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� This paper deals with the problem −�pu + �(x)|u|p−2u = �(x)f (|u|) in �, subjected
to the zero Neumann boundary condition, where p > 1, � ⊂ �N is bounded with
smooth boundary, �, � ∈ L∞(�), essinf�� > 0, and f : [0,+∞) → � is a not necessarily
continuous nonlinearity that oscillates either at the origin or at the infinity. By using nonsmooth
variational methods, we establish in both cases the existence of infinitely many distinct
non-negative solutions of the Neumann problem. In our framework, � : � → � may be a
sign-changing or even a nonpositive potential, which is not permitted usually in earlier works.

Keywords Infinitely many solutions; p-Laplacian; Neumann problem; Nonsmooth
potential.
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1. INTRODUCTION

Let � ⊂ �N be a bounded domain with C 2-boundary �� and consider
the nonlinear elliptic problem



−�pu + �(x)up−1 = �(x)f (u) in �,

u ≥ 0 in �,

�u
��

= 0 on ��

(P0)
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where 1 < p < ∞,�p(·) = div(|�(·)|p−2�(·)) is the p-Laplacian operator,
� is the outer unit normal to ��, and f ∈ L∞

loc([0,∞)) is a function with
f (0) = 0,�, � ∈ L∞(�), with essinf�� > 0�

In recent years, problem (P0) has been widely investigated by many
authors, see [1–5, 8, 10, 12, 15, 17, 19]. In particular, Ricceri’s variational
principle (see [18, 19]) and its variants have been successfully applied in
various context in order to guarantee the existence of infinitely many weak
solutions of (P0) when the nonlinear term f has an oscillatory behavior
(at zero, or at infinity). Marano–Motreanu [12] extended Ricceri’s
principle to a large class of nondifferentiable functionals, applying
their abstract result to a Neumann problem for an elliptic variational-
hemivariational inequality that originates from (P0)� By means of [12],
Candito [5] studied (P0) when the nonlinearity f may possess uncountably
many discontinuities. Further applications of Ricceri’s principle can be
found in Anello [1], Cammaroto–Chinnì–Di Bella [4], and Kristály [11].

The common features of the aforementioned papers ([4, 5, 12, 19])
are p > N , and essinf�� > 0� The first fact (i.e., p > N ) has been used
in order to apply the compactness of the embedding W 1,p(�) ↪→ C 0(�),
which was crucial to study (P0) via Ricceri’s principle. However, Anello [1]
and Anello–Cordaro [2] considered (P0) by removing the key inequality
p > N where f fulfills certain oscillatory assumptions, and by exploiting an
idea of Saint Raymond [20], they still guaranteed the existence of infinitely
many solutions for problem (P0). On the other hand, the hypothesis
essinf�� > 0 seemed to be essential in all the works cited above (see
also [8]).

The aim of our paper is threefold. Considering (P0) with an oscillatory
nonlinearity f (at zero, or at infinity), our contribution can be briefly
described as follows:

1. We do not require essinf�� > 0; in other words, we allow a sign-
changing or even a nonpositive potential � ∈ L∞(�). In order to handle this
problem, we carefully control the oscillatory behavior of the nonlinearity f
(at zero, or at infinity) by a very natural assumption. Roughly speaking, f
oscillates at 0+ or at +∞ along the curves s �→ C��sp−1, s > 0, where C�� ∈

essinf� �

�
, esssup�

�
�
�� For the precise formulation, see hypotheses (H0) and

(H∞), respectively. On the other hand, if it happens that essinf�� > 0,
earlier results can be deduced from our theorems (see [2, 5, 8, 12, 19]).

2. No relationship between p and N is required; consequently, the
variational method used in earlier papers (see [4, 5, 8, 12, 19]) fails.
Moreover, our method is completely different than that used by Anello and
Cordaro ([1, 2]), and it is based on a nonsmooth critical point theory in
the sense of Motreanu–Panagiotopoulos (see [14, Chapter 3]) combined
with a careful truncation argument.
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3. Our study includes the case where the nonlinear term f has
discontinuities. Due to this fact, we reformulate the problem (P0) into a
hemivariational inequality (see also the works [10, 17] in similar nonsmooth
context). By using Clarke’s calculus for locally Lipschitz functions, we are
able to guarantee the existence of infinitely many distinct solutions for
the hemivariational inequality problem [in particular, for problem (P0)].
Furthermore, we have full information on the L∞ and W 1,p -behavior of
solutions. Note that our results are new even in the “smooth” context.

