PERTURBED NEUMANN PROBLEMS WITH MANY SOLUTIONS

Alexandru Kristály

Department of Economics, Babes-Bolyai University, Cluj-Napoca, Romania
\square Given $f, g:[0, \infty) \rightarrow \mathbb{R}$ two continuous nonlinearities with $f(0)=g(0)=0$ and f having a suitable oscillatory behavior at zero or at infinity, we prove by a direct method that for every $k \in \mathbb{N}$, there exists $\varepsilon_{k}>0$ such that the problem

$$
\begin{cases}-\triangle_{p} u+\alpha(x) u^{p-1}=f(u)+\varepsilon g(u) & \text { in } \Omega \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

has at least k distinct nonnegative weak solutions in $W^{1, p}(\Omega)$ whenever $|\varepsilon| \leq \varepsilon_{k}$. We also give various $W^{1, p}$ - and L^{∞}-estimates of the solutions. No growth assumption on g is needed, and $\alpha \in L^{\infty}(\Omega)$ may be sign-changing or even negative depending on the rate of the oscillation of f.

Keywords Arbitrarily many solutions; Oscillatory nonlinearity; Perturbed Neumann problem.

AMS Subject Classification 35J65; 35J20; 35J25.

1. INTRODUCTION AND MAIN RESULTS

Very recently, in [3] the authors studied the Neumann problem

$$
\begin{cases}-\Delta_{p} u+\alpha(x)|u|^{p-2} u=\beta(x) f(u) & \text { in } \Omega \tag{0}\\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

where $\Omega \subset \mathbb{R}^{N}$ is a bounded open domain with C^{2}-boundary $\partial \Omega$, $1<p<\infty, \Delta_{p}(\cdot)=\operatorname{div}\left(|\nabla(\cdot)|^{p-2} \nabla(\cdot)\right)$ is the p-Laplacian operator, v is the

Address correspondence to Alexandru Kristály, Department of Economics, Babeş-Bolyai University, Cluj-Napoca 400591, Romania; E-mail: alexandrukristaly@yahoo.com
outer unit normal to $\partial \Omega, f \in L_{\text {loc }}^{\infty}([0, \infty))$ with $f(0)=0$, and $\alpha, \beta \in L^{\infty}(\Omega)$ with $\operatorname{essinf}_{\Omega} \beta>0$. Because f is not necessarily continuous, problem (P_{0}) has been reformulated into a hemivariational inequality, and the existence of infinitely many nonnegative solutions for $\left(\mathrm{P}_{0}\right)$ are guaranteed whenever f has a suitable oscillatory behavior at the origin or at infinity (see hypotheses $\left(H_{0}^{f}\right)$ and (H_{∞}^{f}) below).

The goal of the current paper is to treat the perturbed problem

$$
\begin{cases}-\Delta_{p} u+\alpha(x)|u|^{p-2} u=f(u)+\varepsilon g(u) & \text { in } \Omega \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

where f is continuous and verifies the same conditions as in [3], and $g:[0, \infty) \rightarrow \mathbb{R}$ is an arbitrarily continuous function with $g(0)=0$. Having infinitely many solutions for problem (P_{0}) cf. [3], we expect to find still many solutions for the perturbed problem $\left(\mathrm{P}_{\varepsilon}\right)$ whenever $|\varepsilon|$ is small enough. The purpose of the current paper is to show that this is indeed the case. Here, a solution for $\left(\mathrm{P}_{\varepsilon}\right)$ is meant as a weak solution in $W^{1, p}(\Omega)$ in the usual sense.

In the sequel, we state our results, recalling simultaneously the hypotheses and results from [3] in the smooth context (and taking $\beta=1$, see $\left(\mathrm{P}_{0}\right)$). If we denote by $F(s)=\int_{0}^{s} f(t) d t, s \geq 0$, we assume
$\left(H_{0}^{f}\right) \lim \sup _{s \rightarrow 0^{+}} \frac{p F(s)}{s^{p}}>\frac{\int_{\Omega} \alpha(x) d x}{m e a s(\Omega)} \geq \operatorname{essinf}_{\Omega} \alpha>\lim \inf _{s \rightarrow 0^{+}} \frac{f(s)}{s^{p-1}}$.
Note that $\left(H_{0}^{f}\right)$ implies an oscillatory behavior of f at zero.
Theorem A [3, Theorem 1.2]. Let $\alpha \in L^{\infty}(\Omega)$ and a continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=0$, fulfilling $\left(H_{0}^{f}\right)$. Then $\left(\mathrm{P}_{0}\right)$ admits a sequence of distinct nonnegative solutions $\left\{u_{i}^{0}\right\}$ in $W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|u_{i}^{0}\right\|_{W^{1, p}}=\lim _{i \rightarrow \infty}\left\|u_{i}^{0}\right\|_{\infty}=0 \tag{1.1}
\end{equation*}
$$

Here, the norms $\|\cdot\|_{W^{1, p}}$ and $\|\cdot\|_{L^{\infty}}$ are the usual ones on the spaces $W^{1, p}(\Omega)$ and $L^{\infty}(\Omega)$, respectively. The first main result of the current paper reads as follows.

Theorem 1.1. Let $\alpha \in L^{\infty}(\Omega)$ and two continuous functions f, g : $[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=g(0)=0$. Assume that $\left(H_{0}^{f}\right)$ holds.

Then, for every $k \in \mathbb{N}$, there exists $\varepsilon_{k}^{0}>0$ such that $\left(P_{\varepsilon}\right)$ has at least k distinct nonnegative solutions in $W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ whenever $\varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right]$. Moreover,
if the (first k) solutions are denoted by $u_{i, \varepsilon}^{0}, i=\overline{1, k}$, then

$$
\left\|u_{i, \varepsilon}^{0}\right\|_{L^{\infty}}<\frac{1}{i} \quad \text { and } \quad\left\|u_{i, \varepsilon}^{0}\right\|_{W^{1, p}}<\frac{1}{i} \quad \text { for any } i=\overline{1, k} ; \quad \varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right] .
$$

Remark 1.2. It is useful to notice the concordance between relations (1.1) and (1.1'), respectively. Moreover, no growth assumption is required on g.

