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Abstract

In this paper we establish the existence of three weak solutions of an equation which involves a general elliptic operator in
divergence form (in particular, a p-Laplacian operator), while the nonlinearity has a (p−1)-sublinear growth at infinity. This result
completes some recent papers, where mountain pass type solutions were obtained providing the nonlinear term via a (p − 1)-
superlinear growth at infinity (fulfilling an Ambrosetti–Rabinowitz type condition). In our case, an abstract critical point result
is applied, proved by G. Bonanno [G. Bonanno, Some remarks on a three critical points theorem, Nonlinear Analysis 54 (2003)
651–665].
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1. Introduction

Various particular forms of the problem involving elliptic operators in divergence form{
−div(a(x, ∇u)) = f (x, u) in Ω ,

u = 0 on ∂Ω (P)

have been studied in the recent years. Here, Ω ⊂ RN is a bounded open domain, N ≥ 2, while the nonlinearities
a : Ω × RN

→ RN and f : Ω × R → R fulfill certain structural conditions. The simplest case occurs
when a(x, s) = |s|p−2s, p ≥ 2; thus (P) reduces to a problem which involves the usual p-Laplacian operator
∆p(·) = div(|∇(·)|p−2

∇(·)).
Recently, De Nápoli and Mariani [4] studied problem (P) when the potential a satisfies a set of assumptions, see

H(a) below, which includes the p-Laplacian and also other important cases, such as the generalized prescribed mean
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curvature operator. Duc and Vu [3] extended the result of [4], considering problem (P) in the ‘nonuniform’ case, for
when the potential a fulfills

|a(x, ξ)| ≤ c0(h0(x) + h1(x)|ξ |
p−1), ∀(x, ξ) ∈ Ω × RN ,

with h0 ∈ L p/(p−1)(Ω), h1 ∈ L1
loc(Ω), c0 > 0.

In both papers [3,4], the nonlinear term f : Ω × R → R verifies the Ambrosetti–Rabinowitz type condition:
defining F(x, s) =

∫ s
0 f (x, t)dt , there exist s0 > 0 and θ > p such that

0 < θ F(x, s) ≤ s f (x, s), ∀x ∈ Ω , s ∈ R, |s| ≥ s0. (AR)

By (AR), one can deduce that

| f (x, s)| ≥ c|s|θ−1, ∀x ∈ Ω , s ∈ R, |s| ≥ s0, (AR′)

i.e., f is (p − 1)-superlinear at infinity.
The purpose of this paper is to handle the counterpart of the above case, i.e., when f is (p − 1)-sublinear at

infinity. For the sake of simplicity, we assume in the sequel that f is autonomous, i.e., f (x, s) = f (s). We consider
the condition

(f1) lim|s|→+∞
f (s)

|s|p−1 = 0.

If f (s) = λ(arctan s)2, with λ ∈ R fixed (thus f clearly fulfills (f1)), while a(x, s) = s (thus in (P) there appears
the standard Laplacian operator ∆u = div∇u), an easy computation shows that (P) possesses only the zero solution,
whenever |λ| < π−1c−2

2 , where c2 > 0 is the best Sobolev constant of the embedding H1
0 (Ω) ↪→ L2(Ω). Therefore,

it is more appropriate to investigate, instead of (P), the following eigenvalue problem:{
−div(a(x, ∇u)) = λ f (u) in Ω ,

u = 0 on ∂Ω .
(Pλ)

In the next section we will state our main result (Theorem 2.1) which guarantees the existence of at least three weak
solutions of (Pλ) for certain λ > 0. Our result completes in a natural way not only the papers of Duc and Vu [3], and
De Nápoli and Mariani [4] (superlinear nonlinearities), but also some earlier works in the sublinear context (where
a(x, s) = s). For instance, Brézis and Oswald [2] studied problem (Pλ) when the behaviour of f (s)/s is suitably
controlled at infinity, obtaining an existence and uniqueness result via the minimization technique and maximum
principle. Lin [5] exploited a sub–super-solution argument, applying the sweeping principle of Serrin in order to obtain
existence, uniqueness, and asymptotical properties of the solutions of (Pλ) when f (s) behaves like sq (0 < q < 1)

with s large.
The proof of our main result (Theorem 2.1) is based on a recent abstract critical point theorem proved by

Bonanno [1] which is an extension of the famous result of Ricceri [6,7]. In the next section we give the precise
statement of Theorem 2.1, Section 3 contains auxiliary results, while in Section 4 we will give the proof of
Theorem 2.1.

2. Main result

In the sequel, let p > 1 and Ω ⊂ RN be a bounded open domain, where N ≥ 2. Now, we recall the same
assumptions as in [4], concerning the potential a : Ω × RN

→ RN .