In the sequel, we formulate our main results. Before doing this, we
emphasize that the solutions of our problem are sought in W 1,p(�), which
is endowed with the standard norm

‖u‖W 1,p =
( ∫

�

|�u(x)|pdx +
∫
�

|u(x)|pdx
)1/p

�

We consider a function f ∈ L∞
loc([0,+∞)) (i.e., locally essentially bounded)

that is not necessarily continuous and f (0) = 0 [we put f (s) = 0 for
s ≤ 0]. In such case, problem (P0) need not have a solution a.e. in �.
To overcome this inconvenience, we first observe that F (s) = ∫ s

0 f (t)dt ,
s ∈ �, becomes a locally Lipschitz function. In particular, it makes sense to
consider the generalized directional derivative F 0 of F (see Section 2 for
details). Therefore, instead of (P0), we consider the following nonsmooth
problem (hemivariational inequality), denoted by (P ): Find u ∈ W 1,p(�)

such that ∫
�


|�u|p−2�u�v + �(x)|u|p−2uv�dx

+
∫
�

�(x)F 0(u(x);−v(x))dx ≥ 0, ∀v ∈ W 1,p(�)�

Remark 1.1. When f is continuous, then F 0(u(x);−v(x)) = −f (u(x))
v(x), thus a non-negative solution u ∈ W 1,p(�) for the hemivariational
inequality (P ) is a weak solution to the initial problem (P0)� So, in some
sense, the solutions of (P ) can be considered as generalized solutions
of (P0)�

We emphasize that hemivariational inequalities are used in the study of
problems with discontinuities (see Chang [6], Gasiński–Papageorgiou [9]),
as well as in various engineering problems in which the corresponding
energy (Euler) functional is nonsmooth and nonconvex. For various
applications, we refer the reader to Motreanu–Panagiotopoulos [14],
Naniewicz–Panagiotopoulos [16], and references therein.
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Taking into account that f is locally essentially bounded on the
whole � (being 0 on the negative axis), we may define the functions

fl(s) = lim
�→0+ essinf|t−s|<�f (t) and fu(s) = lim

�→0+ esssup|t−s|<�f (t), s ∈ ��

One can prove that �F (s) = [fl(s), fu(s)] for every s ∈ � (see [6],
[14, Proposition 1.7]), where �F denotes the generalized gradient of F
(see Section 2).

Now, we are in a position to state our main results. First, we assume

lim sup
s→0+

pF (s)
sp

>

∫
�
�(x)dx∫

�
�(x)dx

≥ essinf�
�

�
> lim inf

s→0+
fu(s)
sp−1

� (H0)

Note that (H0) implies an oscillatory behavior of f at zero, while the
inequality “≥” always holds.

On the one hand, if �(x)/�(x) = c0 ∈ � for a.e. x ∈ �, then f oscillates
at zero along the curve s �→ c0sp−1, s > 0� In such case, if in addition f is
continuous, we have a sequence of constant solutions for (P0), converging
to zero, which are roots of the equation c0sp−1 = f (s), s > 0� On the other
hand, if �/� �= constant, one cannot have constant solutions for (P0). The
general result—where we do not attach any importance to the relationship
between � and �—can be read as follows:

Theorem 1.2. Let �, � ∈ L∞(�) with essinf�� > 0 and a function
f ∈ L∞

loc([0,+∞)), f (0) = 0, fulfilling (H0)� Then (P ) admits a sequence of
distinct non-negative solutions 
ũk� in W 1,p(�) ∩ L∞(�) such that

lim
k→∞

‖ũk‖W 1,p = lim
k→∞

‖ũk‖∞ = 0�

Note that in the case when f oscillates at zero, no assumption is needed
on the growth of f at infinity. However, dealing with the case when f
oscillates at infinity, we require for it to have a subcritical growth at infinity;
namely,

lim sup
s→∞

|f (s)|
sq−1

< ∞ for some q ∈ (p, p∗)� (f∞)

Here and in the sequel, p∗ = pN /(N − p) if N > p and p∗ = ∞ if p ≥ N �

The counterpart of (H0) at infinity is

lim sup
s→∞

pF (s)
sp

>

∫
�
�(x)dx∫

�
�(x)dx

≥ essinf�
�

�
> lim inf

s→∞
fu(s)
sp−1

� (H∞)
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Theorem 1.3. Let �, � ∈ L∞(�) with essinf�� > 0 and a function
f ∈ L∞

loc([0,∞)), f (0) = 0, fulfilling (f∞) and (H∞)� Then (P ) admits a
sequence of distinct non-negative solutions 
w̃k� in W 1,p(�) ∩ L∞(�) such that

lim
k→∞

‖w̃k‖W 1,p = lim
k→∞

‖w̃k‖∞ = ∞�

The paper is divided as follows. In the next section, we recall some basic
properties of the generalized directional derivative and Clarke generalized
gradient of a locally Lipschitz function that will be used throughout the
paper. In Sections 3 and 4, we prove Theorems 1.2 and 1.3, respectively.
In the last section, we compare our theorems with earlier results via simple
examples, emphasizing the applicability of Theorems 1.2 and 1.3.