Dealing with the case when f oscillates at infinity, in [3] is required a subcritical growth condition at infinity for f; namely
$\left(f_{p^{*}}\right) \lim \sup _{s \rightarrow \infty} \frac{|f(s)|}{s^{q-1}}<\infty$ for some $q \in\left(p, p^{*}\right)$.
Here, $p^{*}=p N /(N-p)$ if $N>p$ and $p^{*}=\infty$ if $p \geq N$. The counterpart of the hypothesis $\left(H_{0}^{f}\right)$ at infinity is

$$
\left(H_{\infty}^{f}\right) \lim \sup _{s \rightarrow \infty} \frac{p F(s)}{s^{p}}>\frac{\int_{\Omega} \alpha(x) d x}{\operatorname{meas}(\Omega)} \geq \operatorname{essinf}_{\Omega} \alpha>\lim \inf _{s \rightarrow \infty} \frac{f(s)}{s^{p-1}}
$$

Theorem B [3, Theorem 1.3]. Let $\alpha \in L^{\infty}(\Omega)$ and a continuous function $f:[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=0$, fulfilling $\left(f_{p^{*}}\right)$ and $\left(H_{\infty}^{f}\right)$. Then $\left(\mathrm{P}_{0}\right)$ admits a sequence of distinct nonnegative solutions $\left\{u_{i}^{\infty}\right\}$ in $W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ such that

$$
\begin{equation*}
\lim _{i \rightarrow \infty}\left\|u_{i}^{\infty}\right\|_{W^{1, p}}=\lim _{i \rightarrow \infty}\left\|u_{i}^{\infty}\right\|_{\infty}=\infty \tag{1.2}
\end{equation*}
$$

In our second result, we can avoid the subcritical growth condition $\left(f_{p^{*}}\right)$ as follows.

Theorem 1.3. Let $\alpha \in L^{\infty}(\Omega)$ and two continuous functions f, g : $[0, \infty) \rightarrow \mathbb{R}$ with $f(0)=g(0)=0$. Assume that $\left(H_{\infty}^{f}\right)$ holds.

Then, for every $k \in \mathbb{N}$, there exists $\varepsilon_{k}^{\infty}>0$ such that $\left(P_{\varepsilon}\right)$ has at least k distinct nonnegative solutions in $W^{1, p}(\Omega) \cap L^{\infty}(\Omega)$ whenever $\varepsilon \in\left[-\varepsilon_{k}^{\infty}, \varepsilon_{k}^{\infty}\right]$. Moreover, if the (first k) solutions are denoted by $u_{i, \varepsilon}^{\infty}, i=\overline{1, k}$, then

$$
\begin{equation*}
\left\|u_{i, \varepsilon}^{\infty}\right\|_{L^{\infty}}>i-1 \quad \text { for any } i=\overline{1, k} ; \varepsilon \in\left[-\varepsilon_{k}^{\infty}, \varepsilon_{k}^{\infty}\right] . \tag{1.2'}
\end{equation*}
$$

The proofs of Theorems A and B play crucial roles in Theorems 1.1 and 1.3, respectively; in fact, the proofs are based on a careful analysis of two special sequences involving the energy functional associated to $\left(\mathrm{P}_{\varepsilon}\right)$. For details, see Sections 3 and 4.

We give two simple functions for f fulfilling the hypotheses of Theorems 1.1 and 1.3, respectively.
(a) Let $\alpha, \beta, \gamma \in \mathbb{R}$ such that $0<\alpha<1<\alpha+\beta$, and $\gamma \in(0,1)$. Then, the function $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(0)=0$ and $f(s)=s^{\alpha}\left(\gamma+\sin s^{-\beta}\right)$,
$s>0$, verifies $\left(H_{0}^{f}\right)$ with $p=2$. Note that α may be any negative or sign-changing function that belongs to $L^{\infty}(\Omega)$.
(b) Let $\alpha, \beta, \gamma \in \mathbb{R}$ such that $1<\alpha,|\alpha-\beta|<1$, and $\gamma \in(0,1)$. Then, the function $f:[0, \infty) \rightarrow \mathbb{R}$ defined by $f(s)=s^{\alpha}\left(\gamma+\sin s^{\beta}\right)$ verifies the hypotheses $\left(H_{\infty}^{f}\right)$ with $p=2$. The same remark is valid for α as before.

Equations involving oscillatory terms usually produce infinitely many solutions. This phenomenon has been exploited by several authors in various contexts: for Neumann boundary problems, see Ricceri [7], Faraci and Kristály [2], Kristály and Motreanu [3], for Dirichlet boundary problems, see Anello and Cordaro [1], Omari and Zanolin [5], and Saint Raymond [8].

2. AN AUXILIARY RESULT

In this section, we consider the problem

$$
\begin{cases}-\Delta_{p} u+\lambda(x)|u|^{p-2} u=h(u) & \text { in } \Omega \tag{P}\\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

assuming that $\lambda \in L^{\infty}(\Omega)$ with $\operatorname{essinf}_{\Omega} \lambda>0$ and
$\left(\mathrm{h}_{1}\right) h:[0, \infty) \rightarrow \mathbb{R}$ is a continuous, bounded function such that $h(0)=0$; $\left(\mathrm{h}_{2}\right)$ there are $0<a<b$ such that $h(s) \leq 0$ for all $s \in[a, b]$.

Because of $\left(\mathrm{h}_{1}\right)$, we may extend h continuously to the whole \mathbb{R}, taking $h(s)=0$ for all $s \leq 0$.

We may introduce the energy functional $\mathscr{E}: W^{1, p}(\Omega) \rightarrow \mathbb{R}$ associated with problem (P), which is defined by

$$
\mathscr{E}(u)=\frac{1}{p}\|u\|_{\lambda}^{p}-\int_{\Omega} H(u(x)) d x, \quad u \in W^{1, p}(\Omega)
$$

where

$$
\|u\|_{\lambda}=\left(\int_{\Omega}|\nabla u(x)|^{p} d x+\int_{\Omega} \lambda(x)|u(x)|^{p} d x\right)^{1 / p}
$$

and $H(s)=\int_{0}^{s} h(t) d t, s \in \mathbb{R}$. Note that the norms $\|\cdot\|_{\lambda}$ and $\|\cdot\|_{W^{1, p}}$ are equivalent, as $\operatorname{essinf}_{\Omega} \lambda>0$. Standard arguments show that \mathscr{E} is well-defined and is of class C^{1} on $W^{1, p}(\Omega)$. Moreover, its critical points are weak solutions for problem (P).

