δ0)‖x‖

p
p (see (115))

≤ 0 (see (116) and recall that ‖x‖p = 1).

So, if we consider the continuous path γ0 = εγ̂0 joining −εu1 and εu1, we have

ϕ̂(·, λ)|γ0 < 0. (117)

Now, we will produce a continuous path joining εu1 and y+ along which the
functional ϕ̂(·, λ) is also strictly negative. Due to Step 2, we know that the set of
critical points of ϕ+(·, λ) is {0, y+}. We will apply Theorem 2.5 for the functional
ϕ+(·, λ), by choosing

a+ = ϕ+(y+, λ) = inf ϕ+(·, λ) < 0 and b+ = ϕ+(0, λ) = 0.

Since ϕ+(·, λ) is coercive, it satisfies the nonsmooth PS-condition. It is clear
that Ka+

= {y+}. Moreover, since y+ is a local minimizer of (the continuous
function) ϕ+(·, λ), then the weak slope of ϕ+(·, λ) at the point y+ should be 0,
i.e., |dϕ+(·, λ)|(y+) = 0. Thus, y+ ∈ Kws

a+
. Consequently, Ka+

= Kws
a+

= {y+},

and one can find a deformation h : [0, 1] × ϕ+(·, λ)<b+ → ϕ+(·, λ)<b+ of the set

ϕ+(·, λ)<b+ = {x ∈W 1,p
0 (Z) : ϕ+(x, λ) < b+ = 0} such that

(a) h(t, ·)|Ka+
= id|Ka+

for all t ∈ [0, 1];

(b) h(1, ϕ+(·, λ)<b+) ⊆ ϕ+(·, λ)<a+ ∪Ka+
;

(c) ϕ+(h(t, x), λ) ≤ ϕ+(x, λ) for all t ∈ [0, 1] and all x ∈ ϕ+(·, λ)<b+ .
Now, we define the path

γ+(t) = h(t, εu1) for all t ∈ [0, 1].

First of all, γ+ is well-defined. Indeed, εu1 ∈ ϕ+(·, λ)<b+ , since ϕ+(εu1, λ) =
ϕ̂(εu1, λ) < 0, see (117). Clearly, γ+ is a continuous path and

• γ+(0) = h(0, εu1) = εu1 (since h is a deformation, see Definition 2.4);
• γ+(1) = h(1, εu1) = y+ (note that ϕ+(·, λ)<a+ = ∅ and Ka+

= {y+});
• ϕ+(γ+(t), λ) = ϕ+(h(t, εu1), λ) ≤ ϕ+(εu1, λ) < 0 for all t ∈ [0, 1].
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In this way, we produced a continuous path γ+ joining εu1 and y+ such that

ϕ+(·, λ)|γ+ < 0.

On the other hand, taking into account the definition of the functions f+, j+ and
using hypothesis (Hf )(vi) (sign condition), a simple computation shows that

ϕ̂(x, λ) ≤ ϕ+(x, λ) for all x ∈ W 1,p
0 (Z).

Therefore,
ϕ̂(·, λ)|γ+ < 0. (118)

In a similar fashion, we can produce a continuous path γ− joining −εu1 and y−
such that

ϕ̂(·, λ)|γ− < 0. (119)

Concatinating the paths γ−, γ0, γ+, we obtain a continuous path γ0 ∈ Γ and due
to (117), (118) and (119), we have

ϕ̂(·, λ)|γ0
< 0.

From (113) it follows that ϕ̂(y0, λ) < 0 = ϕ̂(0, λ), thus, y0 6= 0.
Therefore, we have a nontrivial nodal solution for problem (Pλ) and by nonlinear

regular theory, we have y0 ∈ C1
0 (Z). �

Proof of Theorem 4.2. We combine the proof of Theorems 3.2 and 4.1,
respectively. �
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and global multiplicity for some quasilinear elliptic equations, Comm. in Contemp. Math., 2

(2000), 385–404.
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