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Abstract. The present paper is concerned with an elliptic problem in R
N

which involves the p-Laplacian, p > N, (N = 4 or N ≥ 6), while the
nonlinear term has an oscillatory behaviour and is odd near an arbitrarily
small neighborhood of the origin. A direct variational argument and a careful
group-theoretical construction show the existence of at least

[
N−3

2

]
+ (−1)N

sequences of arbitrary small, non-radial, sign-changing solutions such that ele-
ments in different sequences are distinguished by their symmetry properties.
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1 Introduction

The purpose of this paper is to guarantee by a direct variational method the
existence of infinitely many non-radial and sign-changing solutions of the problem{ −�pu + |u|p−2u = K(x)f(u), x ∈ R

N ,

u ∈ W 1,p(RN ),
(P)
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when p > N , the space dimension N is large enough, and f has an oscillatory
behaviour at the origin. Here, �pu = div(|∇u|p−2∇u) is the usual p-Laplacian of
u, K : R

N → R is a measurable function, and f : R → R is continuous.
This study can be fit within a very active research area of the PDEs, i.e.,

to find sign-changing (nodal) solutions of various elliptic equations. We refer the
reader to [1]–[5], [15], [22], and references therein for results of this type. Most of
the papers treat semilinear problems due to the ordered Hilbert space structure
of the associated functional space to the studied problem, see [1], [3], [15]. To the
best of our knowledge, only a few works are dealing with sign-changing solutions
of quasilinear problems (but only on bounded domains), see [2], [22]. In the
aforementioned papers, the nonlinearities have superlinear and subcritical growth
at infinity; the strategy is to construct suitable closed convex sets containing
all the positive and negative solutions which are invariant with respect to some
pseudo-gradient vector fields.

As we pointed out, our aim is to produce by a direct method many
sign-changing and non-radial solutions for problem (P) when p > N , and the
nonlinearity f has an oscillatory behaviour at the origin. Note that within this
framework, problem (P) has been studied recently in [11] and [12]. As an effect
of the oscillatory behavior of f (with no additional assumption on the
symmetry of f), in [11], [12] the authors obtained infinitely many non-negative
solutions which are G-invariant (perhaps, radial symmetric), where G are special
subgroups of the orthogonal group O(N). However, when we are interested in the
existence of infinitely many non-radial, sign-changing solutions of (P), it seems
some kind of symmetry hypothesis on the nonlinearity f is indispensable. In order
to fill this gap, we require that f is odd in an arbitrarily small neighborhood of
the origin. A similar hypothesis has been used first by Wang [21] who studied a
boundary value problem involving a concave nonlinearity near the origin, adapting
Lusternik-Schnirelmann theory.

The weak solutions of (P) are precisely the critical points of the energy
functional E : W 1,p(RN ) → R associated to problem (P) which is defined by

E(u) =
1
p

∫
R

N
(−�pu + |u|p−2u)u −

∫
R

N
K(x)F (u(x))dx.

Here, F (s) =
∫ s

0 f(t)dt, s ∈ R. In order to produce a sequence of non-radial,
sign-changing weak solutions of (P) we first introduce a new energy functional E
which is ‘close’ to E and is even, exploiting the fact that f is odd near the origin.
Then, we restrict E to a carefully chosen subspace Z of W 1,p(RN ). Here, the space
Z consists of functions with special symmetrical properties. As a consequence of
this symmetry property, Z contains only sign-changing and non-radial elements of
W 1,p(RN ). Next, we construct an appropriate sequence of subsets of Z. The main
step is to show that the relative minima of E|Z in these subsets of Z are local
minima of E|Z . A careful analysis shows that one can extract infinitely many local
minima of E|Z with arbitrarily small L∞-norms. Moreover, these local minima of
E|Z are critical points of E, due to an invariance property of E and to the principle
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of symmetric criticality. In particular, on account of the construction of E, the
elements belonging to this sequence are actually distinct weak solutions of (P).

This fact leads us to the following natural question: how many sequences
of non-radial, sign-changing weak solutions of (P) can we produce at least whose
elements are mutually symmetrically different? Note that Bartsch and Willem [5]
handled a related question for (P) in the semilinear case (i.e., p = 2) when N = 4
or N ≥ 6. By means of the Fountain Theorem, they obtained a sequence {ul

k}k∈N

of non-radial, sign-changing solutions of the studied problem for every l ∈ IN :=
{i ∈ N : 2 ≤ i ≤ N/2, 2i �= N−1}. Bartsch and Willem asked whether the solutions
ul

k and um
n lie on the same O(N)-orbit when l �= m. They obtained the following

answer: for every N ≥ 4, N �= 5, the number of those sequences of solutions
containing elements in different O(N)-orbits is at least

[
log2

N+2
3

]
, as a careful

inspection of [5, Proposition 4.1, p. 457] shows. (Here, [r] denotes the integer part
of r.) Coming back to our question, one could expect that the number we are
looking for increases with respect to the space dimension N. However, we are able
to show that the number of sequences of non-radial, sign-changing weak solutions
of (P) – such that elements in different sequences are mutually distinguished by
their symmetry properties – is at least sN = card IN =

[
N−3

2

]
+(−1)N . Note that

sN ∼ N/2 as N → ∞, but the sequence {sN}N≥4 is not increasing, and s5 = 0.
The reason is that the number sN does not depend only on the space dimension
N but also on special partitions of N. The fact that s5 = 0 shows unfortunately
that our argument to produce non-radial, sign-changing solutions for (P) fails
whenever N = 5; a same phenomenon has been pointed out in [4] and [5] as well.

The paper is organized as follows. In Section 2 we will formulate our main
result. In Section 3 we prove the existence of a sequence of weak solutions of
(P) for a suitably chosen subspace of W 1,p(RN ) which are sign-changing non-
radial by the symmetry property of the subspace. In the last section, we construct
sN special subspaces of W 1,p(RN ) for which one can apply the arguments from
Section 3 and these subspaces have only the 0 as a common element. In this way,
we produce sN sequences of solutions of (P) which do no contain similar elements
from symmetrical point of view.