We consider the number $b \in \mathbb{R}$ from $\left(h_{2}\right)$, and we introduce the level-set

$$
W^{b}=\left\{u \in W^{1, p}(\Omega):\|u\|_{L^{\infty}} \leq b\right\}
$$

Now, we are ready to state the main result of this section.
Theorem 2.1. Assume that $\left(\mathrm{h}_{1}\right)$, $\left(\mathrm{h}_{2}\right)$ hold. Then
(i) the functional \mathscr{E} is bounded from below on W^{b} and its infimum is attained at $\tilde{u} \in W^{b}$;
(ii) $\tilde{u}(x) \in[0, a]$ for a.e. $x \in \Omega$;
(iii) \tilde{u} is a weak solution of (P).

Proof. (i) For every $u \in W^{b}$, we have

$$
\mathscr{E}(u)=\frac{1}{p}\|u\|_{\lambda}^{p}-\int_{\Omega} H(u(x)) d x \geq-\operatorname{meas}(\Omega) \max _{[-b, b]} H>-\infty .
$$

Thus, \mathscr{E} is bounded from below on W^{b}. On the other hand, due to the theorem of Rellich-Kondrachov, \mathscr{E} is sequentially weakly continuous. Because W^{b} is convex and closed, thus weakly closed in $W^{1, p}(\Omega)$, the infimum of \mathscr{E} on W^{b} is attained at an element $\tilde{u} \in W^{b}$.
(ii) Let $W=\{x \in \Omega: \tilde{u}(x) \notin[0, a]\}$ and suppose that meas $(W)>0$. Define the function $\gamma(s)=\min \left(s_{+}, a\right)$ where $s_{+}=\max (s, 0)$, and set $\tilde{w}=\gamma \circ \tilde{u}$. Due to Marcus and Mizel [6], \tilde{w} belongs to $W^{1, p}(\Omega)$ (as γ is Lipschitz continuous). Moreover, $\tilde{w} \in W^{b}$. We introduce the following two sets

$$
W_{1}=\{x \in W: \tilde{u}(x)<0\} \quad \text { and } \quad W_{2}=\{x \in W: \tilde{u}(x)>a\} .
$$

Then, $W=W_{1} \cup W_{2}$, and we have that $\tilde{w}(x)=\tilde{u}(x)$ for all $x \in \Omega \backslash W$, $\tilde{w}(x)=0$ for all $x \in W_{1}$, and $\tilde{w}(x)=a$ for all $x \in W_{2}$. Furthermore,

$$
\begin{aligned}
& \mathscr{E}(\tilde{w})-\mathscr{E}(\tilde{u}) \\
&=-\frac{1}{p} \int_{W}|\nabla \tilde{u}|^{p} d x+\frac{1}{p} \int_{W} \lambda(x)\left[|\tilde{w}|^{p}-|\tilde{u}|^{p}\right] d x-\int_{W}[H(\tilde{w})-H(\tilde{u})] d x \\
&=-\frac{1}{p} \int_{W}|\nabla \tilde{u}|^{p} d x-\frac{1}{p} \int_{W_{1}} \lambda(x)|\tilde{u}|^{p} d x+\frac{1}{p} \int_{W_{2}} \lambda(x)\left[a^{p}-\tilde{u}^{p}\right] d x \\
&-\int_{W_{1}}[H(0)-H(\tilde{u}(x))] d x-\int_{W_{2}}[H(a)-H(\tilde{u}(x))] d x
\end{aligned}
$$

First, $\int_{W_{1}}[H(0)-H(\tilde{u}(x))] d x=0$. Then, by using the mean value theorem and hypotheses $\left(h_{2}\right)$, we obtain

$$
\int_{W_{2}}[H(a)-H(\tilde{u}(x))] d x \geq 0
$$

Therefore, every term of the above expression is nonpositive. But, taking into account that $\mathscr{E}(\tilde{w}) \geq \mathscr{E}(\tilde{u})=\inf _{W^{b}} \mathscr{E}$, every term should be zero. In particular,

$$
\int_{W_{1}} \lambda(x)|\tilde{u}|^{p}=\int_{W_{2}} \lambda(x)\left[a^{p}-\tilde{u}^{p}\right]=0 .
$$

Because $\operatorname{essinf}_{\Omega} \lambda>0$, the above relations imply that meas $\left(W_{1}\right)=$ $\operatorname{meas}\left(W_{2}\right)=0$, so meas $(W)=0$, contradicting the initial assumption.
(iii) A direct consequence of (i) is that

$$
\mathscr{E}^{\prime}(\tilde{u})(w-\tilde{u}) \geq 0, \quad \forall w \in W^{b}
$$

that is,

$$
\begin{aligned}
& \int_{\Omega}\left[|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla(w-\tilde{u})+\lambda(x) \tilde{u}^{p-1}(w-\tilde{u})\right]-\int_{\Omega} h(\tilde{u})(w-\tilde{u}) \geq 0 \\
& \quad \forall w \in W^{b}
\end{aligned}
$$

Let us define the function $\gamma(s)=\operatorname{sgn}(s) \min (|s|, b)$, and fix $\varepsilon>0$ and $v \in W^{1, p}(\Omega)$ arbitrarily. Because γ is Lipschitz continuous, $w=\gamma \circ(\tilde{u}+\varepsilon v)$ belongs to $W^{1, p}(\Omega)$, see Marcus and Mizel [6]. The explicit expression of w is

$$
w(x)= \begin{cases}-b, & \text { if } x \in\{\tilde{u}+\varepsilon v<-b\} \\ \tilde{u}(x)+\varepsilon v(x), & \text { if } x \in\{-b \leq \tilde{u}+\varepsilon v<b\} \\ b, & \text { if } x \in\{b \leq \tilde{u}+\varepsilon v\}\end{cases}
$$

Consequently, $w \in W^{b}$. Considering w as a test function in the above inequality, we obtain

$$
\begin{aligned}
0 \leq & -\int_{\{\tilde{u}+\varepsilon v<-b\}}|\nabla \tilde{u}|^{p}-\int_{\{\tilde{u}+\varepsilon v<-b\}} \lambda(x) \tilde{u}^{p-1}(b+\tilde{u})+\int_{\{\tilde{u}+\varepsilon v<-b\}} h(\tilde{u})(b+\tilde{u}) \\
& +\varepsilon \int_{\{-b \leq \tilde{u}+\varepsilon v<b\}}|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v+\varepsilon \int_{\{-b \leq \tilde{u}+\varepsilon v<b\}} \lambda(x) \tilde{u}^{p-1} v-\varepsilon \int_{\{-b \leq \tilde{u}+\varepsilon v<b\}} h(\tilde{u}) v \\
& -\int_{\{b \leq \tilde{u}+\varepsilon v\}}|\nabla \tilde{u}|^{p}+\int_{\{b \leq \tilde{u}+\varepsilon v\}} \lambda(x) \tilde{u}^{p-1}(b-\tilde{u})-\int_{\{b \leq \tilde{u}+\varepsilon v\}} h(\tilde{u})(b-\tilde{u}) .
\end{aligned}
$$