H(a): Let A : Ω × RN
→ R, A = A(x, ξ) be a continuous function in Ω × RN , with continuous derivative with

respect to ξ, a = D A = A′, and suppose that the following conditions hold:
(a) A(x, 0) = 0, ∀x ∈ Ω .
(b) a satisfies the growth condition

|a(x, ξ)| ≤ c1(1 + |ξ |
p−1), ∀x ∈ Ω , ξ ∈ RN (1)

for some constant c1 > 0.
(c) A is p-uniformly convex: There exists a constant k > 0, such that

A

(
x,

ξ + η

2

)
≤

1
2

A(x, ξ) +
1
2

A(x, η) − k|ξ − η|
p, ∀x ∈ Ω , ξ, η ∈ RN .
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(d) A is p-subhomogeneous:

0 ≤ a(x, ξ) · ξ ≤ p A(x, ξ), ∀x ∈ Ω , ξ ∈ RN . (2)
(e) A satisfies the ellipticity condition: There exists a constant C > 0 such that

A(x, ξ) ≥ C |ξ |
p, ∀x ∈ Ω , ξ ∈ RN . (3)

Remark 2.1. Let p ≥ 2. If A(x, s) =
1
p |s|p, then a(x, s) = |s|p−2s and one obtains the usual p-Laplacian. If

A(x, s) =
1
p [(1 + s2)

p
2 − 1], then we obtain the generalized mean curvature operator div((1 + |∇u|

2)
p−2

2 ∇u).
For another specific choice of a, see [4].

Let f : R → R be a function which, besides (f1), satisfies the following conditions:

(f2) lims→0
f (s)

|s|p−1 = 0.

(f3) There exists s0 ∈ R such that F(s0) > 0, where F(s) =
∫ s

0 f (t)dt .

Our main result is the following:

Theorem 2.1. Let a : Ω × RN
→ RN be a potential which fulfills the hypothesis H(a), and let f : R → R be

a continuous function which satisfies (f1), (f2) and (f3). Then, there exist an open interval Λ ⊂ (0, +∞) and a
constant µ > 0 such that for every λ ∈ Λ problem (Pλ) has at least three distinct weak solutions in W 1,p

0 (Ω), whose

W 1,p
0 (Ω)-norms are less than µ.

3. Preliminaries

We assume that the assumptions of Theorem 2.1 are verified. The norm of the space L p(Ω) will be denoted by
‖ · ‖p. The Sobolev space W 1,p

0 (Ω) is endowed with the usual norm ‖u‖ = (
∫
Ω |∇u|

pdx)1/p. Since the embedding

W 1,p
0 (Ω) ↪→ Lq(Ω) (q ∈ [1, p∗)) is compact, let cq > 0 be the best Sobolev constant, i.e. ‖u‖q ≤ cq‖u‖ for every

u ∈ W 1,p
0 (Ω), and cq = γ −1

q , with γq = inf{‖u‖ : ‖u‖q = 1}. Above, p∗ denotes the usual Sobolev critical exponent.

We introduce the energy functional Eλ : W 1,p
0 (Ω) → R given by Eλ(u) = A(u) − λF(u), where

A(u) =

∫
Ω

A(x, ∇u(x))dx and F(u) =

∫
Ω

F(u(x))dx .

It is easy to see that the functional Eλ is of class C1 and its derivative is given by

〈E ′
λ(u), ϕ〉 =

∫
Ω

a(x, ∇u(x))∇ϕ(x)dx − λ

∫
Ω

f (u(x))ϕ(x)dx .

Here, 〈·, ·〉 denotes the duality pairing between W 1,p
0 (Ω) and its dual W −1,p′

(Ω), 1/p + 1/p′
= 1. Moreover, the

critical points of the functional Eλ are exactly the weak solutions of problem (Pλ).

Remark 3.1. Due to hypothesis H(a), a simple calculation shows that the functional A is locally uniformly convex.
Moreover, A′

: W 1,p
0 (Ω) → W −1,p′

(Ω) verifies the (S+) condition, i.e., for every sequence {un} ⊂ W 1,p
0 (Ω) such

that un ⇀ u weakly and lim supn→∞〈A′(un), un − u〉 ≤ 0, we have un → u strongly; see Proposition 2.1 in [4].

Lemma 3.1. For every λ ∈ R, the functional Eλ : W 1,p
0 (Ω) → R is sequentially weakly lower semicontinuous.

Proof. The functional A being locally uniformly convex is weakly lower semicontinuous. On the other hand,
condition (f1) implies the existence of a constant c > 0 such that | f (s)| ≤ c(1 + |s|p−1) for every s ∈ R. Since
the embedding W 1,p

0 (Ω) ↪→ L p(Ω) is compact, one can deduce in a standard way that F is sequentially weakly
continuous. �

Lemma 3.2. For every λ ∈ R, the functional Eλ is coercive and satisfies the Palais–Smale condition.
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Proof. Let us fix λ ∈ R, arbitrary. By (f1) there exists δ = δ(λ) such that

| f (s)| ≤ pCc−p
p (1 + |λ|)−1

|s|p−1 for every |s| ≥ δ.