2 Statement of the main result

First of all, we recall that the space W 1,p(RN ) is endowed with the norm ‖u‖W 1,p =
(‖∇u‖p

p + ‖u‖p
p)

1/p where ‖ · ‖p is the usual norm in Lp(RN ), 1 < p < ∞. The
space L∞(RN ) is endowed with the sup-norm, denoted by ‖ · ‖∞.

In this section we will give the precise form of our main result. Throughout
the paper we assume that the potential K : R

N → R fulfills the hypothesis:

(K1) K ∈ L1(RN ) ∩ L∞(RN ) is radial, non-negative, and ‖K‖∞ > 0.

The nonlinearity f : R → R exhibits an oscillatory behaviour at the origin
in the following sense:
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(f1) −∞ < lim infs→0
F (s)
|s|p ≤ lim sups→0

F (s)
|s|p = +∞; here, F (s) =

∫ s

0 f(t)dt.

(f2) There are two sequences {ak}k∈N, {bk}k∈N such that 0 < bk+1 < ak < bk,
limk→∞ bk = 0, and f(s) ≤ 0 for every s ∈ [ak, bk], k ∈ N.

Our main result can be stated as follows:

Theorem 2.1 Let p > N and N = 4 or N ≥ 6. Let K : R
N → R be a function

which satisfies (K1), and f : R → R be a continuous function which is odd in a
neighborhood of the origin and verifies (f1) and (f2), respectively.

Then there exist at least sN =
[

N−3
2

]
+ (−1)N sequences {ul

k}k∈N ⊂
W 1,p(RN ), l ∈ {1, ..., sN}, of homoclinic, non-radial, sign-changing weak solu-
tions of (P) such that elements in different sequences are distinguished by their
symmetry properties. In addition, limk→∞ ‖ul

k‖∞ = 0 for every l ∈ {1, ..., sN}.

Remark 2.1 Different sequences of solutions for (P) will be constructed in care-
fully chosen subspaces of W 1,p(RN ); the difference between them is emphasized by
the symmetrical properties of functions belonging to the subspaces (see Section 4).
These subspaces are obtained via a group-theoretical argument carried out on
certain subgroups of the orthogonal group O(N). Note that the unique common
element of these subspaces is 0; consequently, elements of different sequences from
these subspaces of W 1,p(RN ) cannot be compared from symmetrical point of view.

Remark 2.2 Problem (P) has been widely studied when N ≥ p. In the semilinear
case (i.e., N ≥ p = 2), certain solitary waves in the nonlinear Klein-Gordon and
Schödinger equations are solutions of (P); existence and multiplicity of solutions
can be found for instance in [3], [5], and references therein. In the quasilinear case
(i.e., N ≥ p �= 2), problem (P) was treated in [9], [14]. The common feature of
these papers is the superlinear and subcritical growth at infinity of the nonlinear
term f . Theorem 2.1 complements several results mentioned above; we treat the
case p > N which is also important from the Mathematical Physics point of view
(see [6], [10]), while the nonlinear term f is allowed to have an unusual behavior.
Note that closely related hypotheses to (f1) and (f2) have been used in [19], [20]
studying boundary value problems.

Example 2.1 Let p > 3, q ∈ (p − 3, p − 2) and δ > 0 be fixed arbitrarily. A
nonlinearity f : R → R verifying (f1) and (f2) is

f(s) =




|s|q sin 1
s , if s ∈ [−δ, δ] \ {0};

0, if s = 0;
g(s), if |s| > δ,

where g : R\[−δ, δ] → R is any continuous function with g(δ) = −g(−δ) = δq sin 1
δ .



Vol. 15, 2008 Multiplicity of symmetrically distinct sequences of solutions 213

Remark 2.3 In problem (P), instead of the operator u → −�pu + |u|p−2u we
may put u → −�pu + V (x)|u|p−2u where V : R

N → R is radial and is bounded
from below by a positive constant.

3 Existence of a sequence of non-radial,
sign-changing solutions for (P)

Throughout of this section, we assume that the assumptions of Theorem 2.1 are
fulfilled. The energy functional E : W 1,p(RN ) → R associated to problem (P)

E(u) =
1
p
‖u‖p

W 1,p −
∫

RN

K(x)F (u(x))dx, u ∈ W 1,p(RN ), (1)

is well-defined, where F (s) =
∫ s

0 f(t)dt, s ∈ R. Indeed, since p > N , Mor-
rey’s embedding theorem implies that W 1,p(RN ) is continuously embedded into
L∞(RN ). Therefore, due to (K1), the second term of (1) is finite for every
u ∈ W 1,p(RN ). Moreover, one can show in a standard way that E is of class
C1 on W 1,p(RN ) and its critical points are exactly the weak solutions of (P),
see [13]. It is well-known that one can consider continuous representations of the
elements from W 1,p(RN ), and every element u from W 1,p(RN ) is homoclinic, see
[8, p. 167], i.e., u(x) → 0 as |x| → ∞.

Let δ > 0 such that f|[−δ,δ] is odd. Without to loose the generality, we may
assume that b1 ≤ δ, i.e., the sequence {bk}k∈N appearing in (f2) does belong to
[0, δ]. Let f : R → R be defined by f(t) = f(t) for |t| ≤ δ, and f(t) = sign(t)f(δ)
for |t| > δ. Put F (s) =

∫ s

0 f(t)dt. Let E : W 1,p(RN ) → R be the new energy
functional associated to problem (P)

E(u) =
1
p
‖u‖p

W 1,p −
∫

RN

K(x)F (u(x))dx, u ∈ W 1,p(RN ).

It is clear that E is well-defined, is of class C1 and is even.
Let N ≥ 4. Define the sets

PN = {G ⊂ O(N) : G = O(N1) × · · · × O(Nk), k ≥ 2,
N1 + · · · + Nk = N, Nj ≥ 2, j = 1, . . . , k},

and

P̃N = {G = O(N1) × · · · × O(Nk) ∈ PN : ∃i, j ∈ {1, ..., k}, i �= j, Ni = Nj}.