After a suitable rearrangement of the terms in the above inequality, we obtain

$$
\begin{aligned}
0 \leq & \varepsilon \int_{\Omega}|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v+\varepsilon \int_{\Omega} \lambda(x) \tilde{u}^{p-1} v-\varepsilon \int_{\Omega} h(\tilde{u}) v-\int_{\{\tilde{u}+\varepsilon v<-b\}}|\nabla \tilde{u}|^{p} \\
& -\int_{\{b \leq \tilde{u}+\varepsilon v\}}|\nabla \tilde{u}|^{p}+\int_{\{\tilde{u}+\varepsilon v<-b\}}\left[h(\tilde{u})-\lambda(x) \tilde{u}^{p-1}\right](b+\tilde{u}+\varepsilon v) \\
& +\int_{\{b \leq \tilde{u}+\varepsilon v\}}\left[h(\tilde{u})-\lambda(x) \tilde{u}^{p-1}\right](-b+\tilde{u}+\varepsilon v) \\
& -\varepsilon \int_{\{\tilde{u}+\varepsilon v<-b\}}|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v-\varepsilon \int_{\{b \leq \tilde{u}+\varepsilon v\}}|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v .
\end{aligned}
$$

First, due to (ii), we have

$$
\begin{aligned}
& \int_{\{\tilde{u}+\varepsilon v<-b\}}\left[h(\tilde{u})-\lambda(x) \tilde{u}^{p-1}\right](b+\tilde{u}+\varepsilon v) \\
& \quad \leq-\varepsilon \int_{\{\tilde{u}+\varepsilon v<-b\}}\left[\max _{s \in[0, a]}|h(s)|+a^{p-1} \lambda(x)\right] v .
\end{aligned}
$$

A similar estimation shows that

$$
\begin{aligned}
& \int_{\{b \leq \tilde{u}+\varepsilon v\}}\left[h(\tilde{u})-\lambda(x) \tilde{u}^{p-1}\right](-b+\tilde{u}+\varepsilon v) \\
& \quad \leq \varepsilon \int_{\{b \leq \tilde{u}+\varepsilon v\}}\left[\max _{s \in[0, a]}|h(s)|+a^{p-1} \lambda(x)\right] v .
\end{aligned}
$$

Taking into account the above estimates and dividing by $\varepsilon>0$, we obtain that

$$
\begin{aligned}
0 \leq & \int_{\Omega}|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v+\int_{\Omega} \lambda(x) \tilde{u}^{p-1} v-\int_{\Omega} h(\tilde{u}) v \\
& -\int_{\{\tilde{u}+\varepsilon v<-b\}}\left(\max _{s \in[0, a]}|h(s)| v+a^{p-1} \lambda(x) v+|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v\right) \\
& -\int_{\{b \leq \tilde{u}+\varepsilon v\}}\left(\max _{s \in[0, a]}|h(s)| v+a^{p-1} \lambda(x) v+|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v\right) .
\end{aligned}
$$

Now, letting $\varepsilon \rightarrow 0^{+}$, and taking into account that $0 \leq \tilde{u}(x) \leq a$ a.e. $x \in \Omega$, we have $\operatorname{meas}(\{\tilde{u}+\varepsilon v<-b\}) \rightarrow 0$ and meas $(\{b \leq \tilde{u}+\varepsilon v\}) \rightarrow 0$, respectively. Consequently, the above inequality reduces to

$$
0 \leq \int_{\Omega}|\nabla \tilde{u}|^{p-2} \nabla \tilde{u} \nabla v+\int_{\Omega} \lambda(x) \tilde{u}^{p-1} v-\int_{\Omega} h(\tilde{u}) v
$$

Because $v \in W^{1, p}(\Omega)$ was arbitrarily chosen, \tilde{u} is a nonnegative solution for (P).

3. PROOF OF THEOREM 1.1

Because of (H_{0}^{f}), one can fix $c_{0} \in \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{essinf}_{\Omega} \alpha>c_{0}>\liminf _{s \rightarrow 0^{+}} \frac{f(s)}{s^{p-1}} \tag{3.1}
\end{equation*}
$$

In particular, there is a sequence $\left\{s_{i}\right\} \subset(0,1)$ converging (decreasingly) to 0 , such that

$$
\begin{equation*}
f\left(s_{i}\right)<c_{0} s_{i}^{p-1} \tag{3.2}
\end{equation*}
$$

Let us define the functions

$$
\begin{equation*}
j(s)=f(s)-c_{0} s_{+}^{p-1} \quad \text { and } \quad J(s)=\int_{0}^{s} j(t) d t, \quad s \in \mathbb{R} \tag{3.3}
\end{equation*}
$$

and $\lambda_{0}(x)=\alpha(x)-c_{0}, x \in \Omega$.
Because $j\left(s_{i}\right)<0$ (see (3.2)), and using the continuity of j and g as well as hypothesis $\left(H_{0}^{f}\right)$, we may fix the positive sequences $\left\{a_{i}\right\}_{i},\left\{b_{i}\right\}_{i},\left\{\tilde{s}_{i}\right\}_{i}$, and $\left\{\varepsilon_{i}\right\}_{i}$ such that for all $i \in \mathbb{N}$,

$$
\begin{gather*}
\tilde{s}_{i} \leq b_{i} \leq\left\{\frac{1}{i}, \frac{b_{i+1}<a_{i}<s_{i}<b_{i}<1 ;}{p i^{p} \operatorname{meas}(\Omega)\left[\max _{[0,1]}|f|+\max _{[0,1]}|g|+\left|c_{0}\right|+1\right]}\right\} ; \tag{3.4}\\
j(s)+\varepsilon g(s) \leq 0 \quad \text { for all } s \in\left[a_{i}, b_{i}\right] \text { and } \varepsilon \in\left[-\varepsilon_{i}, \varepsilon_{i}\right] ; \tag{3.5}\\
\frac{p J\left(\tilde{s}_{i}\right)}{\tilde{s}_{i}^{p}}>\frac{\int_{\Omega} \alpha(x) d x}{\operatorname{meas}(\Omega)}-c_{0} . \tag{3.6}
\end{gather*}
$$