2. NONSMOOTH CALCULUS: SOME BASIC PROPERTIES
OF LOCALLY LIPSCHITZ FUNCTIONS

Let (X , ‖ · ‖) be a real Banach space and X ∗ its topological dual.
A function h : X → � is called locally Lipschitz if each point u ∈ X
possesses a neighborhood �u such that |h(u1) − h(u2)| ≤ L‖u1 − u2‖ for all
u1,u2 ∈�u , for a constant L > 0 depending on �u � The generalized directional
derivative of h at the point u ∈ X in the direction z ∈ X is

h0(u; z) = lim sup
w→u, t→0+

h(w + tz) − h(w)
t

�

The Clarke generalized gradient of h at u ∈ X is defined by

�h(u) = 
x∗ ∈ X ∗ : 〈x∗, z〉X ≤ h0(u; z) for every z ∈ X �,

which is a nonempty, convex, and w∗-compact subset of X ∗, where 〈·, ·〉X is
the duality pairing between X ∗ and X .

We list some fundamental properties ofthe generalized directional
derivative and gradient that will be used throughout the paper.

Proposition 2.1 (see Clarke [7]).

(i) (Positive homogeneity) h0(u; cz) = ch0(u; z), for all u, z ∈ X , and c > 0�
(ii) (Subadditivity) h0(u; z + v) ≤ h0(u; z) + h0(u; v) for all u, z, v ∈ X .
(iii) (−h)0(u; z) = h0(u;−z) for all u, z ∈ X �

(iv) Let j : X → � be a continuously differentiable function. Then �j(u) =

j ′(u)�, j 0(u; z) coincides with 〈j ′(u), z〉X and (h + j)0(u; z) = h0(u; z) +
〈j ′(u), z〉X for all u, z ∈ X �
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(v) (Lebourg’s mean value theorem) Let u and v be two points in X � Then there
exists a point w in the open segment joining u and v, and x∗

w ∈ �h(w) such
that

h(u) − h(v) = 〈x∗
w ,u − v〉X �

(vi) If X is finite-dimensional, �h is upper semicontinuous in every point of
X (�h is upper semicontinuous in u ∈ X if for every � > 0 there exists � > 0
such that �h(v) ⊆ �h(u) + �[−1, 1] for every v ∈ BX (u, �) = 
v ∈X :
‖v − u‖ < ��).

A point u ∈ X is a critical point of h if 0 ∈ �h(u), that is, h0(u; z) ≥ 0 for
all z ∈ X (see Chang [6]).

3. PROOF OF THEOREM 1.2

Throughout this section, we assume the hypotheses of Theorem 1.2 are
fulfilled. The standard norm of Lq(�) will be denoted by ‖ · ‖q , q ∈ [1,∞]�

Because f (0) = 0, we may put f (s) = F (s) = 0 for every s ≤ 0� Let
s̃ > 0 be arbitrarily fixed, and let f̃ (s) = f (min(s, s̃)) for s ≥ 0, and
f̃ (s)= f (0)= 0 for s < 0� Define F̃ (s) = ∫ s

0 f̃ (t)dt , s ∈ �� It is clear that F̃
is locally Lipschitz, and an elementary calculation shows that

F̃ 0(s; t) = F 0(s; t) for every s ∈ [0, s̃) and t ∈ �� (3.1)

Due to (H0), one can fix c0 ∈ � such that

essinf�
�

�
> c0 > lim inf

s→0+
fu(s)
sp−1

� (3.2)

In particular, there is a sequence 
sk� ⊂ (0, s̃) converging (decreasingly)
to 0, such that

f̃u(sk) = fu(sk) < c0s
p−1
k � (3.3)

Let us define the functions

g (s) = f̃ (s) − c0s
p−1
+ and G(s) =

∫ s

0
g (t)dt = F̃ (s) − c0

p
sp+, s ∈ �,

(3.4)

where s+ = max(s, 0)� It is clear that g ∈ L∞
loc(�) and G is locally Lipschitz.
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Because gu(sk) < 0, see (3.3), for �k = −gu(sk) > 0 there exists �k > 0
such that �G(s) ⊆ �G(sk) + �k[−1, 1] for all s ∈ � with |s − sk | ≤ �k , see
Proposition 2.1(vi). Note that �G(sk) = [gl(sk), gu(sk)]; consequently,

�G(s) ⊂ (−∞, 0] for every s ∈ [ak , bk], (3.5)

where ak = sk − min(�k , sk/2) and bk = sk + min(�k , sk/2). Clearly, ak > 0 for
every k ∈ �, and limk→∞ bk = 0� Moreover, one can assume without loosing
the generality that bk+1 < ak < bk for every k ∈ �.

