Numerical Functional Analysis and Optimization, 29(9–10):1114–1127, 2008 Copyright © Taylor & Francis Group, LLC ISSN: 0163-0563 print/1532-2467 online DOI: 10.1080/01630560802418383

PERTURBED NEUMANN PROBLEMS WITH MANY SOLUTIONS

Alexandru Kristály

Department of Economics, Babes-Bolyai University, Cluj-Napoca, Romania

 \Box Given $f, g: [0, \infty) \to \mathbb{R}$ two continuous nonlinearities with f(0) = g(0) = 0 and f having a suitable oscillatory behavior at zero or at infinity, we prove by a direct method that for every $k \in \mathbb{N}$, there exists $\varepsilon_k > 0$ such that the problem

$$\begin{cases} -\Delta_p u + \alpha(x)u^{p-1} = f(u) + \varepsilon g(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega. \end{cases}$$

has at least k distinct nonnegative weak solutions in $W^{1,p}(\Omega)$ whenever $|\varepsilon| \leq \varepsilon_k$. We also give various $W^{1,p}$ - and L^{∞} -estimates of the solutions. No growth assumption on g is needed, and $\alpha \in L^{\infty}(\Omega)$ may be sign-changing or even negative depending on the rate of the oscillation of f.

Keywords Arbitrarily many solutions; Oscillatory nonlinearity; Perturbed Neumann problem.

AMS Subject Classification 35J65; 35J20; 35J25.

1. INTRODUCTION AND MAIN RESULTS

Very recently, in [3] the authors studied the Neumann problem

$$\begin{cases} -\Delta_p u + \alpha(x) |u|^{p-2} u = \beta(x) f(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega, \end{cases}$$
(P₀)

where $\Omega \subset \mathbb{R}^N$ is a bounded open domain with C^2 -boundary $\partial \Omega$, $1 , <math>\Delta_p(\cdot) = \operatorname{div}(|\nabla(\cdot)|^{p-2}\nabla(\cdot))$ is the *p*-Laplacian operator, *v* is the

Address correspondence to Alexandru Kristály, Department of Economics, Babeş-Bolyai University, Cluj-Napoca 400591, Romania; E-mail: alexandrukristaly@yahoo.com

outer unit normal to $\partial\Omega$, $f \in L^{\infty}_{loc}([0,\infty))$ with f(0) = 0, and $\alpha, \beta \in L^{\infty}(\Omega)$ with essinf $_{\Omega}\beta > 0$. Because f is *not* necessarily continuous, problem (P₀) has been reformulated into a hemivariational inequality, and the existence of *infinitely* many nonnegative solutions for (P₀) are guaranteed whenever f has a suitable oscillatory behavior at the origin or at infinity (see hypotheses (H_0^f) and (H_{∞}^f) below).

The goal of the current paper is to treat the *perturbed* problem

$$\begin{cases} -\Delta_p u + \alpha(x) |u|^{p-2} u = f(u) + \varepsilon g(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega, \end{cases}$$
(P_{\varepsilon})

where f is continuous and verifies the same conditions as in [3], and $g:[0,\infty) \to \mathbb{R}$ is an *arbitrarily* continuous function with g(0) = 0. Having infinitely many solutions for problem (P₀) cf. [3], we expect to find still *many* solutions for the perturbed problem (P_{ε}) whenever $|\varepsilon|$ is small enough. The purpose of the current paper is to show that this is indeed the case. Here, a solution for (P_{ε}) is meant as a weak solution in $W^{1,p}(\Omega)$ in the usual sense.

In the sequel, we state our results, recalling simultaneously the hypotheses and results from [3] in the smooth context (and taking $\beta = 1$, see (P₀)). If we denote by $F(s) = \int_0^s f(t) dt$, $s \ge 0$, we assume

$$(H_0^f) \limsup_{s \to 0^+} \frac{pF(s)}{s^p} > \frac{\int_\Omega \alpha(x)dx}{\operatorname{meas}(\Omega)} \ge \operatorname{essinf}_\Omega \alpha > \liminf_{s \to 0^+} \frac{f(s)}{s^{p-1}}.$$

Note that (H_0^f) implies an oscillatory behavior of f at zero.

Theorem A [3, Theorem 1.2]. Let $\alpha \in L^{\infty}(\Omega)$ and a continuous function $f : [0, \infty) \to \mathbb{R}$ with f(0) = 0, fulfilling (H_0^f) . Then (P_0) admits a sequence of distinct nonnegative solutions $\{u_i^o\}$ in $W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$\lim_{i \to \infty} \|u_i^0\|_{W^{1,p}} = \lim_{i \to \infty} \|u_i^0\|_{\infty} = 0.$$
(1.1)

Here, the norms $\|\cdot\|_{W^{1,p}}$ and $\|\cdot\|_{L^{\infty}}$ are the usual ones on the spaces $W^{1,p}(\Omega)$ and $L^{\infty}(\Omega)$, respectively. The first main result of the current paper reads as follows.

Theorem 1.1. Let $\alpha \in L^{\infty}(\Omega)$ and two continuous functions $f, g : [0, \infty) \to \mathbb{R}$ with f(0) = g(0) = 0. Assume that (H_0^f) holds.

Then, for every $k \in \mathbb{N}$, there exists $\varepsilon_k^0 > 0$ such that (P_{ε}) has at least k distinct nonnegative solutions in $W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ whenever $\varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0]$. Moreover,

A. Kristály

if the (first k) solutions are denoted by $u_{i,\varepsilon}^0$, $i = \overline{1, k}$, then

$$\|u_{i,\varepsilon}^0\|_{L^{\infty}} < \frac{1}{i} \quad and \quad \|u_{i,\varepsilon}^0\|_{W^{1,p}} < \frac{1}{i} \quad for \ any \ i = \overline{1,k}; \ \varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0].$$
(1.1')

Remark 1.2. It is useful to notice the concordance between relations (1.1) and (1.1'), respectively. Moreover, no growth assumption is required on g.