In particular, we have $\lim _{i \rightarrow \infty} a_{i}=\lim _{i \rightarrow \infty} b_{i}=0$. For every $i \in \mathbb{N}$, we define the truncation functions $j_{i}, g_{i}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
j_{i}(s)=j\left(\min \left(s, b_{i}\right)\right) \quad \text { and } \quad g_{i}(s)=g\left(\min \left(s, b_{i}\right)\right) . \tag{3.8}
\end{equation*}
$$

Because $j(0)=g(0)=0$, we may extend continuously the functions j_{i} and g_{i} to the whole real line, taking 0 for negative values. For every $s \in \mathbb{R}$ and $i \in \mathbb{N}$, let $J_{i}(s)=\int_{0}^{s} j_{i}(t) d t$ and $G_{i}(s)=\int_{0}^{s} g_{i}(t) d t$.

For every $i \in \mathbb{N}$ and $\varepsilon \in\left[-\varepsilon_{i}, \varepsilon_{i}\right]$, the function $h_{i, \varepsilon}^{0}:[0, \infty) \rightarrow \mathbb{R}$ defined by $h_{i, \varepsilon}^{0}=j_{i}+\varepsilon g_{i}$ is continuous, bounded, and $h_{i, \varepsilon}^{0}(0)=0$. On account of relations (3.6) and (3.8), we have $h_{i, \varepsilon}^{0}(s) \leq 0$ for all $s \in\left[a_{i}, b_{i}\right]$. Moreover, $\operatorname{essinf}_{\Omega} \lambda_{0}=\operatorname{essinf}_{\Omega} \alpha-c_{0}>0$, see (3.1). Thus, we may apply

Theorem 2.1 to the function $h_{i, \varepsilon}^{0}$ obtaining that for every $i \in \mathbb{N}$ and $\varepsilon \in\left[-\varepsilon_{i}, \varepsilon_{i}\right]$, the problem

$$
\begin{cases}-\triangle_{p} u+\lambda_{0}(x)|u|^{p-2} u=h_{i, \varepsilon}^{0}(u) & \text { in } \Omega \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

has a weak solution $u_{i, \varepsilon}^{0} \in W^{1, p}(\Omega)$ such that

$$
\begin{gather*}
u_{i, \varepsilon}^{0} \in\left[0, a_{i}\right] \text { for a.e. } x \in \Omega \tag{3.9}\\
u_{i, \varepsilon}^{0} \text { is the infimum of the functional } \mathscr{E}_{i}^{\varepsilon} \text { on } W^{b_{i}}, \tag{3.10}
\end{gather*}
$$

where

$$
\begin{equation*}
\mathscr{C}_{i}^{\varepsilon}(u)=\frac{1}{p}\|u\|_{\lambda_{0}}^{p}-\int_{\mathbb{R}^{N}}\left[J_{i}(u)+\varepsilon G_{i}(u)\right], \quad u \in W^{1, p}(\Omega) \tag{3.11}
\end{equation*}
$$

Because of (3.3), (3.8), (3.9) and the definition of the function λ_{0}, the element $u_{i, \varepsilon}^{0}$ is a weak solution not only for $\left(\mathrm{P}_{i, \varepsilon}^{0}\right)$ but also for our problem $\left(\mathrm{P}_{\varepsilon}\right)$. Consequently, it remains to prove that for every $k \in \mathbb{N}$, there are at least k distinct elements $u_{i, \varepsilon}^{0}$ verifying the required properties.

As we pointed out in the Introduction, the proof of the above fact is based on Theorem A (i.e., on the unperturbed case); consequently, we recall some partial results from [3]. To do this, take for abbreviation $u_{i}^{0}=u_{i, 0}^{0}$ and let $w_{s_{i}} \in W^{1, p}(\Omega), w_{s_{i}}(x)=\tilde{s}_{i}(x \in \Omega)$ for every $i \in \mathbb{N}$. The core of Theorem A, which is based on (3.7), is to prove the relations

$$
\begin{gather*}
\mathscr{E}_{i}^{0}\left(u_{i}^{0}\right) \leq \mathscr{C}_{i}^{0}\left(w_{s_{i}}\right)<0 \quad \text { for all } i \in \mathbb{N} \tag{3.12}\\
\lim _{i \rightarrow \infty} \mathscr{E}_{i}^{0}\left(u_{i}^{0}\right)=\lim _{i \rightarrow \infty} \mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)=0, \tag{3.13}
\end{gather*}
$$

see Propositions 3.1 and 3.3 from [3], respectively. In particular, because of (3.8) and (3.9), we observe that $\mathscr{E}_{i}^{0}\left(u_{i}^{0}\right)=\mathscr{E}_{1}^{0}\left(u_{i}^{0}\right)$ for all $i \in \mathbb{N}$. Combining this relation with (3.12) and (3.13), we see that the sequence $\left\{u_{i}^{0}\right\}_{i}$ contains infinitely many distinct elements.

Up to a subsequence, we may consider a sequence $\left\{\gamma_{i}\right\}_{i}$ with negative terms such that

$$
\begin{equation*}
\gamma_{i}<\mathscr{E}_{i}^{0}\left(u_{i}^{0}\right) \leq \mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)<\gamma_{i+1} . \tag{3.14}
\end{equation*}
$$

Let us denote
$\varepsilon_{i}^{\prime}=\frac{\gamma_{i+1}-\mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)}{\left|G_{i}\left(\tilde{s}_{i}\right)\right| \operatorname{meas}(\Omega)+1} \quad$ and $\quad \varepsilon_{i}^{\prime \prime}=\frac{\mathscr{E}_{i}^{0}\left(u_{i}^{0}\right)-\gamma_{i}}{\max _{s \in\left[0, a_{i}\right]}\left|G_{i}(s)\right| \operatorname{meas}(\Omega)+1}, \quad i \in \mathbb{N}$.