Note that P̃5 = ∅. For every G = O(N1) × · · · × O(Nk) ∈ P̃N (N �= 5) we define
the set

N(G) = {τ ∈ O(N) : τ(x1, ..., xi, ..., xj , ..., xk) = (x1, ..., xj , ..., xi, ..., xk),
(x1, ..., xk) ∈ R

N1 × ... × R
Nk , Ni = Nj , i �= j}.
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One can observe that for every τ ∈ N(G) we have τ /∈ G, τGτ−1 = G and τ = τ−1;
in particular, N(G) is a subset of the normalizer of G in O(N).

For every fixed G ∈ P̃N and τ ∈ N(G) we introduce an action of the group
Gτ = 〈G, τ〉 on the space W 1,p(RN ), as in [4], [5]. Due to the above properties
of τ, only two types of elements in Gτ can be distinguished; namely, g ∈ G, and
τg ∈ Gτ \ G (with g ∈ G), respectively. Therefore, the action Gτ × W 1,p(RN ) →
W 1,p(RN ) given by

gu(x) = u(g−1x), (τg)u(x) = −u(g−1τ−1x), (2)

for every g ∈ G, u ∈ W 1,p(RN ) and x ∈ R
N , is well-defined. Finally, for every

G ∈ P̃N and τ ∈ N(G) we define the space

W 1,p
Gτ

(RN ) = {u ∈ W 1,p(RN ) : hu = u for every h ∈ Gτ}

which is nothing but the fixed point space of W 1,p(RN ) under the action Gτ .

Remark 3.1 Note that every nonzero element of the space W 1,p
Gτ

(RN ) changes
sign and is non-radial. To see this, let u ∈ W 1,p

Gτ
(RN ) \ {0}. The first fact follows

from the Gτ -invariance of u and (2). Indeed, in particular,

u(x) = τu(x) = −u(τ−1x) (3)

for every x ∈ R
N . Since u �= 0, it should change the sign. Now, suppose that u is

radial. Since |x| = |τ−1x|, from (3) we obtain u(x) = u(|x|) = 0, contradiction.

In the rest of this section, we will fix a G ∈ P̃N and τ ∈ N(G). The restriction
of E to the space W 1,p

Gτ
(RN ) will be denoted by Eτ . Now, we define a sequence of

subsets of W 1,p
Gτ

(RN ) by

Sk = {u ∈ W 1,p
Gτ

(RN ) : ‖u‖∞ ≤ bk},

where the sequence {bk} appears in the hypothesis (f2).

Lemma 3.1 Eτ is bounded from below on Sk and it attains its infimum on Sk.

Proof. We first prove that Eτ is sequentially weakly lower semicontinuous on
W 1,p

Gτ
(RN ). It is a standard fact that the norm-function u → 1

p‖u‖p
W 1,p , u ∈

W 1,p
Gτ

(RN ) is sequentially weakly lower semicontinuous on W 1,p
Gτ

(RN ). It is suffi-
cient to prove that the function u → FK(u) =

∫
RN K(x)F (u(x))dx is sequentially

weakly continuous on W 1,p
Gτ

(RN ). By contradiction, let {un} ⊂ W 1,p
Gτ

(RN ) be a
sequence which converges weakly to u ∈ W 1,p

Gτ
(RN ) but FK(un) �→ FK(u) as

n → ∞. Up to a subsequence, we can fix a number ε0 > 0 such that

0 < ε0 ≤ |FK(un) − FK(u)| for every n ∈ N.
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Moreover, due to a result of Lions (see [16, Théorème III.3]), the embedding
W 1,p

G (RN ) ↪→ Lq(RN ) is compact for every q ∈ (p, ∞). In particular, the embed-
ding W 1,p

Gτ
(RN ) ↪→ Lq(RN ) is also compact. Thus, fixing some q ∈ (p, ∞) one

may assume that un converges strongly to u in Lq(RN ). For every n ∈ N one has
θn ∈ (0, 1) such that

0 < ε0 ≤ |FK(un) − FK(u)| ≤
∫

RN

K(x)|f(u + θn(un − u))| · |un − u|dx

≤ ‖K‖q′ max{|f(s)| : 0 ≤ |s| ≤ Mn}‖un − u‖q,

where q′ = q(q − 1)−1 and Mn = ‖u‖∞ + ‖un‖∞. Since W 1,p
Gτ

(RN ) ⊂ W 1,p(RN ) is
continuously embedded into L∞(RN ), we have supn∈N Mn < +∞. When n → ∞,
the above inequality yields a contradiction.

One can observe that Sk is weakly closed. Indeed, Sk is convex and is strongly
closed in W 1,p

Gτ
(RN ) since the embedding W 1,p

Gτ
(RN ) ⊂ W 1,p(RN ) ↪→ L∞(RN ) is

continuous. Moreover, for every u ∈ Sk one has

Eτ (u) =
1
p
‖u‖p

W 1,p −
∫

RN

K(x)F (u(x))dx ≥ −‖K‖1 max
[−bk,bk]

F .

Therefore, Eτ is bounded from below on Sk. Let γk = infSk
Eτ , and {un} be a

minimizing sequence of Eτ in Sk for γk. Then,

1
p
‖un‖p

W 1,p ≤ γk + 1 + ‖K‖1 max
[−bk,bk]

F

for large n ∈ N. Thus, {un} is bounded in W 1,p
Gτ

(RN ). So, up to a subsequence,
{un} weakly converges in W 1,p

Gτ
(RN ) to some uk ∈ Sk. By the sequentially weakly

lower semicontinuity of Eτ we conclude Eτ (uk) = γk = infSk
Eτ . �

Proposition 3.1 Let uk ∈ Sk be such that Eτ (uk) = infSk
Eτ . Then,

‖uk‖∞ ≤ ak.

