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Abstract. For certain positive numbers µ and λ, we establish the multiplicity
of solutions to the problem{

−�u = µ u
|x|2 + λf(u) a.e. in Ω,

u = 0 on ∂Ω,

where Ω is a bounded open domain in R
N (N ≥ 3) containing the origin with

smooth boundary ∂Ω, while f : R → R is continuous, superlinear at zero and
sublinear at infinity.

1. Introduction

Consider the problem

(1µ,λ)
{

−�u = µ u
|x|2 + g(λ, u) in Ω,

u = 0 on ∂Ω,

where Ω ⊂ R
N (N ≥ 3) is a bounded open domain with smooth boundary ∂Ω and

0 ∈ Ω, g : (0, +∞) × R → R is a continuous function and 0 ≤ µ < µ = (N − 2)2/4.
Problem (10,λ) has been extensively studied during the last few years (see [7, 8,

10] and references therein), where g(λ, s) = λf(s), f : R → R being a continuous
function provided with certain growth properties at zero and infinity, respectively.

When µ �= 0, problem (1µ,λ) becomes more delicate due to the presence of the
singular potential. Several papers were devoted in order to handle this problem
(see [5, 6, 9, 13]). For instance, Ferrero and Gazzola [5], and Ruiz and Willem [13],
considered g(λ, s) = |s|2∗−2s + λs, establishing for certain values of µ and λ the
existence of one nontrivial positive solution for (1µ,λ). In [9], Montefusco considered
g(λ, s) = |s|q−2s with either q ∈ (1, 2), or q ∈ (2, 2∗), guaranteeing in both cases
a nontrivial solution for (1µ,λ) whenever µ ∈ (0, µ) is arbitrarily fixed. Faraci and
Livrea [4] exploited Montefusco’s result, establishing certain bifurcation theorems
which involve the p-Laplacian and its corresponding singular term. Very recently,
Chen [2, 3] characterized the exact growth order near the origin of the positive
solutions of (1µ,λ) in the case when g(λ, s) = s2∗−1

+ +λsq
+ (0 < q < 1). By means of

this construction, Chen was able to obtain multiple solutions of (1µ,λ) for certain
values of λ > 0 whenever 0 ≤ µ < µ − 1 (N ≥ 5).
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The purpose of this paper is to obtain multiple solutions for the problem

(Pµ,λ)
{

−�u = µ u
|x|2 + λf(u) a.e. in Ω,

u = 0 on ∂Ω

(which is nothing but (1µ,λ) with g(λ, s) = λf(s)) when f : R → R is superlinear
at zero, i.e.

(f1) lim
s→0

f(s)
s

= 0,

and sublinear at infinity, i.e.

(f2) lim
|s|→+∞

f(s)
s

= 0.

Denoting by F (s) =
∫ s

0
f(t)dt, we finally assume that

(f3) sup
s∈R

F (s) > 0.

Our main result is

Theorem 1. Let f : R → R be a continuous function which satisfies (f1), (f2) and
(f3). Then for every µ ∈ [0, µ) there exist an open interval Λµ ⊂ (0, +∞) and a real
number σµ > 0 such that for every λ ∈ Λµ problem (Pµ,λ) has at least two distinct,
nontrivial weak solutions in H1

0 (Ω) whose H1
0 -norms are less than σµ.

We emphasize that hypotheses (f3) cannot be omitted. Indeed, if for instance
f ≡ 0, then (f1) and (f2) clearly hold, but problem (Pµ,λ) has only the trivial
solution.

Theorem 1 will be proved by means of a recent three critical point result of
Bonanno [1] which is actually a refinement of a general principle of Ricceri [11,
12]. Furthermore, in Section 3 we will give additional information as far as the
localization of the interval Λµ is concerned (see Remark 2).

2. Preliminaries

Let Ω be a bounded open domain in R
N (N ≥ 3) containing the origin with

smooth boundary ∂Ω. The space H1
0 (Ω) will be endowed by the standard inner

product

〈u, v〉H1
0

=
∫

Ω

∇u∇vdx, u, v ∈ H1
0 (Ω),

and by its corresponding norm ‖ · ‖H1
0
. The norm of the dual of H1

0 (Ω) will be
denoted by ‖ · ‖H−1 . We recall Hardy’s inequality which states that

(1)
∫

Ω

u2(x)
|x|2 dx ≤ 1

µ
‖u‖2

H1
0
, u ∈ H1

0 (Ω),

where µ = (N − 2)2/4 (see [6]).
The usual norm on Lp(Ω) will be denoted by ‖ · ‖Lp . The Sobolev embedding

constant of the compact embedding H1
0 (Ω) ↪→ Lp(Ω), p ∈ [1, 2∗), will be denoted

by cp > 0, i.e. ‖u‖Lp ≤ cp‖u‖H1
0
, for every u ∈ H1

0 (Ω).
Let f : R → R be a continuous function and F (s) =

∫ s

0
f(t)dt. We introduce the

energy functional Eµ,λ : H1
0 (Ω) → R associated to (Pµ,λ), i.e.