Dealing with the case when f oscillates at infinity, in [3] is required a *subcritical* growth condition at infinity for f; namely

$$(f_{p^*}) \limsup_{s \to \infty} \frac{|f(s)|}{s^{q-1}} < \infty \text{ for some } q \in (p, p^*).$$

Here, $p^* = pN/(N - p)$ if N > p and $p^* = \infty$ if $p \ge N$. The counterpart of the hypothesis (H_0^f) at infinity is

$$(H_{\infty}^{f}) \limsup_{s \to \infty} \frac{pF(s)}{s^{p}} > \frac{\int_{\Omega} \alpha(x) dx}{\operatorname{meas}(\Omega)} \ge \operatorname{essinf}_{\Omega} \alpha > \liminf_{s \to \infty} \frac{f(s)}{s^{p-1}}.$$

Theorem B [3, Theorem 1.3]. Let $\alpha \in L^{\infty}(\Omega)$ and a continuous function $f : [0, \infty) \to \mathbb{R}$ with f(0) = 0, fulfilling (f_{p^*}) and (H^f_{∞}) . Then (P_0) admits a sequence of distinct nonnegative solutions $\{u_i^{\infty}\}$ in $W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$\lim_{i \to \infty} \|u_i^{\infty}\|_{W^{1,p}} = \lim_{i \to \infty} \|u_i^{\infty}\|_{\infty} = \infty.$$

$$(1.2)$$

In our second result, we can avoid the subcritical growth condition (f_{p^*}) as follows.

Theorem 1.3. Let $\alpha \in L^{\infty}(\Omega)$ and two continuous functions $f, g : [0, \infty) \to \mathbb{R}$ with f(0) = g(0) = 0. Assume that (H^f_{∞}) holds.

Then, for every $k \in \mathbb{N}$, there exists $\varepsilon_k^{\infty} > 0$ such that (P_{ε}) has at least k distinct nonnegative solutions in $W^{1,p}(\Omega) \cap L^{\infty}(\Omega)$ whenever $\varepsilon \in [-\varepsilon_k^{\infty}, \varepsilon_k^{\infty}]$. Moreover, if the (first k) solutions are denoted by $u_{i,\varepsilon}^{\infty}$, $i = \overline{1, k}$, then

$$\|u_{i,\varepsilon}^{\infty}\|_{L^{\infty}} > i-1 \quad \text{for any } i = \overline{1,k}; \ \varepsilon \in [-\varepsilon_k^{\infty}, \varepsilon_k^{\infty}]. \tag{1.2'}$$

The proofs of Theorems A and B play crucial roles in Theorems 1.1 and 1.3, respectively; in fact, the proofs are based on a careful analysis of two special sequences involving the energy functional associated to (P_{ε}) . For details, see Sections 3 and 4.

We give two simple functions for f fulfilling the hypotheses of Theorems 1.1 and 1.3, respectively.

(a) Let $\alpha, \beta, \gamma \in \mathbb{R}$ such that $0 < \alpha < 1 < \alpha + \beta$, and $\gamma \in (0, 1)$. Then, the function $f : [0, \infty) \to \mathbb{R}$ defined by f(0) = 0 and $f(s) = s^{\alpha}(\gamma + \sin s^{-\beta})$,

s > 0, verifies (H_0^f) with p = 2. Note that α may be any negative or sign-changing function that belongs to $L^{\infty}(\Omega)$.

(b) Let $\alpha, \beta, \gamma \in \mathbb{R}$ such that $1 < \alpha, |\alpha - \beta| < 1$, and $\gamma \in (0, 1)$. Then, the function $f : [0, \infty) \to \mathbb{R}$ defined by $f(s) = s^{\alpha}(\gamma + \sin s^{\beta})$ verifies the hypotheses (H_{∞}^{f}) with p = 2. The same remark is valid for α as before.

Equations involving oscillatory terms usually produce infinitely many solutions. This phenomenon has been exploited by several authors in various contexts: for Neumann boundary problems, see Ricceri [7], Faraci and Kristály [2], Kristály and Motreanu [3], for Dirichlet boundary problems, see Anello and Cordaro [1], Omari and Zanolin [5], and Saint Raymond [8].

2. AN AUXILIARY RESULT

In this section, we consider the problem

$$\begin{cases} -\Delta_p u + \lambda(x)|u|^{p-2}u = h(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega, \end{cases}$$
(P)

assuming that $\lambda \in L^{\infty}(\Omega)$ with $\operatorname{essinf}_{\Omega} \lambda > 0$ and

(h₁) $h : [0, \infty) \to \mathbb{R}$ is a continuous, bounded function such that h(0) = 0; (h₂) there are 0 < a < b such that $h(s) \le 0$ for all $s \in [a, b]$.

Because of (h_1) , we may extend *h* continuously to the whole \mathbb{R} , taking h(s) = 0 for all $s \leq 0$.

We may introduce the energy functional $\mathscr{C}: W^{1,p}(\Omega) \to \mathbb{R}$ associated with problem (P), which is defined by

$$\mathscr{E}(u) = \frac{1}{p} \|u\|_{\lambda}^{p} - \int_{\Omega} H(u(x)) dx, \quad u \in W^{1,p}(\Omega),$$

where

$$\|u\|_{\lambda} = \left(\int_{\Omega} |\nabla u(x)|^{p} dx + \int_{\Omega} \lambda(x) |u(x)|^{p} dx\right)^{1/p}$$

and $H(s) = \int_0^s h(t) dt$, $s \in \mathbb{R}$. Note that the norms $\|\cdot\|_{\lambda}$ and $\|\cdot\|_{W^{1,p}}$ are equivalent, as $\operatorname{essinf}_{\Omega}\lambda > 0$. Standard arguments show that \mathscr{C} is well-defined and is of class C^1 on $W^{1,p}(\Omega)$. Moreover, its critical points are weak solutions for problem (P).