On the other hand, on account of (3.4) and (H0), we have

lim sup
s→0+

pG(s)
sp

>

∫
�
�(x)dx∫

�
�(x)dx

− c0� (3.6)

The functional � : W 1,p(�) → � defined by

�(u) =
∫
�

�(x)G(u(x))dx , u ∈ W 1,p(�),

is well-defined, locally Lipschitz, and (see [7])

�0(u; v) ≤
∫
�

�(x)G 0(u(x); v(x))dx , u, v ∈ W 1,p(�)� (3.7)

Due to the choice of c0, see (3.2), if �(x) = �(x) − c0�(x), one has

essinf�� ≥ essinf�

(
�

�
− c0

)
essinf�� > 0�

Therefore, the norm

‖u‖� =
( ∫

�

|�u(x)|pdx +
∫
�

�(x)|u(x)|pdx
)1/p

(3.8)

is equivalent to the standard norm ‖ · ‖W 1,p � Finally, we define the
functional � : W 1,p(�) → � by

�(u) = 1
p
‖u‖p

� − �(u)

which is clearly locally Lipschitz.
Let us fix a number r < 0 arbitrarily, and for every k ∈ �, consider

the set

Sk = 
u ∈ W 1,p(�) : r ≤ u(x) ≤ bk a.e. x ∈ ��,

where bk is from (3.5).
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Proposition 3.1. The functional � is bounded from below on Sk and its
infimum mk on Sk is attained at ũk ∈ Sk. Moreover, mk = �(ũk) < 0 for every
k ∈ �.

Proof. Note that for every u ∈ Sk , we have

�(u) = 1
p
‖u‖p

� − �(u) ≥ −‖�‖1 max
[r ,bk ]

G > −∞�

It is clear that Sk is convex and closed, thus weakly closed in W 1,p(�).
Let mk = infSk �, and 
un� be a sequence in Sk such that mk ≤ �(un) ≤ mk +
1/n for all n ∈ �. Then,

‖un‖p
�

p
≤ mk + 1 + ‖�‖1 max

[r ,bk ]
G

for all n ∈ �, i.e., 
un� is bounded in W 1,p(�). So, up to a subsequence,

un� weakly converges in W 1,p(�) to some ũk ∈ Sk . Applying Lebourg’s
mean value theorem [see Proposition 2.1(v)], and the subcritical growth
of the function g , one can easily conclude that � is a sequentially weakly
continuous function (here, we use the theorem of Rellich–Kondrachov);
consequently, � is sequentially weakly lower semicontinuous, which implies
that �(ũk) = mk = infSk ��

Now, we prove that mk < 0 for every k ∈ �� Due to (3.6), we
may choose a sequence 
s̃k� ⊂ (0, s̃) such that s̃k ≤ bk for every k ∈ �,
limk→∞ s̃k = 0, and

pG(s̃k)

s̃ pk
>

∫
�
�(x)dx∫

�
�(x)dx

− c0�

Let wk(x) = s̃k for every k ∈ � and x ∈ �. Then wk ∈ Sk and on account of
the above inequality and �(x) = �(x) − c0�(x), one has

�(wk) = 1
p
s̃pk

∫
�

�(x)dx − G(s̃k)
∫
�

�(x)dx < 0�

Consequently, mk = infSk � ≤ �(wk) < 0� �

Proposition 3.2. 0 ≤ ũk(x) ≤ ak a.e. x ∈ �� [The number ak is from (3.5).]

Proof. Let W = 
x ∈ � : ũk(x)� [0, ak]� and suppose that meas(W ) > 0.
Define the function h(s) = min(s+, ak) and set w̃k = h ◦ ũk � Due to Marcus–
Mizel [13], w̃k belongs to W 1,p(�) (as h is Lipschitz continuous). Moreover
w̃k ∈ Sk . We introduce the following two sets

W1 = 
x ∈ W : ũk(x) < 0� and W2 = 
x ∈ W : ũk(x) > ak��
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Then, W =W1 ∪ W2, and we have that w̃k(x)= ũk(x) for all x ∈�\W ,
w̃k(x) = 0 for all x ∈ W1, and w̃k(x) = ak for all x ∈ W2. Moreover,

�(w̃k) − �(ũk)

= −1
p

∫
W

|� ũk |pdx + 1
p

∫
W
�(x)
|w̃k |p−|ũk |p�dx

−
∫
W
�(x)[G(w̃k) − G(ũk)]dx

= −1
p

∫
W

|� ũk |pdx − 1
p

∫
W1

�(x)|ũk |pdx + 1
p

∫
W2

�(x)
ap
k − ũp

k �dx

−
∫
W1

�(x)[G(0) − G(ũk(x))]dx −
∫
W2

�(x)[G(ak) − G(ũk(x))]dx �

Note that
∫
W1

�(x)[G(0) − G(ũk(x))]dx = 0� Next, applying Lebourg’s mean
value theorem, we obtain∫