Eµ,λ(u) = Φµ(u) − λJ(u), u ∈ H1
0 (Ω),
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where

(2) Φµ(u) =
1
2
‖u‖2

H1
0
− µ

2

∫
Ω

u2(x)
|x|2 dx and J(u) =

∫
Ω

F (u(x))dx, u ∈ H1
0 (Ω).

As long as (f2) is verified, a standard argument shows that Eµ,λ : H1
0 (Ω) → R is

of class C1 and its critical points are exactly the weak solutions of (Pµ,λ).
Therefore, it is enough to show the existence of multiple critical points of Eµ,λ :

H1
0 (Ω) → R for the parameters µ and λ specified in Theorem 1. This fact will be

carried out by means of the following recent critical point result.

Theorem 2 ([1, Theorem 2.1]). Let X be a separable and reflexive real Banach
space, and let Φ, J : X → R be two continuously Gâteaux differentiable functionals.
Assume that there exists x0 ∈ X such that Φ(x0) = J(x0) = 0 and Φ(x) ≥ 0 for
every x ∈ X and that there exists x1 ∈ X, ρ > 0 such that

(i) ρ < Φ(x1);
(ii) supΦ(x)<ρ J(x) < ρ J(x1)

Φ(x1)
.

Further, put

a =
ζρ

ρ J(x1)
Φ(x1)

− supΦ(x)<ρ J(x)
,

with ζ > 1, assume that the functional Φ − λJ is sequentially weakly lower semi-
continuous and satisfies the Palais-Smale condition, and

(iii) lim‖x‖→+∞(Φ(x) − λJ(x)) = +∞,

for every λ ∈ [0, a].
Then there is an open interval Λ ⊆ [0, a] and a number σ > 0 such that for each

λ ∈ Λ, the equation Φ′(x)− λJ ′(x) = 0 admits at least three solutions in X having
norm less than σ.

3. Proof of Theorem 1

Through this section, we suppose that the assumptions of Theorem 1 are fulfilled.
In order to conclude the proof, we apply Theorem 2 by choosing X = H1

0 (Ω) as
well as Φ = Φµ and J as in (2). Due to (1) we have at once that Φµ(u) ≥ 0 for
every µ ∈ [0, µ) and u ∈ X.

Lemma 1. For every µ ∈ [0, µ] and λ ∈ R, the functional Eµ,λ is sequentially
weakly lower semicontinuous on H1

0 (Ω).

Proof. Due to (f2), there exists c > 0 such that

(3) |f(s)| ≤ c(1 + |s|), s ∈ R.

Thus, the sequentially weak continuity of J is achieved in a standard way, by
means of the compact embedding H1

0 (Ω) ↪→ L2(Ω). On the other hand, using the
concentration-compactness principle, Montefusco proved in [9, Theorem 3.2] the
sequentially weakly lower semicontinuity of Φµ for every µ ∈ [0, µ]. �

Lemma 2. For every µ ∈ [0, µ) and λ ∈ R, the functional Eµ,λ is coercive and
satisfies the Palais-Smale condition.
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Proof. Let us fix µ ∈ [0, µ) and λ ∈ R arbitrarily. By (f2), there exists δ = δ(µ, λ) >
0 such that for every |s| > δ one has

|f(s)| <
1
2
(1 − µ/µ)c−2

2 (1 + |λ|)−1|s|.

After integration, we obtain

|F (s)| ≤ 1
2
(1 − µ/µ)c−2

2 (1 + |λ|)−1|s|2 + max
|t|≤δ

|f(t)||s| for all s ∈ R.

Thus, for every u ∈ H1
0 (Ω) we have

Eµ,λ(u) ≥ 1
2
(1 − µ/µ)‖u‖2

H1
0
− |λ|

∫
Ω

|F (u(x))|dx

≥ 1
2
(1 − µ/µ)(1 + |λ|)−1‖u‖2

H1
0
− c1|λ|max

|t|≤δ
|f(t)|‖u‖H1

0
.

If ‖u‖H1
0
→ +∞ we conclude that Eµ,λ(u) → +∞ as well, i.e. Eµ,λ is coercive.

Now, let {un} be a sequence in H1
0 (Ω) such that {Eµ,λ(un)} is bounded and

‖E ′
µ,λ(un)‖H−1 → 0. Since Eµ,λ is coercive, the sequence {un} is bounded. Up to a

subsequence, we may suppose that un → u weakly in H1
0 (Ω), and un → u strongly

in L2(Ω) for some u ∈ H1
0 (Ω). On the other hand, we have

(1 − µ/µ)‖un − u‖2
H1

0
≤ ‖un − u‖2

H1
0
− µ

∫
Ω

(un(x) − u(x))2

|x|2 dx

= E ′
µ,λ(un)(un − u) + E ′

µ,λ(u)(u − un)

+λ

∫
Ω

[f(un(x)) − f(u(x))](un(x) − u(x))dx.

It is clear the first two terms from the last expression tend to 0, while by means of
(3) one has ∫

Ω

|f(un(x)) − f(u(x))||un(x) − u(x)|dx

≤ c[2(measΩ)1/2 + ‖un‖L2 + ‖u‖L2 ]‖un − u‖L2 → 0

as n → ∞. Thus we proved that ‖un − u‖H1
0
→ 0. �

Lemma 3. For every µ ∈ [0, µ),

lim
ρ→0+

sup{J(u) : Φµ(u) < ρ}
ρ

= 0.