We consider the number $b \in \mathbb{R}$ from (h_2) , and we introduce the level-set

$$W^b = \{ u \in W^{1,p}(\Omega) : \|u\|_{L^{\infty}} \le b \}.$$

Now, we are ready to state the main result of this section.

Theorem 2.1. Assume that (h_1) , (h_2) hold. Then

- (i) the functional *C* is bounded from below on W^b and its infimum is attained at ũ ∈ W^b;
- (ii) $\tilde{u}(x) \in [0, a]$ for a.e. $x \in \Omega$;
- (iii) \tilde{u} is a weak solution of (P).

Proof. (i) For every $u \in W^b$, we have

$$\mathscr{E}(u) = \frac{1}{p} \|u\|_{\lambda}^{p} - \int_{\Omega} H(u(x)) dx \ge -\operatorname{meas}(\Omega) \max_{[-b,b]} H > -\infty.$$

Thus, \mathcal{C} is bounded from below on W^b . On the other hand, due to the theorem of Rellich-Kondrachov, \mathcal{C} is sequentially weakly continuous. Because W^b is convex and closed, thus weakly closed in $W^{1,p}(\Omega)$, the infimum of \mathcal{C} on W^b is attained at an element $\tilde{u} \in W^b$.

(ii) Let $W = \{x \in \Omega : \tilde{u}(x) \notin [0, a]\}$ and suppose that meas(W) > 0. Define the function $\gamma(s) = \min(s_+, a)$ where $s_+ = \max(s, 0)$, and set $\tilde{w} = \gamma \circ \tilde{u}$. Due to Marcus and Mizel [6], \tilde{w} belongs to $W^{1,p}(\Omega)$ (as γ is Lipschitz continuous). Moreover, $\tilde{w} \in W^b$. We introduce the following two sets

$$W_1 = \{x \in W : \tilde{u}(x) < 0\}$$
 and $W_2 = \{x \in W : \tilde{u}(x) > a\}.$

Then, $W = W_1 \cup W_2$, and we have that $\tilde{w}(x) = \tilde{u}(x)$ for all $x \in \Omega \setminus W$, $\tilde{w}(x) = 0$ for all $x \in W_1$, and $\tilde{w}(x) = a$ for all $x \in W_2$. Furthermore,

$$\begin{split} & \mathscr{C}(\tilde{w}) - \mathscr{C}(\tilde{u}) \\ &= -\frac{1}{p} \int_{W} |\nabla \tilde{u}|^{p} dx + \frac{1}{p} \int_{W} \lambda(x) [|\tilde{w}|^{p} - |\tilde{u}|^{p}] dx - \int_{W} [H(\tilde{w}) - H(\tilde{u})] dx \\ &= -\frac{1}{p} \int_{W} |\nabla \tilde{u}|^{p} dx - \frac{1}{p} \int_{W_{1}} \lambda(x) |\tilde{u}|^{p} dx + \frac{1}{p} \int_{W_{2}} \lambda(x) [a^{p} - \tilde{u}^{p}] dx \\ &- \int_{W_{1}} [H(0) - H(\tilde{u}(x))] dx - \int_{W_{2}} [H(a) - H(\tilde{u}(x))] dx. \end{split}$$

First, $\int_{W_1} [H(0) - H(\tilde{u}(x))] dx = 0$. Then, by using the mean value theorem and hypotheses (h_2), we obtain

$$\int_{W_2} [H(a) - H(\tilde{u}(x))] dx \ge 0.$$

Therefore, every term of the above expression is nonpositive. But, taking into account that $\mathscr{C}(\tilde{w}) \geq \mathscr{C}(\tilde{u}) = \inf_{W^b} \mathscr{C}$, every term should be zero. In particular,

$$\int_{W_1} \lambda(x) |\tilde{u}|^p = \int_{W_2} \lambda(x) [a^p - \tilde{u}^p] = 0.$$

Because $\operatorname{essinf}_{\Omega}\lambda > 0$, the above relations imply that $\operatorname{meas}(W_1) = \operatorname{meas}(W_2) = 0$, so $\operatorname{meas}(W) = 0$, contradicting the initial assumption.

(iii) A direct consequence of (i) is that

$$\mathscr{C}'(\tilde{u})(w-\tilde{u}) \ge 0, \quad \forall w \in W^b,$$

that is,

$$\begin{split} &\int_{\Omega} \left[|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla (w - \tilde{u}) + \lambda(x) \tilde{u}^{p-1}(w - \tilde{u}) \right] - \int_{\Omega} h(\tilde{u})(w - \tilde{u}) \geq 0, \\ &\forall w \in W^{b}. \end{split}$$

Let us define the function $\gamma(s) = \operatorname{sgn}(s) \min(|s|, b)$, and fix $\varepsilon > 0$ and $v \in W^{1,p}(\Omega)$ arbitrarily. Because γ is Lipschitz continuous, $w = \gamma \circ (\tilde{u} + \varepsilon v)$ belongs to $W^{1,p}(\Omega)$, see Marcus and Mizel [6]. The explicit expression of w is

$$w(x) = \begin{cases} -b, & \text{if } x \in \{\tilde{u} + \varepsilon v < -b\} \\ \tilde{u}(x) + \varepsilon v(x), & \text{if } x \in \{-b \le \tilde{u} + \varepsilon v < b\} \\ b, & \text{if } x \in \{b \le \tilde{u} + \varepsilon v\}. \end{cases}$$