Fix $k \in \mathbb{N}$. Because of (3.14),

$$
\varepsilon_{k}^{0}=\min \left(1, \varepsilon_{1}, \ldots, \varepsilon_{k}, \varepsilon_{1}^{\prime}, \ldots, \varepsilon_{k}^{\prime}, \varepsilon_{1}^{\prime \prime}, \ldots, \varepsilon_{k}^{\prime \prime}\right)>0
$$

Then, for every $i \in\{1, \ldots, k\}$ and $\varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right]$, we have

$$
\begin{aligned}
\mathscr{E}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{0}\right) & \leq \mathscr{E}_{i}^{\varepsilon}\left(w_{s_{i}}\right) \quad(\text { see }(3.10) \text { and }(3.5)) \\
& =\mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)-\varepsilon \int_{\Omega} G_{i}\left(w_{s_{i}}\right) \\
& <\gamma_{i+1}, \quad\left(\text { see the choice of } \varepsilon_{i}^{\prime}\right)
\end{aligned}
$$

and taking into account that $u_{i, \varepsilon}^{0}$ belongs to $W^{b_{i}}$, and u_{i}^{0} is the minimum point of \mathscr{E}_{i}^{0} over the set $W^{b_{i}}$, see relation (3.10) for $\varepsilon=0$, we have

$$
\begin{aligned}
\mathscr{E}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{0}\right) & =\mathscr{E}_{i}^{0}\left(u_{i, \varepsilon}^{0}\right)-\varepsilon \int_{\Omega} G_{i}\left(u_{i, \varepsilon}^{0}\right) \\
& \geq \mathscr{E}_{i}^{0}\left(u_{i}^{0}\right)-\varepsilon \int_{\Omega} G_{i}\left(u_{i, \varepsilon}^{0}\right) \\
& >\gamma_{i} . \quad\left(\text { see the choice of } \varepsilon_{i}^{\prime \prime} \text { and }(3.9)\right)
\end{aligned}
$$

In conclusion, for every $i \in\{1, \ldots, k\}$ and $\varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right]$, we have

$$
\gamma_{i}<\mathscr{C}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{0}\right)<\gamma_{i+1},
$$

thus

$$
\mathscr{E}_{1}^{\varepsilon}\left(u_{1, \varepsilon}^{0}\right)<\cdots<\mathscr{E}_{k}^{\varepsilon}\left(u_{k, \varepsilon}^{0}\right) .
$$

Let us observe that $u_{i, \varepsilon}^{0} \in W^{b_{1}}$ for every $i \in\{1, \ldots, k\}$, so $\mathscr{E}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{0}\right)=\mathscr{E}_{1}^{\varepsilon}\left(u_{i, \varepsilon}^{0}\right)$, see relation (3.8). From above, we obtain that for every $\varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right]$,

$$
\mathscr{E}_{1}^{\varepsilon}\left(u_{1, \varepsilon}^{0}\right)<\cdots<\mathscr{E}_{1}^{\varepsilon}\left(u_{k, \varepsilon}^{0}\right) .
$$

In particular, this fact shows that the elements $u_{1, \varepsilon}^{0}, \ldots, u_{k, \varepsilon}^{0}$ are distinct whenever $\varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right]$.

Now, we prove (1.1'). The first relation easily follows by (3.9) and (3.5). To check the second relation, we observe that for every $i \in\{1, \ldots, k\}$ and $\varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right]$,

$$
\mathscr{E}_{1}^{\varepsilon}\left(u_{i, \varepsilon}^{0}\right)=\mathscr{E}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{0}\right)<\gamma_{i+1}<0 .
$$

Consequently, for every $i \in\{1, \ldots, k\}$ and $\varepsilon \in\left[-\varepsilon_{k}^{0}, \varepsilon_{k}^{0}\right]$, by using a mean value theorem, we obtain

$$
\begin{aligned}
& \frac{1}{p}\left\|u_{i, \varepsilon}^{0}\right\|_{W^{1, p}}^{p} \\
& \leq \frac{1}{p}\left[\min \left(1, \operatorname{essinf}_{\Omega} \lambda_{0}\right)\right]^{-1}\left\|u_{i, \varepsilon}^{0}\right\|_{\lambda_{0}}^{p} \\
&< {\left[\min \left(1, \operatorname{essinf}_{\Omega} \lambda_{0}\right)\right]^{-1} \int_{\Omega}\left[J_{i}\left(u_{i, \varepsilon}^{0}\right)+\varepsilon G_{i}\left(u_{i, \varepsilon}^{0}\right)\right] } \\
& \leq {\left[\min \left(1, \operatorname{essinf}_{\Omega} \lambda_{0}\right)\right]^{-1} \operatorname{meas}(\Omega)\left[\max _{[0,1]}|f|+\max _{[0,1]}|g|+\left|c_{0}\right| a_{i}^{p-1}\right] a_{i} } \\
& \quad\left(\operatorname{see}(3.3),(3.4),(3.9) \text { and } \varepsilon_{k}^{0} \leq 1\right) \\
&< \frac{1}{p i^{p}}, \quad(\operatorname{see}(3.4) \text { and }(3.5))
\end{aligned}
$$

which concludes the proof.

4. PROOF OF THEOREM 1.3

The proof of this part is similar to that of Theorem 1.1. Because of $\left(H_{\infty}^{f}\right)$, one can fix $c_{\infty} \in \mathbb{R}$ such that

$$
\begin{equation*}
\operatorname{essinf}_{\Omega} \alpha>c_{\infty}>\liminf _{s \rightarrow \infty} \frac{f(s)}{s^{p-1}} \tag{4.1}
\end{equation*}
$$

So, there is a sequence $\left\{s_{i}\right\} \subset(0, \infty)$ converging increasingly to $+\infty$, such that

$$
\begin{equation*}
f\left(s_{i}\right)<c_{\infty} s_{i}^{p-1} \tag{4.2}
\end{equation*}
$$

We define the functions

$$
\begin{equation*}
j(s)=f(s)-c_{\infty} s_{+}^{p-1} \quad \text { and } \quad J(s)=\int_{0}^{s} j(t) d t, \quad s \in \mathbb{R} \tag{4.3}
\end{equation*}
$$

and $\lambda_{\infty}(x)=\alpha(x)-c_{\infty}, x \in \Omega$. Because $j\left(s_{i}\right)<0$ (see (4.2)), and using the continuity of j and g as well as hypothesis $\left(H_{\infty}^{f}\right)$, we may fix a subsequence $\left\{s_{m_{i}}\right\}_{i}$ of $\left\{s_{i}\right\}_{i}$ and the positive sequences $\left\{a_{i}\right\}_{i},\left\{b_{i}\right\}_{i},\left\{\tilde{s}_{i}\right\}_{i}$, and $\left\{\varepsilon_{i}\right\}_{i}$ such that for all $i \in \mathbb{N}$,