Proof. Fix µ ∈ [0, µ). Due to (f1), for an arbitrarily small ε > 0 there exists δ = δ(ε)
such that

|f(s)| <
ε

4
(1 − µ/µ)c−2

2 |s| for all |s| < δ.

For a fixed p ∈ (2, 2∗), combining (3) with the above inequality, one has

(4) |F (s)| ≤ ε

4
(1 − µ/µ)c−2

2 |s|2 + c(1 + δ)δ1−p|s|p for all s ∈ R.

For ρ > 0 define the sets

S1
ρ = {u ∈ H1

0 (Ω) : Φµ(u) < ρ}; S2
ρ = {u ∈ H1

0 (Ω) : (1 − µ/µ)‖u‖2
H1

0
< 2ρ}.
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Thanks to (1), S1
ρ ⊆ S2

ρ . Moreover, by using (4), for every u ∈ S2
ρ we have

J(u) ≤ ε

2
ρ + c(1 + δ)δ1−pcp

p2
p/2(1 − µ/µ)−p/2ρp/2 ≡ ε

2
ρ + c′ρp/2.

Thus there exists ρ(ε) > 0 such that for every 0 < ρ < ρ(ε)

0 ≤
supu∈S1

ρ
J(u)

ρ
≤

supu∈S2
ρ
J(u)

ρ
≤ ε

2
+ c′ρ

p−2
2 < ε,

which completes the proof. �

Let s0 ∈ R such that F (s0) > 0; see (f3). Also choose R0 > 0 in such a way that
R0 < dist(0, ∂Ω). For σ ∈ (0, 1) define

uσ(x) =

⎧⎨
⎩

0, if x ∈ R
N \ BN (0, R0),

s0, if x ∈ BN (0, σR0),
s0

R0(1−σ) (R0 − |x|), if x ∈ BN (0, R0) \ BN (0, σR0),

where BN (0, r) denotes the N -dimensional open ball with center 0 and radius r > 0.
It is clear that uσ ∈ H1

0 (Ω). Moreover, denoting by ωN the volume of the N -
dimensional unit ball, one has

‖uσ‖2
H1

0
= s2

0(1 − σ)−2(1 − σN )ωNRN−2
0

and
J(uσ) ≥ [F (s0)σN − max

|t|≤|s0|
|F (t)|(1 − σN )]ωNRN

0 .

For σ close enough to 1, the right-hand side of the last inequality becomes strictly
positive; choose such a number, say σ0.

Proof of Theorem 1 completed. Fix µ ∈ [0, µ). Due to Lemma 3, we may choose
ρ0 > 0 such that

2ρ0 < (1 − µ/µ)‖uσ0‖2
H1

0
,

sup{J(u) : Φµ(u) < ρ0}
ρ0

<
2; [F (s0)σN

0 − max|t|≤|s0| |F (t)|(1 − σN
0 )]ωNRN

0

‖uσ0‖2
H1

0

.

By choosing x1 = uσ0 , hypotheses (i) and (ii) of Theorem 2 are verified. Define

(5) a = aµ =
1 + ρ0

J(uσ0 )

Φµ(uσ0) −
sup{J(u):Φµ(u)<ρ0}

ρ0

.

Taking into account Lemmas 1 and 2, and putting x0 = 0, all the assumptions of
Theorem 2 are verified. Thus there exist an open interval Λµ ⊂ [0, aµ] and a number
σµ > 0 such that for each λ ∈ Λµ, the equation E ′

µ,λ(u) ≡ Φ′
µ(u)−λJ ′(u) = 0 admits

at least three solutions in H1
0 (Ω) having H1

0 -norm less than σµ. Since one of them
may be the trivial one (f(0) = 0, see (f1)), we still have at least two distinct,
nontrivial solutions of (Pµ,λ) with the required properties. �

Remark 1. Since f(0) = 0, one can consider the continuous function s �→ f(s+)
instead of f , obtaining nonpositive solutions of the problem (Pµ,λ). Here, s+ =
max{s, 0}. Moreover, if f is locally Lipschitz, the solutions belong to C2(Ω \ {0}).
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Remark 2. It is important to know explicit estimations of the intervals Λµ, µ ∈
[0, µ), guaranteed by Theorem 1. In order to give such an estimation, let us fix s0,
R0, and σ0 as in Section 3. Let µ ∈ [0, µ). Based on Lemma 3, one can assume that
ρ0 < 1 and

sup{J(u) : Φµ(u) < ρ0}
ρ0

<
J(uσ0)

2Φµ(uσ0)
.

Thus, according to (5), one has aµ <
4Φµ(uσ0)

J(uσ0) . In conclusion, we have

Λµ ⊂
[
0, 2

(
1 − µ

µ

) (
s0

R0

)2 (1 − σ0)−2(1 − σN
0 )

F (s0)σN
0 − max|t|≤|s0| |F (t)|(1 − σN

0 )

]
.
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