Consequently, $w \in W^b$. Considering w as a test function in the above inequality, we obtain

$$\begin{split} 0 &\leq -\int_{\{\tilde{u}+\varepsilon v<-b\}} |\nabla \tilde{u}|^{p} - \int_{\{\tilde{u}+\varepsilon v<-b\}} \lambda(x) \tilde{u}^{p-1}(b+\tilde{u}) + \int_{\{\tilde{u}+\varepsilon v<-b\}} h(\tilde{u})(b+\tilde{u}) \\ &+ \varepsilon \int_{\{-b\leq \tilde{u}+\varepsilon v$$

After a suitable rearrangement of the terms in the above inequality, we obtain

$$\begin{split} 0 &\leq \varepsilon \int_{\Omega} |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v + \varepsilon \int_{\Omega} \lambda(x) \tilde{u}^{p-1} v - \varepsilon \int_{\Omega} h(\tilde{u}) v - \int_{\{\tilde{u}+\varepsilon v < -b\}} |\nabla \tilde{u}|^{p} \\ &- \int_{\{b \leq \tilde{u}+\varepsilon v\}} |\nabla \tilde{u}|^{p} + \int_{\{\tilde{u}+\varepsilon v < -b\}} [h(\tilde{u}) - \lambda(x) \tilde{u}^{p-1}] (b + \tilde{u} + \varepsilon v) \\ &+ \int_{\{b \leq \tilde{u}+\varepsilon v\}} [h(\tilde{u}) - \lambda(x) \tilde{u}^{p-1}] (-b + \tilde{u} + \varepsilon v) \\ &- \varepsilon \int_{\{\tilde{u}+\varepsilon v < -b\}} |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v - \varepsilon \int_{\{b \leq \tilde{u}+\varepsilon v\}} |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v. \end{split}$$

First, due to (ii), we have

$$\begin{split} &\int_{\{\tilde{u}+\varepsilon v<-b\}} [h(\tilde{u})-\lambda(x)\tilde{u}^{p-1}](b+\tilde{u}+\varepsilon v) \\ &\leq -\varepsilon \int_{\{\tilde{u}+\varepsilon v<-b\}} \Big[\max_{s\in[0,a]}|h(s)|+a^{p-1}\lambda(x)\Big]v. \end{split}$$

A similar estimation shows that

$$\int_{\{b \le \tilde{u} + \varepsilon v\}} [h(\tilde{u}) - \lambda(x)\tilde{u}^{p-1}](-b + \tilde{u} + \varepsilon v)$$

$$\leq \varepsilon \int_{\{b \le \tilde{u} + \varepsilon v\}} \Big[\max_{s \in [0,a]} |h(s)| + a^{p-1}\lambda(x) \Big] v.$$

Taking into account the above estimates and dividing by $\varepsilon > 0$, we obtain that

$$\begin{split} 0 &\leq \int_{\Omega} |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v + \int_{\Omega} \lambda(x) \tilde{u}^{p-1} v - \int_{\Omega} h(\tilde{u}) v \\ &- \int_{\{\tilde{u}+\varepsilon v < -b\}} \left(\max_{s \in [0,a]} |h(s)| v + a^{p-1} \lambda(x) v + |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v \right) \\ &- \int_{\{b \leq \tilde{u}+\varepsilon v\}} \left(\max_{s \in [0,a]} |h(s)| v + a^{p-1} \lambda(x) v + |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v \right). \end{split}$$

Now, letting $\varepsilon \to 0^+$, and taking into account that $0 \le \tilde{u}(x) \le a$ a.e. $x \in \Omega$, we have meas $(\{\tilde{u} + \varepsilon v < -b\}) \to 0$ and meas $(\{b \le \tilde{u} + \varepsilon v\}) \to 0$, respectively. Consequently, the above inequality reduces to

$$0 \leq \int_{\Omega} |\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v + \int_{\Omega} \lambda(x) \tilde{u}^{p-1} v - \int_{\Omega} h(\tilde{u}) v.$$

Because $v \in W^{1,p}(\Omega)$ was arbitrarily chosen, \tilde{u} is a nonnegative solution for (P).

3. PROOF OF THEOREM 1.1

Because of (H_0^f) , one can fix $c_0 \in \mathbb{R}$ such that

$$\operatorname{essinf}_{\Omega} \alpha > c_0 > \liminf_{s \to 0^+} \frac{f(s)}{s^{p-1}}.$$
(3.1)

In particular, there is a sequence $\{s_i\} \subset (0, 1)$ converging (decreasingly) to 0, such that

$$f(s_i) < c_0 s_i^{p-1}. ag{3.2}$$

Let us define the functions

$$j(s) = f(s) - c_0 s_+^{p-1}$$
 and $J(s) = \int_0^s j(t) dt$, $s \in \mathbb{R}$ (3.3)

and $\lambda_0(x) = \alpha(x) - c_0, x \in \Omega$.

Because $j(s_i) < 0$ (see (3.2)), and using the continuity of j and g as well as hypothesis (H_0^f) , we may fix the positive sequences $\{a_i\}_i, \{b_i\}_i, \{\tilde{s}_i\}_i$, and $\{\varepsilon_i\}_i$ such that for all $i \in \mathbb{N}$,

$$b_{i+1} < a_i < s_i < b_i < 1; (3.4)$$

$$\tilde{s}_i \le b_i \le \left\{ \frac{1}{i}, \frac{\min(1, \operatorname{essinf}_{\Omega}\lambda_0)}{pi^p \operatorname{meas}(\Omega)[\max_{[0,1]} |f| + \max_{[0,1]} |g| + |c_0| + 1]} \right\}; \quad (3.5)$$

$$j(s) + \varepsilon g(s) \le 0$$
 for all $s \in [a_i, b_i]$ and $\varepsilon \in [-\varepsilon_i, \varepsilon_i];$ (3.6)

$$\frac{pJ(\tilde{s}_i)}{\tilde{s}_i^p} > \frac{\int_{\Omega} \alpha(x) \, dx}{\mathrm{meas}(\Omega)} - c_0. \tag{3.7}$$