(Here, C is from H(a)(e).) Integrating the above inequality we have

|F(s)| ≤ Cc−p
p (1 + |λ|)−1

|s|p
+ max

|t |≤δ
| f (t)||s|, ∀s ∈ R.

Thus, for every u ∈ W 1,p
0 (Ω) we obtain

Eλ(u) ≥ A(u) − |λ||F(u)|

≥ C‖u‖
p

− C
|λ|

(1 + |λ|)
‖u‖

p
− cp|λ|(ν(Ω))

1
p′

‖u‖ max
|t |≤δ

| f (t)|,

where ν(Ω) denotes the Lebesgue measure of Ω . Since p > 1, Eλ(u) → +∞ whenever ‖u‖ → +∞. Hence Eλ is
coercive.

Now, let {un} ⊂ W 1,p
0 (Ω) be a sequence such that {Eλ(un)} is bounded and ‖E ′

λ(un)‖W−1,p′ → 0. Since Eλ is

coercive, it follows that the sequence {un} is bounded in W 1,p
0 (Ω). Up to a subsequence, un ⇀ u weakly in W 1,p

0 (Ω)

and un → u strongly in L p(Ω). From Eλ = A− λF we get

〈A′(un), un − u〉 = 〈E ′
λ(un), un − u〉 + λ

∫
Ω

f (un(x))(un(x) − u(x))dx . (4)

Since ‖E ′
λ(un)‖W−1,p′ → 0 and {un − u} is bounded in W 1,p

0 (Ω), by the inequality |〈E ′
λ(un), un − u〉| ≤

‖E ′
λ(un)‖W−1,p′ ‖un − u‖ it follows that

〈E ′
λ(un), un − u〉 → 0.

As before, (f1) implies the existence of a constant c > 0 such that | f (s)| ≤ c(1 + |s|p−1) for every s ∈ R. Therefore∫
Ω

| f (un(x))||un(x) − u(x)|dx ≤ c
∫
Ω

|un(x) − u(x)|dx + c
∫
Ω

|(un(x))|p−1
|un(x) − u(x)|dx

≤ c((ν(Ω))
1
p′

+ ‖un‖
p−1
p )‖un − u‖p.

Since un → u strongly in L p(Ω), we get

lim
n→∞

∫
Ω

| f (un(x))||un(x) − u(x)|dx = 0.

In conclusion, relation (4) implies

lim sup
n→∞

〈A′(un), un − u〉 ≤ 0.

But the operator A′ has the (S+) property; therefore we have un → u strongly in W 1,p
0 (Ω). �

Lemma 3.3. The following property holds:

lim
ρ→0+

sup{F(u) : A(u) < ρ}

ρ
= 0.

Proof. Due to (f2), for an arbitrary small ε > 0, there exists δ > 0 such that

| f (s)| ≤ εpc−p
p |s|p−1 for every |s| ≤ δ.

Combining the above inequality with

| f (s)| ≤ c(1 + |s|p−1) for every s ∈ R,

we obtain

|F(s)| ≤ εc−p
p |s|p

+ K (δ)|s|q for every s ∈ R, (5)
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where q ∈ (p, p?) is fixed, and K (δ) > 0 does not depend on s. For ρ > 0, define the sets

S1
ρ = {u ∈ W 1,p

0 (Ω) : A(u) < ρ}

and

S2
ρ = {u ∈ W 1,p

0 (Ω) : C‖u‖
p < ρ}.

By H(a)(e) it follows that S1
ρ ⊂ S2

ρ .
From (5) we obtain

F(u) ≤ ε‖u‖
p

+ K (δ)cq
q‖u‖

q . (6)

Since 0 ∈ S1
ρ (due to H(a)(a)), and F(0) = 0, one has 0 ≤ supu∈S1

ρ
F(u). On the other hand, if u ∈ S2

ρ , then

‖u‖ ≤ C−
1
p ρ

1
p , and using (6) we get

0 ≤

sup
u∈S1

ρ

F(u)

ρ
≤

sup
u∈S2

ρ

F(u)

ρ
≤ εC−1

+ K (δ)cq
q C−

q
p ρ

q
p −1

.

Because ε > 0 is arbitrary and ρ → 0+, we get the desired result. �

4. Proof of Theorem 2.1

The main ingredient for the proof of Theorem 2.1 is a recent critical point result due to Bonanno [1] which it is
actually a refinement of a result of Ricceri [6,7]. For completeness, we recall the result from [1].

