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Abstract. In this paper we study the equation −u′′+V (x)u = W (x)f(u), x ∈

R, where the nonlinear term f has certain oscillatory behaviour. Via two differ-
ent variational arguments, we show the existence of infinitely many homoclinic
solutions whose norms in an appropriate functional space which involves the
potential V tend to zero (resp. at infinity) whenever f oscillates at zero (resp.
at infinity). Unlike in classical results, neither symmetry property on f nor
periodicity on the potentials V and W are required.

1. Introduction. In this paper we study the existence of multiple solutions for
the one-dimensional scalar field equation

−u′′ + V (x)u = W (x)f(u), x ∈ R

u(x) → 0 as |x| → +∞,
(P)

where V, W are positive potentials and f : R → R is continuous. It is well-
known that certain kinds of solitary waves in nonlinear Klein-Gordon or Schrödinger
equations are solutions of (P).

The aim of our paper is to ensure the existence of infinitely many weak solutions
of (P) when the nonlinear term f has certain oscillatory behaviour and no kind of
symmetry. It has been long known that oscillatory nonlinearities can yield infinitely
many solutions for Dirichlet problems on bounded domains; see Omari and Zanolin
[15], Saint Raymond [18]. However, our study can be fit within the problem raised
by Berestycki and Lions [5], who proposed to find classes of non-odd nonlinearities
guaranteeing the existence of infinitely many solutions for certain nonlinear scalar
field equations. Various contributions to this problem can be found in the literature.
These results and the techniques employed strongly depend not only on the non-
linearities but also on the potentials and on the space dimension N ; for instance,
Jones and Küpper [11] required the nonlinear term to be smooth enough and to
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behave like |s|σs near ±∞ with σ < 4/(N − 2), N > 2; Coti Zelati and Rabinowitz
[8] used a periodicity assumption on the potentials (N ≥ 1); Bartsch and Willem
[4] assumed some sort of convexity on the nonlinearity (N ≥ 2).

Besides the nonlinearities from the aforementioned papers ([4], [8], [11]), we give
a new class of non-odd nonlinearities which can not be recovered by earlier results,
offering another contribution to the question raised in [5]. Note, however, that our
arguments work only in the case when the space dimension is one. This latter
fact could seem to be in contrast with the classical literature; indeed, unlike in
the one-dimensional case, certain constructions based on (radial) symmetries can
be successfully employed in higher dimensional semilinear elliptic problems which
reduce the complexity of the studied problem (see, e.g., Bartsch and Willem [4],
Conti, Merizzi and Terracini [7], Jones and Küpper [11], Strauss [20]).

Special forms of (P) have been widely investigated in the literature. When V ≡ 0
and W ≡ 1, Berestycki and Lions [5, Section 6] established a necessary and sufficient
condition for the existence of solutions u ∈ C2 of (P), proving as well the uniqueness
of solutions up to translations. Floer and Weinstein [10] studied the existence and
behaviour of the solutions of the Gross-Pitaevskii equation, i.e., problem (P) with
bounded potential V and cubic nonlinearity f . In the case where f is of pure power
type, V (x) = −p(x) − λ (with p even and limx→∞ p(x) = 0), and W ≡ 1, McLeod,
Stuart and Troy [14] studied the monotonicity with respect to λ of the L2-norm of
positive solutions for (P). When the potential V is coercive and f satisfies standard
mountain-pass assumptions, Rabinowitz [16] proved the existence of a nontrivial
solution for (P) (not only in the one dimensional case).

Recently, Bartsch, Pankov and Wang [2] introduced a more general condition on
the potential V than the one used by Rabinowitz [16] (see also Bartsch and Wang
[3]), namely

(V 1) V ∈ L∞
loc(R), V0 = essinfRV > 0, and

for any M > 0 and any r > 0 there holds:

meas({x ∈ R : |x − y| < r, V (x) ≤ M}) → 0 as |y| → +∞,

where ′meas′ denotes the Lebesgue measure in R.

Under this condition, Bartsch, Liu and Weth [1] proved the existence of an infinite
number of sign changing solutions for (P) when f is odd and superlinear. The
functional space in [1] is defined as the Hilbert space

HV =

{

u ∈ H1(R) :

∫

R

V (x)u2 < +∞

}

,

endowed with the inner product 〈u, v〉V =
∫

R
(u′v′ + V (x)uv) for each u, v ∈ HV .

In the present paper we assume that the potential V fulfills condition (V 1) while
solutions of (P) are being sought in the space HV . In spite of the fact that the class
of potentials which satisfy (V 1) is large, we emphasize that our intent is not to
find/use the most general condition on V in order to study problem (P); assuming
(V 1) on V, our attention will be focused on certain unusual nonlinearities.

As we pointed out before, our nonlinearity f : R → R has certain oscillatory
behaviour. Note that for the most familiar oscillatory function f(s) = sin s, problem
(P) has only the trivial solution provided that W is suitable small (see Remark 5).
This simple example shows that a careful analysis of the oscillatory functions is
needed in order to obtain nonzero/multiple solutions for (P). Two cases will be
considered:
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• f oscillates at 0+;
• f oscillates at +∞.

In order to describe our results, let (formally) l = 0+, or l = +∞. We will assume:

(Sl) there are two sequences {ak}, {bk} in ]0,∞[ with ak < bk and bk → l such
that f(s) ≤ 0 for every s ∈ [ak, bk], and

(Fl) −∞ < lim infs→l
F (s)
s2 ≤ lim sups→l

F (s)
s2 = +∞,

where F (s) =
∫ s

0
f(t)dt.