In particular, we have $\lim_{i\to\infty} a_i = \lim_{i\to\infty} b_i = 0$. For every $i \in \mathbb{N}$, we define the truncation functions $j_i, g_i : [0, \infty) \to \mathbb{R}$ by

$$j_i(s) = j(\min(s, b_i))$$
 and $g_i(s) = g(\min(s, b_i)).$ (3.8)

Because j(0) = g(0) = 0, we may extend continuously the functions j_i and g_i to the whole real line, taking 0 for negative values. For every $s \in \mathbb{R}$ and $i \in \mathbb{N}$, let $J_i(s) = \int_0^s j_i(t) dt$ and $G_i(s) = \int_0^s g_i(t) dt$. For every $i \in \mathbb{N}$ and $\varepsilon \in [-\varepsilon_i, \varepsilon_i]$, the function $h_{i,\varepsilon_i}^0 : [0, \infty) \to \mathbb{R}$

For every $i \in \mathbb{N}$ and $\varepsilon \in [-\varepsilon_i, \varepsilon_i]$, the function $h_{i,\varepsilon}^0 : [0, \infty) \to \mathbb{R}$ defined by $h_{i,\varepsilon}^0 = j_i + \varepsilon g_i$ is continuous, bounded, and $h_{i,\varepsilon}^0(0) = 0$. On account of relations (3.6) and (3.8), we have $h_{i,\varepsilon}^0(s) \le 0$ for all $s \in [a_i, b_i]$. Moreover, $\operatorname{essinf}_{\Omega} \lambda_0 = \operatorname{essinf}_{\Omega} \alpha - c_0 > 0$, see (3.1). Thus, we may apply Theorem 2.1 to the function $h_{i,\varepsilon}^0$ obtaining that for every $i \in \mathbb{N}$ and $\varepsilon \in [-\varepsilon_i, \varepsilon_i]$, the problem

$$\begin{cases} -\Delta_{p}u + \lambda_{0}(x)|u|^{p-2}u = h^{0}_{i,\varepsilon}(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega, \end{cases}$$
(P^{0}_{i,\varepsilon})

has a weak solution $u_{i,\varepsilon}^0 \in W^{1,p}(\Omega)$ such that

$$u_{i,\varepsilon}^0 \in [0, a_i] \quad \text{for a.e. } x \in \Omega;$$
 (3.9)

 $u_{i,\varepsilon}^0$ is the infimum of the functional $\mathscr{C}_i^{\varepsilon}$ on W^{b_i} , (3.10)

where

$$\mathscr{E}_i^{\varepsilon}(u) = \frac{1}{p} \|u\|_{\lambda_0}^p - \int_{\mathbb{R}^N} [J_i(u) + \varepsilon G_i(u)], \quad u \in W^{1,p}(\Omega).$$
(3.11)

Because of (3.3), (3.8), (3.9) and the definition of the function λ_0 , the element $u_{i,\varepsilon}^0$ is a weak solution not only for $(\mathbf{P}_{i,\varepsilon}^0)$ but also for our problem $(\mathbf{P}_{\varepsilon})$. Consequently, it remains to prove that for every $k \in \mathbb{N}$, there are at least k distinct elements $u_{i,\varepsilon}^0$ verifying the required properties.

As we pointed out in the Introduction, the proof of the above fact is based on Theorem A (i.e., on the unperturbed case); consequently, we recall some partial results from [3]. To do this, take for abbreviation $u_i^0 = u_{i,0}^0$ and let $w_{\tilde{s}_i} \in W^{1,p}(\Omega)$, $w_{\tilde{s}_i}(x) = \tilde{s}_i$ $(x \in \Omega)$ for every $i \in \mathbb{N}$. The core of Theorem A, which is based on (3.7), is to prove the relations

$$\mathscr{C}_{i}^{0}(u_{i}^{0}) \leq \mathscr{C}_{i}^{0}(w_{\tilde{s}_{i}}) < 0 \quad \text{for all } i \in \mathbb{N};$$

$$(3.12)$$

$$\lim_{i \to \infty} \mathscr{E}_i^0(u_i^0) = \lim_{i \to \infty} \mathscr{E}_i^0(w_{\tilde{s}_i}) = 0, \qquad (3.13)$$

see Propositions 3.1 and 3.3 from [3], respectively. In particular, because of (3.8) and (3.9), we observe that $\mathscr{C}_i^0(u_i^0) = \mathscr{C}_1^0(u_i^0)$ for all $i \in \mathbb{N}$. Combining this relation with (3.12) and (3.13), we see that the sequence $\{u_i^0\}_i$ contains infinitely many distinct elements.

Up to a subsequence, we may consider a sequence $\{\gamma_i\}_i$ with negative terms such that

$$\gamma_i < \mathscr{C}_i^0(u_i^0) \le \mathscr{C}_i^0(w_{\tilde{s}_i}) < \gamma_{i+1}.$$
(3.14)

Let us denote

$$arepsilon_i' = rac{\gamma_{i+1} - \mathscr{E}_i^0(w_{\overline{s}_i})}{|G_i(\overline{s}_i)| \mathrm{meas}(\Omega) + 1} \quad \mathrm{and} \quad arepsilon_i'' = rac{\mathscr{E}_i^0(u_i^0) - \gamma_i}{\max_{s \in [0, a_i]} |G_i(s)| \mathrm{meas}(\Omega) + 1}, \ i \in \mathbb{N}$$

Fix $k \in \mathbb{N}$. Because of (3.14),

$$\varepsilon_k^0 = \min(1, \varepsilon_1, \dots, \varepsilon_k, \varepsilon_1', \dots, \varepsilon_k', \varepsilon_1'', \dots, \varepsilon_k'') > 0.$$