$$
\begin{gather*}
i \leq a_{i}<s_{m_{i}}<b_{i}<a_{i+1} \tag{4.4}\\
\tilde{s}_{i} \leq b_{i} \tag{4.5}\\
j(s)+\varepsilon g(s) \leq 0 \text { for all } s \in\left[a_{i}, b_{i}\right] \text { and } \varepsilon \in\left[-\varepsilon_{i}, \varepsilon_{i}\right] \tag{4.6}
\end{gather*}
$$

$$
\begin{equation*}
\frac{p J\left(\tilde{s}_{i}\right)}{\tilde{s}_{i}^{p}}>\frac{\int_{\Omega} \alpha(x) d x}{\operatorname{meas}(\Omega)}-c_{\infty} \tag{4.7}
\end{equation*}
$$

and $\lim _{i \rightarrow \infty} \tilde{s}_{i}=\infty$.
In the same way as we did in (3.8), let us define the truncation functions $j_{i}, g_{i}:[0, \infty) \rightarrow \mathbb{R}$ by

$$
\begin{equation*}
j_{i}(s)=j\left(\min \left(s, b_{i}\right)\right) \quad \text { and } \quad g_{i}(s)=g\left(\min \left(s, b_{i}\right)\right) . \tag{4.8}
\end{equation*}
$$

Because $j_{i}(0)=g_{i}(0)=0$, we may extend continuously the functions j_{i} and g_{i} to the whole real line, taking 0 for negative values. For every $s \in \mathbb{R}$ and $i \in \mathbb{N}$, let $J_{i}(s)=\int_{0}^{s} j_{i}(t) d t$ and $G_{i}(s)=\int_{0}^{s} g_{i}(t) d t$.

For every $i \in \mathbb{N}$ fixed and $\varepsilon \in\left[-\varepsilon_{i}, \varepsilon_{i}\right]$, the function $h_{i, \varepsilon}^{\infty}:[0, \infty) \rightarrow \mathbb{R}$ defined by $h_{i, \varepsilon}^{\infty}=j_{i}+\varepsilon g_{i}$ is continuous, bounded, and $h_{i, \varepsilon}^{\infty}(0)=0$. On account of relations (4.5) and (4.8), one has $h_{i, \varepsilon}^{\infty}(s) \leq 0$ for all $s \in\left[a_{i}, b_{i}\right]$. Consequently, we may apply Theorem 2.1 to the function $h_{i, \varepsilon}^{\infty}$ obtaining that for every $i \in \mathbb{N}$ and $\varepsilon \in\left[-\varepsilon_{i}, \varepsilon_{i}\right]$, the problem

$$
\begin{cases}-\Delta_{p} u+\lambda_{\infty}(x)|u|^{p-2} u=h_{i, \varepsilon}^{\infty}(u) & \text { in } \Omega \\ \frac{\partial u}{\partial n}=0 & \text { on } \partial \Omega\end{cases}
$$

has a weak solution $u_{i, \varepsilon}^{\infty} \in W^{1, p}(\Omega)$ such that

$$
\begin{gather*}
u_{i, \varepsilon}^{\infty} \in\left[0, a_{i}\right] \text { for a.e. } x \in \Omega \tag{4.9}\\
u_{i, \varepsilon}^{\infty} \text { is the infimum of the functional } \mathscr{E}_{i}^{\varepsilon} \text { on } W^{b_{i}} \tag{4.10}
\end{gather*}
$$

where $\mathscr{C}_{i}^{\varepsilon}$ is defined exactly as in (3.11). Because of (4.8) and (4.9), $u_{i, \varepsilon}^{\infty}$ is a weak solution not only for $\left(\mathrm{P}_{i, \varepsilon}^{\infty}\right)$ but also for the initial problem $\left(\mathrm{P}_{\varepsilon}\right)$. Consequently, we have to prove that for every $k \in \mathbb{N}$, there are at least k distinct elements $u_{i, \varepsilon}^{\infty}$ verifying (1.2') when ε belongs to a certain interval around the origin.

Let $u_{i}^{\infty}=u_{i, 0}^{\infty}$. The crucial step of Theorem B in [3], see also (4.5) and (4.7), is

$$
\begin{equation*}
\lim _{i \rightarrow \infty} \mathscr{E}_{i}^{0}\left(u_{i}^{\infty}\right)=\lim _{i \rightarrow \infty} \mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)=-\infty \tag{4.11}
\end{equation*}
$$

where $w_{s_{i}}$ denotes the constant function with value \tilde{s}_{i}. In particular, it follows that the sequence $\left\{u_{i}^{\infty}\right\}_{i}$ contains infinitely many distinct elements. So, up to a subsequence, we can fix a sequence $\left\{\gamma_{i}\right\}_{i}$ with negative terms such that

$$
\begin{equation*}
\gamma_{i+1}<\mathscr{C}_{i}^{0}\left(u_{i}^{\infty}\right) \leq \mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)<\gamma_{i} . \tag{4.12}
\end{equation*}
$$

Let us denote
$\boldsymbol{\varepsilon}_{i}^{\prime}=\frac{\gamma_{i}-\mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)}{\left|G_{i}\left(\tilde{s}_{i}\right)\right| \operatorname{meas}(\Omega)+1} \quad$ and $\quad \varepsilon_{i}^{\prime \prime}=\frac{\mathscr{E}_{i}^{0}\left(u_{i}^{\infty}\right)-\gamma_{i+1}}{\max _{s \in\left[0, a_{i}\right]}\left|G_{i}(s)\right| \operatorname{meas}(\Omega)+1}, \quad i \in \mathbb{N}$.
Fix $k \in \mathbb{N}$. Because of (4.12), we have

$$
\varepsilon_{k}^{\infty}=\min \left(1, \varepsilon_{1}, \ldots, \varepsilon_{k}, \varepsilon_{1}^{\prime}, \ldots, \varepsilon_{k}^{\prime}, \varepsilon_{1}^{\prime \prime}, \ldots, \varepsilon_{k}^{\prime \prime}\right)>0
$$