Proof. Let A = {x ∈ R
N : uk(x) /∈ [−ak, ak]} and suppose that A �= ∅. Thus,

meas(A) > 0 due to the continuity of uk. Define the function φ : R → R by
φ(s) = sgn(s) min{|s|, ak} and set wk = φ ◦uk. Since φ is uniformly Lipschitz and
φ(0) = 0, the function wk belongs to W 1,p(RN ), cf. Marcus-Mizel [17]. Moreover,
we claim that wk ∈ W 1,p

Gτ
(RN ). To see this, it suffices to prove that hwk = wk for

every h ∈ Gτ . First, let h = g ∈ G. Since guk = uk, one has gwk(x) = wk(g−1x) =
(φ ◦ uk)(g−1x) = φ(uk(g−1x)) = φ(uk(x)) = wk(x) for every x ∈ R

N . Now, let
h = τg ∈ Gτ \ G, g ∈ G. Since φ is an odd function and (τg)uk = uk, on account
of (2) we have

(τg)wk(x) = −wk(g−1τ−1x) = −(φ ◦ uk)(g−1τ−1x)
= φ(−uk(g−1τ−1x)) = φ((τg)uk(x)) = φ(uk(x))
= wk(x)
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for every x ∈ R
N . In conclusion, wk ∈ W 1,p

Gτ
(RN ). By construction, |wk(x)| ≤

ak < bk for every x ∈ R
N . Thus, wk ∈ Sk.

Let us introduce the sets

A− = {x ∈ A : uk(x) < −ak} and A+ = {x ∈ A : uk(x) > ak}.

Then, we have

wk(x) =




uk(x), x ∈ R
N \ A;

−ak, x ∈ A−;
ak, x ∈ A+.

A straightforward calculation shows that

Eτ (wk) − Eτ (uk) = −1
p

∫
A

|∇uk|p +
1
p

∫
A

[|wk|p − |uk|p]

−
∫

A

K(x)[F (wk) − F (uk)]

= −1
p

∫
A

|∇uk|p +
1
p

∫
A−

[ap
k − |uk|p] +

1
p

∫
A+

[ap
k − up

k]

−
∫

A−
K(x)[F (−ak) − F (uk)] −

∫
A+

K(x)[F (ak) − F (uk)].

The sign of the first three integrals in the last expression is non-positive. More-
over, for every s ∈ R complying with |s| ∈ [ak, bk], we have F (sgn(s)ak) − F (s)
= f(θs)(sgn(s)ak − s) for some θs ∈ R with |θs| ∈ (ak, bk), sgn(θs) = sgn(s).
Taking into account (f2) and the fact that f is odd, we conclude that F (sgn(s)ak)
− F (s) ≥ 0 for every |s| ∈ [ak, bk], thus, the sign of the last two integrals
are also non-positive. Consequently, Eτ (wk) − Eτ (uk) ≤ 0. On the other hand,
Eτ (uk) = infSk

Eτ and wk ∈ Sk. Therefore, every term in the right hand side of
the above expression should vanish. In particular,∫

A

|∇uk|p = 0 and
∫

A−
[ap

k − |uk|p] =
∫

A+
[ap

k − up
k] = 0.

The first relation implies the existence of a positive measured subset Ã of A and
a constant c̃ ∈ R such that uk = c̃ on the set Ã. Then, either Ã ⊂ A− or Ã ⊂ A+.
When Ã ⊂ A−, then

0 =
∫

A−
[ap

k − |uk|p] ≤
∫

Ã

[ap
k − |uk|p] = [ap

k − |c̃|p]meas(Ã) < 0,

contradiction. A similar argument can be applied when Ã ⊂ A+, obtaining also a
contradiction. Therefore, we necessarily have A = ∅. �

Proposition 3.2 Let uk ∈ Sk be such that Eτ (uk) = infSk
Eτ . Then uk is a local

minimum point of Eτ in W 1,p
Gτ

(RN ).
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Proof. Assume the contrary, i.e., there exists a sequence {un} ⊂ W 1,p
Gτ

(RN ) which
converges to uk and Eτ (un) < Eτ (uk) = infSk

Eτ for all n ∈ N. In particular,
this inequality implies that un does not belong to the set Sk for any n ∈ N.
On the other hand, since un → uk in W 1,p

Gτ
(RN ), then Morrey’s theorem implies

that un → uk in L∞(RN ) as well. In particular, for every 0 < ε < bk − ak,
there exists nε ∈ N such that ‖un − uk‖∞ < ε for every n ≥ nε. By using
Proposition 3.1 and taking into account the choice of the number ε, we conclude
that ‖un‖∞ ≤ ‖un − uk‖∞ + ‖uk‖∞ < ε + ak < bk, i.e., un ∈ Sk for every n ≥ nε,
which contradicts the above statement. �

Proposition 3.3 Let γk = infSk
Eτ = Eτ (uk). Then γk < 0 for all k ∈ N and

limk→∞ γk = 0.

To prove Proposition 3.3, we construct a special class of functions with
suitably prescribed symmetry properties, which is of interest in its own right as
well.

Lemma 3.2 Let 0 ≤ r < R. For every s > 0, G ∈ P̃N and τ ∈ N(G) there exist
a function u ∈ W 1,p

Gτ
(RN ) and a Gτ -invariant set D ⊂ R

N with meas(D) > 0 such
that

i) suppu ⊂ {x ∈ R
N : r/2 ≤ |x| ≤ R};

ii) ‖u‖∞ ≤ s;

iii) |∇u(x)| ≤ 8s
R−r

√
N for a.e. x ∈ R

N ;

iv) |u(x)| = s for every x ∈ D.