W2

�(x)[G(ak) − G(ũk(x))]dx =
∫
W2

�(x)�k(x)(ak − ũk(x))dx ,

where �k(x) ∈ �G(�k(x)) for some �k(x) ∈ [ak , ũk(x)] ⊆ [ak , bk], a.e. x ∈ W2�

Due to (3.5), we have �k(x) ≤ 0 for a.e. x ∈ W2; consequently,∫
W2

�(x)
G(ak) − G(ũk(x))�dx ≥ 0�

In conclusion, every term of the above expression is nonpositive. On the
other hand, because �(w̃k) ≥ �(ũk) = infSk �, then every term should be
zero. In particular,∫

W1

�(x)|ũk |p =
∫
W2

�(x)
ap
k − ũp

k � = 0�

These equalities imply that meas(W1) = meas(W2) = 0, so meas(W ) = 0.
�

Proposition 3.3. limk→∞mk = 0�

Proof. The upper semicontinuity of the multivalued function �G implies
that it maps compact sets into bounded sets. In particular,

MG := max
s∈[0,a1]


|�|: � ∈ �G(s)� < +∞�
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Applying Lebourg’s mean value theorem, for every s ∈ [0, a1], we have

|G(s)| = |G(s) − G(0)| ≤ MGs� (3.9)

Using Proposition 3.2, we have

mk = �(ũk) ≥ −
∫
�

�(x)G(ũk(x))dx

≥ −MG

∫
�

�(x)ũk(x)dx ≥ −MG‖�‖1ak �

Because limk→∞ ak = 0, thus limk→∞ mk ≥ 0� On the other hand, mk < 0 for
every k ∈ �, see Proposition 3.1, which concludes our proof. �

Combining Propositions 3.1 and 3.3, one can see that there are
infinitely many distinct elements ũk . The following result is the “core” of
this section.

Proposition 3.4. ũk is a solution for (P ) for every k ∈ ��

Proof. Let �Sk be the indicator function of the set Sk [i.e., �Sk (u)= 0
if u ∈ Sk , and �Sk (u) = +∞ otherwise] and define the functional Ik :
W 1,p(�) → � ∪ 
+∞� by Ik = � + �Sk . Because ũk is a minimum point
of � relative to the set Sk , see Proposition 3.1, it will be a critical point
of Ik in the sense of Motreanu–Panagiotopoulos, see [14, Chapter 3].
Consequently,

�0(ũk ;w − ũk) + �Sk (w) − �Sk (ũk) ≥ 0, ∀w ∈ W 1,p(�)�

In particular,

�0(ũk ;w − ũk) ≥ 0, ∀w ∈ Sk �

Therefore, using Proposition 2.1(iii), (iv), for every w ∈ Sk we have

0 ≤ �0(ũk ;w − ũk)

=
∫
�


|� ũk |p−2� ũk�(w − ũk) + �(x)ũp−1
k (w − ũk)�dx + (−�)0(ũk ;w − ũk)

=
∫
�


|� ũk |p−2� ũk�(w − ũk) + �(x)ũp−1
k (w − ũk)�dx + �0(ũk ;−w + ũk)�



Nonsmooth Neumann-Type Problems 1319

Taking into account relation (3.7), for every w ∈ Sk we obtain

0 ≤
∫
�


|� ũk |p−2� ũk�(w − ũk) + �(x)ũp−1
k (w − ũk)�dx

+
∫
�

�(x)G 0(ũk(x);−w(x) + ũk(x))dx � (3.10)

Let us define the function h(s) = min(bk ,max(s, r )), and fix � > 0 and v ∈
W 1,p(�) arbitrarily. Because h is Lipschitz continuous, wk = h ◦ (ũk + �v)
belongs to W 1,p(�), see Marcus–Mizel [13]. The explicit expression of wk is

wk(x) =



r , if x ∈ 
ũk + �v < r �
ũk(x) + �v(x), if x ∈ 
r ≤ ũk + �v < bk�
bk if x ∈ 
bk ≤ ũk + �v��

�

Therefore, wk ∈ Sk . Considering w = wk as a test function in (3.10),
we obtain

0 ≤ −
∫

ũk+�v<r �

|� ũk |p +
∫

ũk+�v<r �

�(x)ũp−1
k (r − ũk)

+
∫

ũk+�v<r �

�(x)G 0(ũk(x);−r + ũk(x))dx

+ �

∫

r≤ũk+�v<bk �

|� ũk |p−2� ũk�v + �

∫

r≤ũk+�v<bk �

�(x)ũp−1
k v

+
∫

r≤ũk+�v<bk �

�(x)G 0(ũk(x);−�v(x))dx

−
∫

bk≤ũk+�v�

|� ũk |p +
∫

bk≤ũk+�v�

�(x)ũp−1
k (bk − ũk)