Then, for every $i \in\{1, \ldots, k\}$ and $\varepsilon \in\left[-\varepsilon_{k}^{\infty}, \varepsilon_{k}^{\infty}\right]$ we have

$$
\begin{aligned}
\mathscr{E}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{\infty}\right) & \leq \mathscr{E}_{i}^{\varepsilon}\left(w_{s_{i}}\right) \quad(\text { see }(4.10)) \\
& =\mathscr{E}_{i}^{0}\left(w_{s_{i}}\right)-\varepsilon \int_{\Omega} G_{i}\left(w_{s_{i}}\right) \\
& <\gamma_{i}, \quad\left(\text { see the choice of } \varepsilon_{i}^{\prime}\right)
\end{aligned}
$$

and because $u_{i, \varepsilon}^{\infty}$ belongs to $W^{b_{i}}$, and u_{i}^{∞} is the minimum point of \mathscr{E}_{i}^{0} on the set $W^{b_{i}}$, see relation (4.10) for $\varepsilon=0$, we have

$$
\begin{aligned}
\mathscr{E}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{\infty}\right) & =\mathscr{E}_{i}^{0}\left(u_{i, \varepsilon}^{\infty}\right)-\varepsilon \int_{\Omega} G_{i}\left(u_{i, \varepsilon}^{\infty}\right) \\
& \geq \mathscr{E}_{i}^{0}\left(u_{i}^{\infty}\right)-\varepsilon \int_{\Omega} G_{i}\left(u_{i, \varepsilon}^{\infty}\right) \\
& >\gamma_{i+1} . \quad\left(\text { see the choice of } \varepsilon_{i}^{\prime \prime} \text { and }(4.9)\right)
\end{aligned}
$$

Thus, for every $i \in\{1, \ldots, k\}$ and $\varepsilon \in\left[-\varepsilon_{k}^{\infty}, \varepsilon_{k}^{\infty}\right]$, we have

$$
\gamma_{i+1}<\mathscr{C}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{\infty}\right)<\gamma_{i} .
$$

In particular,

$$
\begin{equation*}
\mathscr{C}_{k}^{\varepsilon}\left(u_{k, \varepsilon}^{\infty}\right)<\cdots<\mathscr{E}_{1}^{\varepsilon}\left(u_{1, \varepsilon}^{\infty}\right)<0 . \tag{4.13}
\end{equation*}
$$

By construction, $u_{i, \varepsilon}^{\infty} \in W^{b_{k}}$ for every $i \in\{1, \ldots, k\}$, see (4.4); thus, $\mathscr{E}_{i}^{\varepsilon}\left(u_{i, \varepsilon}^{\infty}\right)=\mathscr{E}_{k}^{\varepsilon}\left(u_{i, \varepsilon}^{\infty}\right)$, see relation (4.8). Therefore, (4.13) implies that for every $\varepsilon \in\left[-\varepsilon_{k}^{\infty}, \varepsilon_{k}^{\infty}\right]$,

$$
\mathscr{E}_{k}^{\varepsilon}\left(u_{k, \varepsilon}^{\infty}\right)<\cdots<\mathscr{E}_{k}^{\varepsilon}\left(u_{1, \varepsilon}^{\infty}\right)<0
$$

In particular, the elements $u_{1, \varepsilon}^{\infty}, \ldots, u_{k, \varepsilon}^{\infty}$ are distinct whenever $\varepsilon \in\left[-\varepsilon_{k}^{\infty}, \varepsilon_{k}^{\infty}\right]$.
Now, we prove relation (1.2'). Fix $\varepsilon \in\left[-\varepsilon_{k}^{\infty}, \varepsilon_{k}^{\infty}\right]$. First of all, because $\mathscr{C}_{1}^{\varepsilon}\left(u_{1, \varepsilon}^{\infty}\right)<0=\mathscr{E}_{1}^{\varepsilon}(0)$, then $\left\|u_{1, \varepsilon}^{\infty}\right\|_{L^{\infty}}>0$, which proves relation (1.2') for $i=1$. We further prove that

$$
\begin{equation*}
\left\|u_{i, \varepsilon}^{\infty}\right\|_{L^{\infty}}>a_{i-1} \quad \text { for all } i \in\{2, \ldots, k\} \tag{4.14}
\end{equation*}
$$

Let us assume the contrary, i.e., there exists an element $i_{0} \in\{2, \ldots, k\}$ such that $\left\|u_{i_{0}, \varepsilon}^{\infty}\right\|_{L^{\infty}} \leq a_{i_{0}-1}$. Because $a_{i_{0}-1}<b_{i_{0}-1}$, then $u_{i_{0}, \varepsilon}^{\infty} \in W^{b_{i_{0}-1}}$. Thus, on account of (4.10) and (4.8), we have

$$
\mathscr{E}_{i_{0}-1}^{\varepsilon}\left(u_{i_{0}-1, \varepsilon}^{\infty}\right)=\min _{W^{b_{0}-1}} \mathscr{E}_{i_{0}-1}^{\varepsilon} \leq \mathscr{E}_{i_{0}-1}^{\varepsilon}\left(u_{i_{0}, \varepsilon}^{\infty}\right)=\mathscr{E}_{i_{0}}^{\varepsilon}\left(u_{i_{0}, \varepsilon}^{\infty}\right),
$$

which contradicts (4.13). Thus, (4.14) holds true, which can be combined with (4.4), obtaining relation $\left(1.2^{\prime}\right)$. The proof is concluded.

ACKNOWLEDGMENT

Research for this article was supported by the grant PN II, ID_527/2007.

REFERENCES

1. G. Anello and G. Cordaro (2007). Perturbation from Dirichlet problem involving oscillating nonlinearities. J. Differential Equations 234:80-90.
2. F. Faraci and A. Kristály (2007). On an open question of Ricceri concerning a Neumann problem. Glasg. Math. J. 49:189-195.
3. A. Kristály and D. Motreanu (2007). Nonsmooth Neumann-type problems involving the p-Laplacian. Numer. Funct. Anal. Optim. 28(11-12):1309-1326.
4. S. Li and Z. Liu (2002). Perturbations from symmetric elliptic boundary value problems. J. Differential Equations 185:271-280.
5. P. Omari and F. Zanolin (1996). Infinitely many solutions of a quasilinear elliptic problem with an oscillatory potential. Comm. Partial Differential Equations 21:721-733.
6. M. Marcus and V. J. Mizel (1972). Absolute continuity on tracks and mappings of Sobolev spaces. Arch. Rational Mech. Anal. 45:294-320.
7. B. Ricceri (2001). Infinitely many solutions of the Neumann problem for elliptic equations involving the p-Laplacian. Bull. London Math. Soc. 33:31-340.
8. J. Saint Raymond (2002). On the multiplicity of the solutions of the equations $-\Delta u=\lambda f(u)$. J. Differential Equations 180:65-88.