Proof. Let G = O(N1) × · · · × O(Nk) ∈ P̃N with Ni = Nj for some i, j ∈
{1, ..., k}, i �= j, and τ(x1, ..., xi, ..., xj , ..., xk) = (x1, ..., xj , ..., xi, ..., xk) for every
x = (x1, ..., xi, ..., xj , ..., xk) ∈ R

N1 × ...×R
Ni × ...×R

Nj × ...×R
Nk . Let us denote

by xij the vector in RN−2Ni which is obtained by omitting xi, xj ∈ R
Ni from the

vector x ∈ R
N . An explicit function that verifies the requirements is

u(x) = u(xi, xj , x
ij)

=
32s√

R2 − r2(R − r)
sgn(|xi| − |xj |)

×
(

min
{

R − r

4
− max

{∣∣∣∣|xi| + |xj | − R + 3r

4

∣∣∣∣ ,∣∣∣∣||xi| − |xj || − R + 3r

4

∣∣∣∣
}

,
R − r

8

})
+

×
(√

R2 − r2

2
− max

{
|xij |,

√
R2 − r2

4

})
+

,
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where r+ = max{0, r}. Note that when N = 2Ni (i.e. the vector xij does not
appear), we formally put xij = 0 in the above expression.

One can easily check that i), ii) and iii) are satisfied, u ∈ W 1,p(RN ), and u
is Gτ -invariant. Now, let D = Dr,R given as

D =
{

x =
(
xi, xj , x

ij
) ∈ R

N :
∣∣∣∣|xi| + |xj | − R + 3r

4

∣∣∣∣ ≤ R − r

8
,∣∣∣∣||xi| − |xj || − R + 3r

4

∣∣∣∣ ≤ R − r

8
,

|xij | ≤
√

R2 − r2

4

}
.

(4)

The Gτ -invariance of D it follows from a geometrical reason. Moreover, meas(D)
> 0 and for every x ∈ D we have u(x) = u(xi, xj , x

ij) = s · sgn(|xi| − |xj |), thus
iv). �

Proof of Proposition 3.3. Let us fix θ ∈ (0, 1). On account of hypothesis (K1),
there exists a measurable set Mθ ⊂ R

N with positive measure such that

K(x) > θ‖K‖∞ for a.e. x ∈ Mθ. (5)

Since the function K is radial, we may assume that Mθ is an O(N)-invariant set,
i.e., gMθ = Mθ for every g ∈ O(N). In particular, we may fix an annulus (or a
ball) with center in the origin which is included a.e. in Mθ. More precisely, there
are 0 ≤ rθ < Rθ so that meas{x ∈ R

N : rθ/2 ≤ |x| ≤ Rθ, x /∈ Mθ} = 0.
By (f1) there exist l > 0 and � ∈ (0, δ) such that F (s) = F (s) > −l|s|p for

every s ∈ (−�, �). Let D = Drθ,Rθ
⊂ R

N be the set from (4) and fix a number
L > 0 large enough such that

Lθ‖K‖∞meas(D) − l‖K‖1 − crθ,Rθ
/p > 0, (6)

where

crθ,Rθ
:=

((
8
√

N

Rθ − rθ

)p

+ 1

)(
RN

θ − (rθ/2)N
)
ωN .

Here, ωN denotes the volume of the unit ball in R
N . By using the right hand

side of (f1), there exists a sequence {sk}k∈N ⊂ (0, �) converging to zero, and
F (sk) = F (−sk) = F (sk) = F (−sk) > Lsp

k.
Let {snk

}k∈N be a decreasing subsequence of {sk}k∈N such that snk
≤ bk

for every k ∈ N. Now, we apply Lemma 3.2 for every snk
> 0, k ∈ N, obtaining

the set D (fixed already, which was possible since it depends only on r = rθ,
R = Rθ, G ∈ P̃N and τ ∈ N(G) but not from the elements snk

) and a sequence
of functions {uk}k∈N ∈ W 1,p

Gτ
(RN ) with the properties i) − iv). By ii), we have

‖uk‖∞ ≤ snk
≤ bk; therefore, uk ∈ Sk. Moreover, using i) − iii) and the above
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notation, we have

‖uk‖p
W 1,p ≤

((
8
√

N

Rθ − rθ

)p

+ 1

)(
RN

θ − (rθ/2)N
)
ωNsp

nk
= crθ,Rθ

sp
nk

.

Note that D ⊂ {x ∈ R
N : rθ/2 ≤ |x| ≤ Rθ}; thus, for a.e. x ∈ D the inequality

(5) can be applied. Using the fact that F is even and iv), one has∫
D

K(x)F (uk(x))dx =
∫

D

K(x)F (snk
)dx ≥ Lθ‖K‖∞meas(D)sp

nk
.

On the other hand,∫
RN \D

K(x)F (uk(x))dx ≥ −
∫

RN \D

K(x)l|uk(x)|pdx ≥ −l‖K‖1s
p
nk

.

Combining the above relations with (6), we obtain

Eτ (uk) ≤
(

1
p
crθ,Rθ

− Lθ‖K‖∞meas(D) + l‖K‖1

)
sp

nk
< 0.

It remains to prove that limk→∞ γk = 0. The mean value theorem and
Proposition 3.1 implies that

|F (uk(x))| ≤ ak max
[−ak,ak]

|f | ≤ ak max
[−a1,a1]

|f | for every x ∈ R
N .

Then

0 > γk =
1
p
‖uk‖p

W 1,p −
∫

RN

K(x)F (uk(x))dx ≥ −ak‖K‖1 max
[a1,a1]

|f |.

Since the sequence {ak}k∈N tends to zero, the same is true for {γk}k∈N. �

Now, we are in the position to prove the first part of our main result, i.e., to
guarantee infinitely many non-radial, sign-changing solutions of (P) which belong
to the space W 1,p

Gτ
(RN ).