Then, for every $i \in \{1, ..., k\}$ and $\varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0]$, we have

$$\begin{aligned} & \mathscr{E}_{i}^{\varepsilon}(u_{i,\varepsilon}^{0}) \leq \mathscr{E}_{i}^{\varepsilon}(w_{\tilde{s}_{i}}) \quad (ext{see} \ (3.10) \ ext{and} \ (3.5)) \\ & = \mathscr{E}_{i}^{0}(w_{\tilde{s}_{i}}) - \varepsilon \int_{\Omega} G_{i}(w_{\tilde{s}_{i}}) \\ & < \gamma_{i+1}, \quad (ext{see} \ ext{the choice of} \ arepsilon_{i}') \end{aligned}$$

and taking into account that $u_{i,\varepsilon}^0$ belongs to W^{b_i} , and u_i^0 is the minimum point of \mathscr{C}_i^0 over the set W^{b_i} , see relation (3.10) for $\varepsilon = 0$, we have

$$\begin{aligned} \mathscr{C}_{i}^{\varepsilon}(u_{i,\varepsilon}^{0}) &= \mathscr{C}_{i}^{0}(u_{i,\varepsilon}^{0}) - \varepsilon \int_{\Omega} G_{i}(u_{i,\varepsilon}^{0}) \\ &\geq \mathscr{C}_{i}^{0}(u_{i}^{0}) - \varepsilon \int_{\Omega} G_{i}(u_{i,\varepsilon}^{0}) \\ &> \gamma_{i}. \quad (\text{see the choice of } \varepsilon_{i}'' \text{ and } (3.9)) \end{aligned}$$

In conclusion, for every $i \in \{1, ..., k\}$ and $\varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0]$, we have

$$\gamma_i < \mathscr{C}_i^{\varepsilon}(u_{i,\varepsilon}^0) < \gamma_{i+1},$$

thus

$$\mathscr{E}_1^{\varepsilon}(u_{1,\varepsilon}^0) < \cdots < \mathscr{E}_k^{\varepsilon}(u_{k,\varepsilon}^0).$$

Let us observe that $u_{i,\varepsilon}^0 \in W^{b_1}$ for every $i \in \{1, \ldots, k\}$, so $\mathscr{C}_i^{\varepsilon}(u_{i,\varepsilon}^0) = \mathscr{C}_1^{\varepsilon}(u_{i,\varepsilon}^0)$, see relation (3.8). From above, we obtain that for every $\varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0]$,

$$\mathscr{C}_1^{\varepsilon}(u_{1,\varepsilon}^0) < \cdots < \mathscr{C}_1^{\varepsilon}(u_{k,\varepsilon}^0).$$

In particular, this fact shows that the elements $u_{1,\varepsilon}^0, \ldots, u_{k,\varepsilon}^0$ are distinct whenever $\varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0]$.

Now, we prove (1.1'). The first relation easily follows by (3.9) and (3.5). To check the second relation, we observe that for every $i \in \{1, ..., k\}$ and $\varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0]$,

$$\mathscr{C}_1^{\varepsilon}(u_{i,\varepsilon}^0) = \mathscr{C}_i^{\varepsilon}(u_{i,\varepsilon}^0) < \gamma_{i+1} < 0.$$

Consequently, for every $i \in \{1, ..., k\}$ and $\varepsilon \in [-\varepsilon_k^0, \varepsilon_k^0]$, by using a mean value theorem, we obtain

$$\begin{split} &\frac{1}{p} \|u_{i,\varepsilon}^{0}\|_{W^{1,p}}^{p} \\ &\leq \frac{1}{p} \left[\min(1, \operatorname{essinf}_{\Omega}\lambda_{0})\right]^{-1} \|u_{i,\varepsilon}^{0}\|_{\lambda_{0}}^{p} \\ &< \left[\min(1, \operatorname{essinf}_{\Omega}\lambda_{0})\right]^{-1} \int_{\Omega} [J_{i}(u_{i,\varepsilon}^{0}) + \varepsilon G_{i}(u_{i,\varepsilon}^{0})] \\ &\leq \left[\min(1, \operatorname{essinf}_{\Omega}\lambda_{0})\right]^{-1} \operatorname{meas}(\Omega) \left[\max_{[0,1]} |f| + \max_{[0,1]} |g| + |c_{0}| a_{i}^{p-1}\right] a_{i} \\ &\quad (\operatorname{see}\ (3.3),\ (3.4),\ (3.9)\ \text{and}\ \varepsilon_{k}^{0} \leq 1) \\ &< \frac{1}{pi^{p}}, \quad (\operatorname{see}\ (3.4)\ \text{and}\ (3.5)) \end{split}$$

which concludes the proof.

4. PROOF OF THEOREM 1.3

The proof of this part is similar to that of Theorem 1.1. Because of (H_{∞}^{f}) , one can fix $c_{\infty} \in \mathbb{R}$ such that

$$\operatorname{essinf}_{\Omega} \alpha > c_{\infty} > \liminf_{s \to \infty} \frac{f(s)}{s^{p-1}}.$$
(4.1)

So, there is a sequence $\{s_i\} \subset (0, \infty)$ converging increasingly to $+\infty$, such that

$$f(s_i) < c_{\infty} s_i^{p-1}. \tag{4.2}$$

We define the functions

$$j(s) = f(s) - c_{\infty} s_{+}^{p-1}$$
 and $J(s) = \int_{0}^{s} j(t) dt, s \in \mathbb{R}$ (4.3)

and $\lambda_{\infty}(x) = \alpha(x) - c_{\infty}$, $x \in \Omega$. Because $j(s_i) < 0$ (see (4.2)), and using the continuity of *j* and *g* as well as hypothesis (H^f_{∞}) , we may fix a subsequence $\{s_{m_i}\}_i$ of $\{s_i\}_i$ and the positive sequences $\{a_i\}_i, \{b_i\}_i, \{\tilde{s}_i\}_i$, and $\{\varepsilon_i\}_i$ such that for all $i \in \mathbb{N}$,

$$i \le a_i < s_{m_i} < b_i < a_{i+1};$$
 (4.4)

$$\tilde{s}_i \le b_i;$$
 (4.5)

$$j(s) + \varepsilon g(s) \le 0$$
 for all $s \in [a_i, b_i]$ and $\varepsilon \in [-\varepsilon_i, \varepsilon_i];$ (4.6)

Perturbed Neumann Problems

$$\frac{pJ(\tilde{s}_i)}{\tilde{s}_i^p} > \frac{\int_{\Omega} \alpha(x) dx}{\operatorname{meas}(\Omega)} - c_{\infty}, \tag{4.7}$$

and $\lim_{i\to\infty} \tilde{s}_i = \infty$.