+
∫

bk≤ũk+�v�

�(x)G 0(ũk(x);−bk + ũk(x))dx �

After a suitable rearrangement of the terms of the above inequality,
using as well the positive homogeneity and subadditivity of G 0(s; ·), see
Proposition 2.1(i), (ii), we obtain that

0 ≤ �

∫
�

|� ũk |p−2� ũk�v + �

∫
�

�(x)ũp−1
k v + �

∫
�

�(x)G 0(ũk(x);−v(x))dx

+
∫

ũk+�v<r �

�(x)|r |p−2r (r − ũk − �v) −
∫

bk≤ũk+�v�

�(x)bp−1
k (ũk + �v − bk)
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−
∫

ũk+�v<r �

|� ũk |p−
∫

ũk+�v<r �

�(x)
(
ũp−1
k − |r |p−2r

)
(ũk − r )

− �

∫

ũk+�v<r �

|� ũk |p−2� ũk�v − �

∫

ũk+�v<r �

�(x)
(
ũp−1
k − |r |p−2r

)
v

−
∫

bk≤ũk+�v�

|� ũk |p +
∫

bk≤ũk+�v�

�(x)
(
bp−1
k − ũp−1

k

)
(ũk − bk)

− �

∫

bk≤ũk+�v�

|� ũk |p−2� ũk�v + �

∫

bk≤ũk+�v�

�(x)
(
bp−1
k − ũp−1

k

)
v

+
∫

ũk+�v<r �

�(x)G 0(ũk(x); ũk(x) + �v(x) − r )dx

+
∫

bk≤ũk+�v�

�(x)G 0(ũk(x); ũk(x) + �v(x) − bk)dx �

First, because r < 0, one has∫

ũk+�v<r �

�(x)|r |p−2r (r − ũk − �v) ≤ 0

≤
∫

ũk+�v<r �

�(x)
(
ũp−1
k − |r |p−2r

)
(ũk − r )�

Second, we have∫

bk≤ũk+�v�

�(x)bp−1
k (ũk + �v − bk) ≥ 0

≥
∫

bk≤ũk+�v�

�(x)
(
bp−1
k − ũp−1

k

)
(ũk − bk)�

Third, because by Proposition 3.2 we have ũk(x) ∈ [0, ak] a.e. x ∈ �, one
can find Ck > 0 such that |G 0(ũk(x); s)| ≤ Ck |s| for every s ∈ � and a.e.
x ∈ �. Thus, ∫


ũk+�v<r �
�(x)G 0(ũk(x); ũk(x) + �v(x) − r )dx

≤ Ck

∫

ũk+�v<r �

�(x)(r − ũk(x) − �v(x))dx

≤ −�Ck

∫

ũk+�v<r �

�(x)v(x)dx �
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In a similar way, we have∫

bk≤ũk+�v�

�(x)G 0(ũk(x); ũk(x) + �v(x) − bk)dx

≤ Ck

∫

bk≤ũk+�v�

�(x)(ũk(x) + �v(x) − bk)dx

≤ �Ck

∫

bk≤ũk+�v�

�(x)v(x)dx �

Taking into account the above estimates and dividing by � > 0, we
obtain that

0 ≤
∫
�

|� ũk |p−2� ũk�v +
∫
�

�(x)ũp−1
k v +

∫
�

�(x)G 0(ũk(x);−v(x))dx

−
∫

ũk+�v<r �

|� ũk |p−2� ũk�v −
∫

ũk+�v<r �

�(x)
(
ũp−1
k − |r |p−2r

)
v

−
∫

bk≤ũk+�v�

|� ũk |p−2� ũk�v +
∫

bk≤ũk+�v�

�(x)
(
bp−1
k − ũp−1

k

)
v

− Ck

∫

ũk+�v<r �

�(x)v(x)dx + Ck

∫

bk≤ũk+�v�

�(x)v(x)dx �

Now, letting � → 0+, and taking into account Proposition 3.2 [i.e., 0 ≤
ũk(x) ≤ ak a.e. x ∈ �], we have meas(
ũk + �v < r �) → 0 and meas(
bk ≤
ũk + �v�) → 0, respectively. Consequently, the above inequality reduces to

0 ≤
∫
�

|� ũk |p−2� ũk�v +
∫
�

�(x)ũp−1
k v +

∫
�

�(x)G 0(ũk(x);−v(x))dx �

Due to (3.4), (3.1), and to the fact that �(x) = �(x) − c0�(x), we obtain

0 ≤
∫
�

|� ũk |p−2� ũk�v +
∫
�

�(x)ũp−1
k v +

∫
�

�(x)F 0(ũk(x);−v(x))dx �

Because v ∈ W 1,p(�) was arbitrarily chosen, ũk is a non-negative solution
for (P ). The proof is complete. �

In order to conclude the proof of Theorem 1.2, we prove:

Proposition 3.5. limk→∞‖ũk‖∞ = limk→∞‖ũk‖W 1,p = 0�

Proof. Because 0 ≤ ũk(x) ≤ ak for every k ∈ � and a.e. x ∈ � (cf.
Proposition 3.2), and limk→∞ak = 0, we have limk→∞‖ũk‖∞ = 0�
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Note that

‖ũk‖p
�

p
= mk +

∫
�

�(x)G(ũk(x))dx �

Using inequality (3.9), we have |∫
�
�(x)G(ũk(x))dx | ≤ ‖�‖1MGak �

Combining this relation and Proposition 3.3, we obtain that
limk→∞‖ũk‖W 1,p = 0� �

4. PROOF OF THEOREM 1.3

The proof of Theorem 1.3 is similar to that of Theorem 1.2;
consequently, we only outline the proof. We assume the hypotheses of
Theorem 1.3 are fulfilled. Because f (0) = 0, we may put f (s) = F (s) = 0
for every s ≤ 0� Due to (H∞), one can fix c∞ ∈ � such that

essinf�
�

�
> c∞ > lim inf

s→∞
fu(s)
sp−1

�

In particular, there is a sequence 
sk� ⊂ (0,∞) converging (increasingly)
to +∞, such that

fu(sk) < c∞sp−1
k � (4.1)

We define the functions

g (s) = f (s) − c∞sp−1
+ and

G(s) =
∫ s

0
g (t)dt = F (s) − c∞

p
sp+, s ∈ ��

(4.2)

It is clear that g ∈ L∞
loc(�) and G is locally Lipschitz. A similar reason as

in the previous section—using (4.1) instead of (3.3)—shows that there are
two sequences 
ak� and 
bk� with positive terms, both converging to +∞,
such that

�G(s) ⊂ (−∞, 0] for every s ∈ [ak , bk], (4.3)

and ak < bk < ak+1 for every k ∈ �.
On the other hand, on account of (4.2) and (H∞), we have

lim sup
s→∞

pG(s)
sp

>

∫
�
�(x)dx∫

�
�(x)dx

− c∞� (4.4)

The functional � : W 1,p(�) → �, the function �(x) = �(x) − c∞�(x), the
norm ‖ · ‖�, and the functional � : W 1,p(�) → � will be defined in the
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same way as in the previous section. We emphasize that both � and � are
well defined and locally Lipschitz. Indeed, on account of (f∞), one can find
a constant Cq > 0 such that

|�| ≤ Cq(1 + |s|q−1), ∀� ∈ �G(s), s ∈ �, (4.5)

where q < p∗� The local Lipschitzianness of � and � follows in a
standard way.

Let us fix a number r < 0 arbitrarily, and for every k ∈ �, consider
the set

Tk = 
u ∈ W 1,p(�) : r ≤ u(x) ≤ bk a.e. x ∈ ��,

where bk is from (4.3).

Proposition 4.1. The functional � is bounded from below on Tk and its
infimum m̃k on Tk is attained at w̃k ∈ Tk. Moreover, limk→∞m̃k = −∞.

Proof. The first part is exactly the same as in Proposition 3.1; the
sequentially weakly lower semicontinuity of � follows from hypothesis (f∞)
[in particular, from relation (4.5)] and Rellich–Kondrachov theorem.

Let us prove limk→∞ m̃k = −∞� Due to (4.4), we may choose a number
M∞ ∈� and an increasing sequence 
s̃k�⊂ (0,∞) such that limk→∞ s̃k = ∞,
and

pG(s̃k)

s̃ pk
> M∞ >

∫
�
�(x)dx∫

�
�(x)dx

− c∞� (4.6)

Because limk→∞bk = ∞, one can fix a subsequence 
bnk � of 
bk� such that
s̃k ≤ bnk for every k ∈ �. Let wk(x) = s̃k for every k ∈ � and x ∈ �. Then
wk ∈ Tnk and on account of the first inequality from (4.6), one has

�(wk) = 1
p
s̃pk

∫
�

�(x)dx − G(s̃k)
∫
�

�(x)dx

<
1
p
s̃pk

(∫
�
�(x)dx∫

�
�(x)dx

− c∞ − M∞

) ∫
�

�(x)dx �

Because
∫
� �(x)dx∫
� �(x)dx − c∞ − M∞ < 0, see the second inequality from (4.6),

we have

lim
k→∞

m̃nk = lim
k→∞

inf
Tnk

� ≤ lim
k→∞

�(wk) = −∞�

Because the sequence 
m̃k� is nonincreasing, we conclude the proof. �
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On account of Proposition 4.1, one can find infinitely many distinct
elements w̃k � Moreover, using (4.3) instead of (3.5), one can prove a result
analogous to Proposition 3.2 establishing that 0 ≤ w̃k(x) ≤ ak for a.e. x ∈
� and k ∈ �, the proof being similar to the one of Proposition 3.2. A
similar reasoning as in Proposition 3.4 shows that w̃k is a solution for (P )
for every k ∈ �� In order to conclude the proof of Theorem 1.3, it remains
to prove:

Proposition 4.2. limk→∞‖w̃k‖∞ = limk→∞‖w̃k‖W 1,p = ∞�

Proof. Arguing by contradiction, assume that there exists a subsequence

w̃nk � of 
w̃k� such that ‖w̃nk‖∞ ≤ M for some M > 0� In particular, 
w̃nk � ⊂
Tl for some l ∈ �� Therefore, for every nk ≥ l , we have

m̃l ≥ m̃nk = inf
Tnk

� = �(w̃nk ) ≥ inf
Tl

� = m̃l �

Consequently, m̃nk = m̃l for every nk ≥ l , which contradicts Proposition 4.1.
This concludes the first part of the proof.

Now, if p > N , combining the first part with the continuous
embedding W 1,p(�) ↪→ C 0(�), we have limk→∞ ‖w̃k‖W 1,p = ∞� If p ≤ N ,
then W 1,p(�) ↪→ Lq(�) is continuous where q appears in (f∞). On account
of Lebourg’s mean value theorem, (4.5), and Hölder’s inequality, there
exists C ′ > 0 such that

|�(u)| ≤ C ′(‖u‖W 1,p + ‖u‖q

W 1,p

)
, ∀u ∈ W 1,p(�)�

Let us assume that there exists a subsequence 
w̃nk � of 
w̃k� such that
for some M > 0, we have ‖w̃nk‖W 1,p ≤ M . In particular, due to the above

inequality, the sequence 

‖w̃nk ‖p�

p − �(w̃nk )� is bounded. But

m̃nk = �(w̃nk ) = ‖w̃nk‖p
�

p
− �(w̃nk ),

i.e., the sequence 
m̃nk � is also bounded. This fact contradicts
Proposition 4.1. �

5. EXAMPLES AND COMPARISONS WITH EARLIER WORKS

In this section, we give two simple examples of functions that verify
our hypotheses. Furthermore, we emphasize that [12, Theorem 2.2], [19,
Theorem 2] follow from our Theorem 1.2 in a very natural way.
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Example 5.1. Let f : [0,+∞) → � be defined by f (0) = 0 and

f (s) = −sp−1 sin
1

sp−1
+ p − 1

p
cos

1
sp−1

+ h(s), s > 0,

where h ∈ L∞
loc([0,+∞)) satisfies |h(s)| ≤ chsp−1 for all s ≥ 0 with ch > 0.

Then (H0) is verified for every �, � ∈ L∞(�), with essinf�� > 0 and∫
�

�(x)dx < (1 − ch)‖�‖1� (5.1)

[In particular, if � is nonpositive and ch ≤ 1, (5.1) is evidently fulfilled.]
We observe that F (0) = 0 and F (s) = − sp

p sin 1
sp−1 + ∫ s

0 h(t)dt , s > 0�
Consequently, lim sups→0+

pF (s)
sp ≥ 1 − ch and lim infs→0+ fu (s)

sp−1 = −∞, which
justifies the assertion above, and one can apply Theorem 1.2.

Remark 5.2. The function from Example 5.1 with h = 0 appears in
Marano–Motreanu [12, p. 119]; in particular, we may choose ch = 0 in this
case. In order to obtain the same conclusion as we did [the existence of
infinitely many solutions for (P )], the authors in [12] assumed that p >

N , essinf�� > 0, and

‖�‖1 = 1
cp

< ‖�‖1, (5.2)

where c = sup
‖u‖−1
� ‖u‖∞ : u ∈ W 1,p(�),u �= 0� and ‖ · ‖� comes from

(3.8). Because ch = 0, it can be seen that (5.1) is weaker than (5.2), and
they coincide when � ≥ 0�

Example 5.3. Let f : [0,∞) → � be defined by f (s) = s [p]+1 sin s + h(s),
where [p] denotes the integer part of p ∈ � and h ∈ L∞

loc([0,+∞))

is as in Example 5.1. Then (H∞) and (f∞) are verified for every
�, � ∈ L∞(�) with essinf�� > 0 and N < p(p + 2)/2, respectively. (No
further assumption is needed for �.) Indeed, a simple computation
shows that lim sups→∞

pF (s)
sp = +∞ and lim infs→∞

fu (s)
sp−1 = lim infs→∞

f (s)
sp−1 =

−∞� Therefore, (H∞) is trivially verified, and N < p(p + 2)/2 implies (f∞);
thus, one can apply Theorem 1.3. If h = 0, the function f is continuous,
so the solutions of (P ) will be weak solutions for (P0)�

Remark 5.4. The function from Example 5.3 with h = 0 appeared in
Faraci–Kristály [8], where the hypotheses p > N and essinf�� > 0 were
indispensable.
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