Proof of Theorem 2.1 (first part). Due to Proposition 3.3, there are infinitely many
pairwise distinct nonzero local minima of Eτ (up to a subsequence, we will keep
the same notation uk as before). Since E is even and K radial, E is Gτ -invariant,
i.e., E(hu) = E(u) for every h ∈ Gτ , u ∈ W 1,p(RN ). Thus, one can apply the
principle of symmetric criticality of Palais [18], obtaining that the local minima
of Eτ = E|W 1,p

Gτ
(R

N
)

are actually critical points of E, thus, weak solutions of the

problem { −�pu + |u|p−2u = K(x)f(u), x ∈ R
N ,

u ∈ W 1,p(RN ).
(P)
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Since ‖uk‖∞ ≤ ak ≤ δ for every k ∈ N, then f(uk(x)) = f(uk(x)) for every
x ∈ R

N . Consequently, the elements uk, k ∈ N, are weak solutions not only for
(P) but also for (P). Due to Remark 3.1, the elements uk, k ∈ N, are non-radial
and change their signs. Finally, the convergence of the sequence {ak}k∈N to zero
implies that limk→∞ ‖uk‖∞ = 0, which concludes the proof of the first part of
Theorem 2.1. �

4 Construction of special subspaces of W 1,p(RN);
sequences of solutions for (P) with mutually
different symmetries

In this section we will give a possible answer to the question formulated in the
Introduction, i.e., to describe as many sequences of non-radial, sign-changing
weak solutions of (P) as we can having the properties that elements in differ-
ent sequences are mutually distinguished by their symmetry properties. Now, we
are going to construct sN special subspaces of W 1,p(RN ) such that:

• For every subspace one can apply the arguments from Section 3, obtaining
infinitely many non-radial, sign-changing weak solutions of (P);

• The pairwise intersection of the subspaces contains only the 0 element.
(As a consequence, the sequences belonging to different subspaces cannot
be compared by symmetrical point of view.)

Let G = O(NG
1 ) × ... × O(NG

n ) ∈ PN and H = O(NH
1 ) × ... × O(NH

m ) ∈ PN ,
and define the set of coincidences of the partition of N with respect to the groups
G and H by

C(G, H) = {(i, j) ∈ {1, ..., n}×{1, ..., m} : NG
1 + ...+NG

i +NH
j + ...+NH

m = N}.

Moreover, let us denote by 〈G, H〉 the subgroup of O(N) generated (topologically)
by G and H, and Sρ(Rm) ⊂ R

m be the (m − 1)-dimensional sphere with radius
ρ > 0, (m = 2, ..., N). When ρ = 1, we simply denote by S(Rm) ⊂ R

m the
(m − 1)-dimensional unit sphere.

Lemma 4.1 Let G, H ∈ PN . If C(G, H) = ∅ then 〈G, H〉 acts transitively on
S(RN ), i.e., the 〈G, H〉-orbit of every unit vector in R

N is S(RN ).

Proof. Let G = O(NG
1 ) × ... × O(NG

n ) ∈ PN and H = O(NH
1 ) × ... × O(NH

m ) ∈
PN . Without loosing the generality, we may assume that NG

1 < NH
1 (these two

numbers cannot be equal since C(G, H) = ∅). Using again C(G, H) = ∅, there is
a (unique) number i1 ∈ {1, ..., n − 1} such that

NG
1 + ... + NG

i1 < NH
1 < NG

1 + ... + NG
i1+1.
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Let us denote by

Ṽ1 = R
NG

1 +...+NG
i1 , Ṽ2 = R

NG
i1+1 , V1 = R

NH
1 , V2 = R

NG
1 +...+NG

i1+1−NH
1 ,

and let V = Ṽ1 × Ṽ2 = V1 × V2 = R
NG

1 +...+NG
i1+1 .

We first claim that 〈G, H〉 acts transitively on S(V ), i.e., for every v, w ∈
S(V ) there exists σv,w ∈ 〈G, H〉 such that

σv,w(v, 0) = (w, 0), (7)

where the element 0 belongs to R
N−dim V . (If N = dimV the element 0 vanishes

in (7) and we are done.) In order to prove (7) it is enough to show that for every
v1 ∈ S(V1) = S(RNH

1 ) and w ∈ S(V ) there are gw ∈ G and hw ∈ H such that

gwhw((v1, 0), 0) = (w, 0), (8)

where (v1, 0) ∈ S(V ). Indeed, having a similar relation gvhv((v1, 0), 0) = (v, 0) for
some gv ∈ G and hv ∈ H, we deduce that σv,w = gwhw(gvhv)−1 ∈ 〈G, H〉 fulfills
(7).

Therefore, we prove (8), fixing arbitrarily v1 ∈ S(V1) and w =
(w11, w12, w2) ∈ S(Ṽ1 × R

NH
1 −dim Ṽ1 × V2) = S(V ). Since O(NH

1 ) acts tran-
sitively on S(V1) = S(RNH

1 ), for every w̃12 ∈ R
NH

1 −dim Ṽ1 with the property
(w11, w̃12) ∈ S(V1), there exists an h1 ∈ O(NH

1 ) such that

h1v1 = (w11, w̃12). (9)

Note that 1 = |w11|2 + |w̃12|2 and 1 = |w11|2 + |w12|2 + |w2|2. Therefore,

|w̃12|2 = |w12|2 + |w2|2. (10)

If w̃12 = 0, on account of (10), we have w = (w11, 0, 0). In this case, (8) is
clearly verified, choosing gw = IdRN ∈ G and hw = h1 × Id

R
N−NH

1
∈ H.

On the other hand, if w̃12 �= 0, let ρ = |w̃12| > 0. Since O(RNG
i1+1) acts

transitively on S(Ṽ2), it acts transitively on Sρ(Ṽ2) as well. Consequently by (10),
there exists g1 ∈ O(NG

i1+1) such that

g1(w̃12, 0) = (w12, w2) ∈ Sρ(Ṽ2) = Sρ(RNG
i1+1). (11)

Taking
gw = IdṼ1

× g1 × IdRN−dim V ∈ G,

and
hw = h1 × Id

R
N−NH

1
∈ H,

on account of (9) and (11), one has

gwhw((v1, 0), 0) = gw(w11, w̃12, 0) = (w11, w12, w2, 0) = (w, 0),

which proves relation (8), thus (7).
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If NG
1 + ... + NG

i1+1 = N then the statement of our lemma is concluded.
Otherwise, if NG

1 + ... + NG
i1+1 < N , using C(G, H) = ∅, we may fix a number

j1 ∈ {1, ..., m − 1} such that

NH
1 + ... + NH

j1 < NG
1 + ... + NG

i1+1 < NH
1 + ... + NH

j1+1.