In the same way as we did in (3.8), let us define the truncation functions $j_i, g_i : [0, \infty) \to \mathbb{R}$ by

$$j_i(s) = j(\min(s, b_i))$$
 and $g_i(s) = g(\min(s, b_i)).$ (4.8)

Because $j_i(0) = g_i(0) = 0$, we may extend continuously the functions j_i and g_i to the whole real line, taking 0 for negative values. For every $s \in \mathbb{R}$ and $i \in \mathbb{N}$, let $J_i(s) = \int_0^s j_i(t) dt$ and $G_i(s) = \int_0^s g_i(t) dt$.

For every $i \in \mathbb{N}$ fixed and $\varepsilon \in [-\varepsilon_i, \varepsilon_i]$, the function $h_{i,\varepsilon}^{\infty} : [0, \infty) \to \mathbb{R}$ defined by $h_{i,\varepsilon}^{\infty} = j_i + \varepsilon g_i$ is continuous, bounded, and $h_{i,\varepsilon}^{\infty}(0) = 0$. On account of relations (4.5) and (4.8), one has $h_{i,\varepsilon}^{\infty}(s) \le 0$ for all $s \in [a_i, b_i]$. Consequently, we may apply Theorem 2.1 to the function $h_{i,\varepsilon}^{\infty}$ obtaining that for every $i \in \mathbb{N}$ and $\varepsilon \in [-\varepsilon_i, \varepsilon_i]$, the problem

$$\begin{cases} -\Delta_{p}u + \lambda_{\infty}(x)|u|^{p-2}u = h_{i,\varepsilon}^{\infty}(u) & \text{in } \Omega, \\ \frac{\partial u}{\partial n} = 0 & \text{on } \partial\Omega, \end{cases}$$
 (P_{i,\varepsilon}^{\infty})

has a weak solution $u^{\infty}_{i,\varepsilon} \in W^{1,p}(\Omega)$ such that

$$u_{i,\varepsilon}^{\infty} \in [0, a_i] \quad \text{for a.e. } x \in \Omega;$$
 (4.9)

 $u_{i,\varepsilon}^{\infty}$ is the infimum of the functional $\mathscr{C}_{i}^{\varepsilon}$ on $W^{b_{i}}$, (4.10)

where $\mathscr{C}_{i}^{\varepsilon}$ is defined exactly as in (3.11). Because of (4.8) and (4.9), $u_{i,\varepsilon}^{\infty}$ is a weak solution not only for $(\mathbb{P}_{i,\varepsilon}^{\infty})$ but also for the initial problem $(\mathbb{P}_{\varepsilon})$. Consequently, we have to prove that for every $k \in \mathbb{N}$, there are at least k distinct elements $u_{i,\varepsilon}^{\infty}$ verifying (1.2') when ε belongs to a certain interval around the origin.

Let $u_i^{\infty} = u_{i,0}^{\infty}$. The crucial step of Theorem B in [3], see also (4.5) and (4.7), is

$$\lim_{i \to \infty} \mathscr{E}_i^0(u_i^\infty) = \lim_{i \to \infty} \mathscr{E}_i^0(w_{\tilde{s}_i}) = -\infty,$$
(4.11)

where $w_{\tilde{s}_i}$ denotes the constant function with value \tilde{s}_i . In particular, it follows that the sequence $\{u_i^{\infty}\}_i$ contains infinitely many distinct elements. So, up to a subsequence, we can fix a sequence $\{\gamma_i\}_i$ with negative terms such that

$$\gamma_{i+1} < \mathscr{C}_i^0(u_i^\infty) \le \mathscr{C}_i^0(w_{\tilde{s}_i}) < \gamma_i.$$
(4.12)

1125

A. Kristály

Let us denote

$$\varepsilon'_{i} = \frac{\gamma_{i} - \mathscr{C}^{0}_{i}(w_{\tilde{s}_{i}})}{|G_{i}(\tilde{s}_{i})| \mathrm{meas}(\Omega) + 1} \quad \mathrm{and} \quad \varepsilon''_{i} = \frac{\mathscr{C}^{0}_{i}(u_{i}^{\infty}) - \gamma_{i+1}}{\mathrm{max}_{s \in [0, a_{i}]} |G_{i}(s)| \mathrm{meas}(\Omega) + 1}, \ i \in \mathbb{N}.$$

Fix $k \in \mathbb{N}$. Because of (4.12), we have

$$\varepsilon_k^{\infty} = \min(1, \varepsilon_1, \dots, \varepsilon_k, \varepsilon_1', \dots, \varepsilon_k', \varepsilon_1'', \dots, \varepsilon_k'') > 0.$$