Theorem B ([1, Theorem 2.1]). Let X be a separable and reflexive real Banach space, and let A,F : X → R be two
continuously Gâteaux differentiable functionals. Assume that there exists x0 ∈ X such that A(x0) = F(x0) = 0 and
A(x) ≥ 0 for every x ∈ X and that there exists x1 ∈ X, ρ > 0 such that

(i) ρ < A(x1);
(ii) supA(x)<ρ F(x) < ρ

F(x1)
A(x1)

.

Further, put

a =
ζρ

ρ
F(x1)
A(x1)

− sup
A(x)<ρ

F(x)
,

with ζ > 1, and assume that the functional A − λF is sequentially weakly lower semicontinuous, satisfies the
Palais–Smale condition and

(iii) lim‖x‖→+∞(A(x) − λF(x)) = +∞, for every λ ∈ [0, a].

Then, there exist an open interval Λ ⊂ [0, a] and a number µ > 0 such that for each λ ∈ Λ, the equation
A′(x) − λF ′(x) = 0 admits at least three solutions in X having norm less than µ.

Proof of Theorem 2.1. Let s0 ∈ R be from (f3), i.e., F(s0) > 0. Fix an element x0 ∈ Ω . Choose R0 > 0 in such a
way that

{x ∈ RN
: |x − x0| ≤ R0} ⊆ Ω ,

where | · | denotes the usual euclidean norm in RN . Let us denote by BN (x0, r) the N -dimensional closed euclidean
ball with center x0 ∈ RN and radius r > 0.

For σ ∈ (0, 1) define

uσ (x) =


0, if x ∈ RN

\ BN (x0, R0);

s0, if x ∈ BN (x0, σ R0);
s0

R0(1 − σ)
(R0 − |x − x0|), if x ∈ BN (x0, R0) \ BN (x0, σ R0).

(7)



1380 A. Kristály et al. / Nonlinear Analysis 68 (2008) 1375–1381

It is clear that uσ ∈ W 1,p
0 (Ω). Moreover, we have

|uσ (x)| ≤ |s0| for each x ∈ RN ,

and

‖uσ ‖
p

=

∫
Ω

|∇uσ |
p

=
|s0|

p(1 − σ N )

(1 − σ)p RN−p
0 ωN > 0, (8)

where ωN is the volume of BN (0, 1). Using the definition of uσ we obtain

F(uσ ) ≥ [F(s0)σ
N

− max
|t |≤|s0|

|F(t)|(1 − σ N )]RN
0 ωN . (9)

For σ close enough to 1, the right-hand side of the last inequality becomes strictly positive; let σ0 be such a number.
On account of Lemma 3.3, we may choose ρ0 ∈ (0, 1) such that

ρ0 < C‖uσ0‖
p (≤A(uσ0))

and

sup{F(u) : A(u) < ρ0}

ρ0
<

[F(s0)σ
N
0 − max

|t |≤|s0|
|F(t)|(1 − σ N

0 )]RN
0 ωN

2A(uσ0)
. (10)

In Theorem B we choose x1 = uσ0 and x0 = 0 and observe that the hypotheses (i) and (ii) are satisfied. We define

a =
1 + ρ0

F(uσ0 )

A(uσ0 )
−

sup{F(u):A(u)<ρ0}
ρ0

. (11)

Taking into account Lemmas 3.1 and 3.2, all the assumptions of Theorem B are verified.
Thus there exist an open interval Λ ⊂ [0, a] and a number µ > 0 such that for each λ ∈ Λ, the equation

E ′
λ(u) = A′(u) − λF ′(u) = 0 admits at least three solutions in W 1,p

0 (Ω) having W 1,p
0 (Ω)-norms less than µ. This

concludes the proof. �

Remark 4.1. A natural question arises when the interval Λ is obtained in Theorem 2.1: can we estimate it? In order
to give such an estimation, let us fix s0, R0, and σ0 as before. Due to (9) and (10), we have

sup{F(u) : A(u) < ρ0}

ρ0
<

F(uσ0)

2A(uσ0)
.

Thus, according to (11) and ρ0 < 1, one has a <
4A(uσ0 )

F(uσ0 )
. Using H(a) (a), (b), we have

A(uσ0) ≤ c1(meas(Ω)1−1/p
‖uσ0‖ + ‖uσ0‖

p).

In conclusion, invoking now (8) and (9), we have

Λ ⊂ [0, a] ⊂

0,
4c1(meas(Ω)1−1/pC(s0, σ0)RN/p−N−1

0 ω
1/p−1
N + C(s0, σ0)

p R−p
0 )

F(s0)σ
N
0 − max

|t |≤|s0|
|F(t)|(1 − σ N

0 )

 ,

where

C(s0, σ0) =
|s0|(1 − σ N

0 )1/p

1 − σ0
.
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