Now, we may continue inductively the above arguments arriving to N as the right
hand side of the above inequality for H (or its analog for G). Consequently, for
every elements v, w ∈ S(RN ) one can find finitely many elements g1, g2, ... ∈ G
and h1, h2, ... ∈ H such that (g1h1g2h2...)v = w, which concludes our proof. �

Corollary 4.1 Let G, H ∈ PN and let u : R
N → R be a G-invariant and

H-invariant function. If C(G, H) = ∅ then u is radial.

Proof. It is clear that u is also 〈G, H〉-invariant. On the other hand, Lemma
4.1 implies that the 〈G, H〉-orbit of every element v ∈ R

N \ {0} is S|v|(R
N ).

In particular, the function u is constant on the 〈G, H〉-orbit of every element
v ∈ R

N \ {0}, i.e., it depends only in |v| which means that u is radial. �

Remark 4.1 Ultimately, it seems that C(G, H) = ∅ if and only if 〈G, H〉 =
O(N). The“if” part is obvious. Indeed, let us assume that 〈G, H〉 = O(N) and by
contradiction, C(G, H) �= ∅. Then, for some (i, j) ∈ {1, ..., n} × {1, ..., m} we have
O(N) = 〈G, H〉 ⊆ O(NG

1 + ...+NG
i )×O(NH

j + ...+NH
m )O(N), contradiction. The

”only if” part should follow from Lemma 4.1 and the classification of all linear
orthogonal groups which act transitively on the sphere, see Borel [7].

Proposition 4.1 Let G, H ∈ P̃N and τ ∈ N(G), γ ∈ N(H) arbitrarily fixed. If
C(G, H) = ∅ then

W 1,p
Gτ

(RN ) ∩ W 1,p
Hγ

(RN ) = {0}.

Proof. Let u ∈ W 1,p
Gτ

(RN ) ∩ W 1,p
Hγ

(RN ). In particular, u is both G-invariant and
H-invariant. On account of Corollary 4.1, the function u is radial. On the other
hand, since u is Gτ -invariant, we have u(x) = −u(τ−1x) for every x ∈ R

N . Since
|x| = |τ−1x|, the function u is identically 0. �

Proposition 4.2 Let N ≥ 4, N �= 5, and

GN
l = O(l + 1) × O(N − 2l − 2) × O(l + 1) ∈ P̃N , l ∈ {1, ..., sN}.

Then C(GN
k , GN

l ) = ∅ for every k, l ∈ {1, ..., sN} , k �= l.

Proof. Notice that N − 2l − 2 may become 0; in such case, we refer to GN
l =

O(l + 1) × O(l + 1). Now, let us fix k, l ∈ {1, ..., sN} , k �= l. Note that at most
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9 possibilities there exist to obtain elements of C(GN
k , GN

l ); indeed, since the
partitions of N have the forms

N = (k + 1) + (N − 2k − 2) + (k + 1)
= (l + 1) + (N − 2l − 2) + (l + 1),

the possible elements of the set C(GN
k , GN

l ) are (i, j) ∈ {1, 2, 3} × {1, 2, 3}.
First, let us assume that N − 2k − 2 �= 0 and N − 2l − 2 �= 0. One can

easily observe that neither the elements of the form (i, 1), i ∈ {1, 2, 3}, nor (3, j),
j ∈ {1, 2, 3}, cannot belong to the set C(GN

k , GN
l ). Thus, we have the following

remaining four cases:

I.) Suppose that (i, j) = (1, 2) ∈ C(GN
k , GN

l ). Then (k + 1) + (N − 2l − 2) +
(l + 1) = N which contradicts the fact that k �= l.

II.) Suppose that (i, j) = (2, 2) ∈ C(GN
k , GN

l ). Then (k + 1) + (N − 2k − 2) +
(N − 2l − 2) + (l + 1) = N, i.e., N = k + l + 2. Since k �= l, we have
k+ l ≤ 2sN −1. Consequently, N = k+ l+2 ≤ 2sN +1 < N, contradiction.

III.) (i, j) = (2, 3) works similarly as I.).

IV.) (i, j) = (1, 3) reduces to a similar discussion as II.).

Therefore, C(GN
k , GN

l ) = ∅.
Now, assume without losing the generality that N − 2l − 2 = 0. Then k �=

l = N/2 − 1 and the partitions of N have the forms
N = (k + 1) + (N − 2k − 2) + (k + 1)

= N/2 + N/2.

In particular, possible elements of C(GN
k , GN

l ) are (i, j) ∈ {1, 2, 3} × {1, 2}. Sim-
ilarly as before, neither the elements of the form (i, 1), i ∈ {1, 2, 3}, nor (3, j),
j ∈ {1, 2}, cannot belong to the set C(GN

k , GN
l ). If (1, 2) ∈ C(GN

k , GN
l ), then

(k + 1) + N/2 = N , i.e., k = l, contradiction. Finally, if (2, 2) ∈ C(GN
k , GN

l ),
then (k + 1) + (N − 2k − 2) + N/2 = N , i.e., k = l, contradiction. Consequently,
C(GN

k , GN
l ) = ∅. �

Proof of Theorem 2.1 (concluded). On account of Propositions 4.2 and 4.1, respec-
tively, for every N ≥ 4, N �= 5, one can construct sN ∈ N groups GN

l ∈ P̃N ,
l ∈ {1, ..., sN} such that for every τN

l ∈ N(GN
l ) the pairwise intersection of dif-

ferent spaces of the form W 1,p

(GN
l )

τN
l

(RN ) contains only the 0 element. Applying

the arguments from Section 3 for every space W 1,p

(GN
l )