Then, for every $i \in \{1, ..., k\}$ and $\varepsilon \in [-\varepsilon_k^{\infty}, \varepsilon_k^{\infty}]$ we have

$$\begin{split} \mathscr{C}_{i}^{\varepsilon}(u_{i,\varepsilon}^{\infty}) &\leq \mathscr{C}_{i}^{\varepsilon}(w_{\overline{s}_{i}}) \quad (\text{see } (4.10)) \\ &= \mathscr{C}_{i}^{0}(w_{\overline{s}_{i}}) - \varepsilon \int_{\Omega} G_{i}(w_{\overline{s}_{i}}) \\ &< \gamma_{i}, \quad (\text{see the choice of } \varepsilon_{i}') \end{split}$$

and because $u_{i,\varepsilon}^{\infty}$ belongs to W^{b_i} , and u_i^{∞} is the minimum point of \mathscr{C}_i^0 on the set W^{b_i} , see relation (4.10) for $\varepsilon = 0$, we have

$$\begin{aligned} \mathscr{E}_{i}^{\varepsilon}(u_{i,\varepsilon}^{\infty}) &= \mathscr{E}_{i}^{0}(u_{i,\varepsilon}^{\infty}) - \varepsilon \int_{\Omega} G_{i}(u_{i,\varepsilon}^{\infty}) \\ &\geq \mathscr{E}_{i}^{0}(u_{i}^{\infty}) - \varepsilon \int_{\Omega} G_{i}(u_{i,\varepsilon}^{\infty}) \\ &> \gamma_{i+1}. \quad (\text{see the choice of } \varepsilon_{i}'' \text{ and } (4.9)) \end{aligned}$$

Thus, for every $i \in \{1, ..., k\}$ and $\varepsilon \in [-\varepsilon_k^{\infty}, \varepsilon_k^{\infty}]$, we have

$$\gamma_{i+1} < \mathscr{E}_i^{\varepsilon}(u_{i,\varepsilon}^{\infty}) < \gamma_i.$$

In particular,

$$\mathscr{C}^{\varepsilon}_{k}(u^{\infty}_{k,\varepsilon}) < \dots < \mathscr{C}^{\varepsilon}_{1}(u^{\infty}_{1,\varepsilon}) < 0.$$
(4.13)

)

By construction, $u_{i,\varepsilon}^{\infty} \in W^{b_k}$ for every $i \in \{1, \ldots, k\}$, see (4.4); thus, $\mathscr{C}_i^{\varepsilon}(u_{i,\varepsilon}^{\infty}) = \mathscr{C}_k^{\varepsilon}(u_{i,\varepsilon}^{\infty})$, see relation (4.8). Therefore, (4.13) implies that for every $\varepsilon \in [-\varepsilon_k^{\infty}, \varepsilon_k^{\infty}],$

$$\mathscr{C}^{\varepsilon}_{k}(u^{\infty}_{k,\varepsilon}) < \cdots < \mathscr{C}^{\varepsilon}_{k}(u^{\infty}_{1,\varepsilon}) < 0.$$

In particular, the elements $u_{1,\varepsilon}^{\infty}, \ldots, u_{k,\varepsilon}^{\infty}$ are distinct whenever $\varepsilon \in [-\varepsilon_k^{\infty}, \varepsilon_k^{\infty}]$. Now, we prove relation (1.2'). Fix $\varepsilon \in [-\varepsilon_k^{\infty}, \varepsilon_k^{\infty}]$. First of all, because $\mathscr{C}_1^{\varepsilon}(u_{1,\varepsilon}^{\infty}) < 0 = \mathscr{C}_1^{\varepsilon}(0)$, then $||u_{1,\varepsilon}^{\infty}||_{L^{\infty}} > 0$, which proves relation (1.2') for i = 1. We further prove that

$$\|u_{i,\varepsilon}^{\infty}\|_{L^{\infty}} > a_{i-1} \quad \text{for all } i \in \{2, \dots, k\}.$$
(4.14)

1126

Let us assume the contrary, i.e., there exists an element $i_0 \in \{2, ..., k\}$ such that $\|u_{i_0,\varepsilon}^{\infty}\|_{L^{\infty}} \leq a_{i_0-1}$. Because $a_{i_0-1} < b_{i_0-1}$, then $u_{i_0,\varepsilon}^{\infty} \in W^{b_{i_0-1}}$. Thus, on account of (4.10) and (4.8), we have

$$\mathscr{E}^{arepsilon}_{i_0-1}(u^{\infty}_{i_0-1,arepsilon}) = \min_{W^{b_{i_0}-1}} \mathscr{E}^{arepsilon}_{i_0-1} \leq \mathscr{E}^{arepsilon}_{i_0-1}(u^{\infty}_{i_0,arepsilon}) = \mathscr{E}^{arepsilon}_{i_0}(u^{\infty}_{i_0,arepsilon}),$$

which contradicts (4.13). Thus, (4.14) holds true, which can be combined with (4.4), obtaining relation (1.2'). The proof is concluded.

ACKNOWLEDGMENT

Research for this article was supported by the grant PN II, ID_527/2007.

REFERENCES

- G. Anello and G. Cordaro (2007). Perturbation from Dirichlet problem involving oscillating nonlinearities. J. Differential Equations 234:80–90.
- F. Faraci and A. Kristály (2007). On an open question of Ricceri concerning a Neumann problem. *Glasg. Math. J.* 49:189–195.
- A. Kristály and D. Motreanu (2007). Nonsmooth Neumann-type problems involving the p-Laplacian. Numer. Funct. Anal. Optim. 28(11–12):1309–1326.
- S. Li and Z. Liu (2002). Perturbations from symmetric elliptic boundary value problems. J. Differential Equations 185:271–280.
- 5. P. Omari and F. Zanolin (1996). Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential. *Comm. Partial Differential Equations* 21:721–733.
- M. Marcus and V. J. Mizel (1972). Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45:294–320.
- 7. B. Ricceri (2001). Infinitely many solutions of the Neumann problem for elliptic equations involving the *p*-Laplacian. *Bull. London Math. Soc.* 33:31–340.
- 8. J. Saint Raymond (2002). On the multiplicity of the solutions of the equations $-\Delta u = \lambda f(u)$. J. Differential Equations 180:65–88.