τN
l

(RN ), l ∈ {1, ..., sN}, we

are able to guarantee sN sequences of non-radial, sign-changing weak solutions of
(P) with the property that different sequences are mutually distinguished by their
symmetry properties. This concludes the proof of Theorem 2.1. �

Remark 4.2 In order to be more explicit, in Table 1 (see below) we give the
description of the groups GN

l and possible choices of τN
l ∈ N(GN

l ), l ∈ {1, ..., sN}
for the space dimensions N = 4, ..., 13.
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Even if we exploit all the possibilities of the choice of τN
l ∈ N(GN

l ),
l ∈ {1, ..., sN}, in general, the number of sequences of solutions distinguished
by their symmetry properties cannot be increased by the aforementioned way. To
see this, let us consider the case N = 6. Note that N(G6

2) = {τ6
2 } (see Table 1),

and N(G6
1) = {γ1, γ2, γ3}, where γ1(x1, x2, x3) = (x1, x3, x3), γ2(x1, x2, x3) =

(x3, x2, x1), γ3(x1, x2, x3) = (x2, x1, x3) with xi ∈ R
2, i ∈ {1, 2, 3}. Due to

Proposition 4.1,
W 1,p

(G6
1)γi

(R6) ∩ W 1,p
(G6

2)τ6
2

(R6) = {0}

for every i ∈ {1, 2, 3}. However,

3⋂
i=1

W 1,p
(G6

1)γi

(R6) �= {0}.

Indeed, the function u : R
6 → R defined by

u(x1, x2, x3) = (|x1| − |x2|)(|x2| − |x3|)(|x3| − |x1|)(1 − |x1| − |x2| − |x3|)+,

xi ∈ R
2, i ∈ {1, 2, 3}, does belong to the set

⋂3
i=1 W 1,p

(G6
1)γi

(R6). Therefore, one

could happen that certain elements belong to several sequences of solutions.

N sN GN
l ∈ P̃N ; l ∈ {1, ..., sN } Possible choice of τN

l ∈ N(GN
l ); l ∈ {1, ..., sN }

4 1 G4
1 = O(2) × O(2) τ4

1 (x1, x2) = (x2, x1); x1, x2 ∈ R
2

5 0 − −
6 2 G6

1 = O(2) × O(2) × O(2) τ6
1 (x1, x2, x3) = (x3, x2, x1); x1, x2, x3 ∈ R

2

G6
2 = O(3) × O(3) τ6

2 (x1, x2) = (x2, x1); x1, x2 ∈ R
3

7 1 G7
1 = O(2) × O(3) × O(2) τ7

1 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
2, x2 ∈ R

3

8 3 G8
1 = O(2) × O(4) × O(2) τ8

1 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
2, x2 ∈ R

4

G8
2 = O(3) × O(2) × O(3) τ8

2 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
3, x2 ∈ R

2

G8
3 = O(4) × O(4) τ8

3 (x1, x2) = (x2, x1); x1, x2 ∈ R
4

9 2 G9
1 = O(2) × O(5) × O(2) τ9

1 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
2, x2 ∈ R

5

G9
2 = O(3) × O(3) × O(3) τ9

2 (x1, x2, x3) = (x2, x1, x3); x1, x2, x3 ∈ R
3

10 4 G10
1 = O(2) × O(6) × O(2) τ10

1 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
2, x2 ∈ R

6

G10
2 = O(3) × O(4) × O(3) τ10

2 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
3, x2 ∈ R

4

G10
3 = O(4) × O(2) × O(4) τ10

3 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
4, x2 ∈ R

2

G10
4 = O(5) × O(5) τ10

4 (x1, x2) = (x2, x1); x1, x2 ∈ R
5

11 3 G11
1 = O(2) × O(7) × O(2) τ11

1 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
2, x2 ∈ R

7

G11
2 = O(3) × O(5) × O(3) τ11

2 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
3, x2 ∈ R

5

G11
3 = O(4) × O(3) × O(4) τ11

3 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
4, x2 ∈ R

3

12 5 G12
1 = O(2) × O(8) × O(2) τ12

1 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
2, x2 ∈ R

8

G12
2 = O(3) × O(6) × O(3) τ12

2 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
3, x2 ∈ R

6

G12
3 = O(4) × O(4) × O(4) τ12

3 (x1, x2, x3) = (x2, x1, x3); x1, x2, x3 ∈ R
4

G12
4 = O(5) × O(2) × O(5) τ12

4 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
5, x2 ∈ R

2

G12
5 = O(6) × O(6) τ12

5 (x1, x2) = (x2, x1); x1, x2 ∈ R
6

13 4 G13
1 = O(2) × O(9) × O(2) τ13

1 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
2, x2 ∈ R

9

G13
2 = O(3) × O(7) × O(3) τ13

2 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
3, x2 ∈ R

7

G13
3 = O(4) × O(5) × O(4) τ13

3 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
4, x2 ∈ R

5

G13
4 = O(5) × O(3) × O(5) τ13

4 (x1, x2, x3) = (x3, x2, x1); x1, x3 ∈ R
5, x2 ∈ R

3

Table 1.
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Remark 4.3 Fix l ∈ {1, ..., sN} and τN
l ∈ N(GN

l ), defined by τN
l (x1, x2, x3) =

(x3, x2, x1) for every (x1, x2, x3) ∈ R
l+1 × R

N−2l−2 × R
l+1. Let us consider the

‘diagonal’ set

DN
l = {x = (x1, x2, x3) ∈ R

l+1 × R
N−2l−2 × R

l+1 : |x1| = |x3|}.

If {ul
k}k∈N ⊂ W 1,p

(GN
l )

τN
l

(RN ) is a sequence of solutions from Theorem 2.1, then

ul
k(x) = 0 for every x ∈ DN

l , k ∈ N. This fact follows from (2).
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[11] A. KRISTÁLY, Infinitely many solutions for a differential inclusion problem
in R

N , J. Differential Equations 220 (2006), 511–530.
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