Under these conditions, two different kinds of results will be proved in both cases
(i.e., when f oscillates at l = 0+, or l = +∞), where we guarantee the existence
of infinitely many solutions of (P) whose HV -norms converge to l. In the first type
of problem (see Theorems 2.1 and 2.3), besides some technical assumptions, we
consider the case when the function F is almost even, i.e.,

(∗) F (−s) ≤ F (s) for every s ≥ 0.

(Note that if f is almost odd, i.e., −f(−s) ≤ f(s) for every s ≥ 0, then (∗) is
fulfilled.) The second type of problem (see Theorems 2.2 and 2.4) faces the case
when we avoid completely condition (∗) but f fulfils certain sign condition on R

−.
The two types of results are independent, which is shown by some concrete examples.

Our approach is variational; solutions of (P) will be obtained as local minima
of the energy functional associated to (P). In the first type of problem, a novel
variational principle of Ricceri [17] will be used. In the proofs (of Theorems 2.1
and 2.3) we exploit this principle, which actually gives alternatives to find critical
points of certain functionals: either one local minimum or infinitely many critical
points. In order to handle the second type of problem, the technique of our proofs
is suggested by an idea of Saint Raymond [18]. Precisely, we construct a sequence
of subsets in L∞(R) such that the relative minima of the energy on these sets are
actually local minima for the energy on the space HV .

To treat a closely related problem to (P) in R
N involving the p-Laplacian (p >

N ≥ 2), Kristály [12] recently applied Ricceri’s principle, obtaining infinitely many
radially symmetric solutions. In [12] the principle of symmetric criticality, as well
as the construction of the space of radially symmetric functions, played an indis-
pensable role, due to the higher space-dimension. As we already pointed out, in the
one-dimensional case this approach fails. In certain sense, hypothesis (V 1) on the
potential V is devoted to fill this gap. Nevertheless, we believe that by means of a
suitable adaptation, other classes of potentials can be considered instead of those
which satisfy (V 1); for instance singular potentials (see Gomes and Sanchez [9]),
not necessarily positive potentials (see Sirakov [19]).

In the next section we will state the precise form of our results and give some
concrete examples. In the third section we present some auxiliary results, while
Sections 4 and 5 are devoted to the proof of our theorems.

2. Main results. Let V : R → R satisfying (V 1), and let the Hilbert space
(HV , 〈·, ·〉V ) be as in the Introduction. The induced norm will be denoted by ‖ · ‖V .
Due to Morrey’s Theorem, the embedding HV ⊂ H1(R) ≡ W 1,2(R) →֒ L∞(R)
is continuous. Moreover, the embedding HV →֒ L2(R) is compact, cf. Bartsch,
Pankov and Wang [2]. In the sequel, we denote by κ∞ > 0 the best Sobolev em-
bedding constant for H1(R) →֒ L∞(R); ‖ · ‖p denotes the usual norm of Lp(R),
p ∈ [1,∞].

On the potential W : R → R we will assume the following condition:



110 FRANCESCA FARACI AND ALEXANDRU KRISTÁLY

(W1) W ∈ L1(R) ∩ L∞(R), W ≥ 0, ‖W‖∞ > 0.

Two cases will be considered: the nonlinear term f : R → R has oscillation at 0+

and at +∞, respectively.

2.1. Oscillation at 0+. In this subsection, on the nonlinearity f : R → R we will
assume that:

(S0+) there exist two sequences {ak} and {bk} in ]0,∞[ with bk+1 < ak < bk,
limk→∞ bk = 0 such that

f(s) ≤ 0 for every s ∈ [ak, bk], and

(F0+) −∞ < lim inf
s→0+

F (s)

s2
≤ lim sup

s→0+

F (s)

s2
= +∞.

Recall that F (s) =
∫ s

0 f(t)dt.

Remark 1. Note that assumption (S0+) is fulfilled, for instance, if

inf{s > 0 : f(s) < 0} = 0.

Theorem 2.1. Assume that V, W : R → R satisfy (V 1) and (W1), respectively,
and let f : R → R be a continuous function such that (S0+) and (F0+) are fulfilled
with

(i) F (−s) ≤ F (s) for every s ≥ 0.

Assume, in addition, that the sequences {ak} and {bk} from (S0+) satisfy

(ii) limk→∞
ak

bk
= 0 and limk→∞

max[0,ak] F

b2
k

= 0.

Then, problem (P) possesses a sequence {uk} of weak solutions which satisfy
limk→∞ ‖uk‖V = 0. In particular, limk→∞ ‖uk‖∞ = 0.

Remark 2. a.) An easy calculation shows that if f is almost odd, i.e., −f(−s) ≤
f(s) for every s ≥ 0, then (i) is fulfilled. b.) The technical condition (ii) is dispens-
able in our argument; it is an open question whether it could be removed, keeping
only condition (i).

Theorem 2.2. Assume that V, W : R → R satisfy (V 1) and (W1), respectively.
Let f : R → R be a continuous function such that (S0+) and (F0+) are fulfilled and

(iii) either sup{s < 0 : f(s) > 0} = 0, or there is a δ > 0 such that f |[−δ,0] ≡ 0.

Then, the conclusions of Theorem 2.1 hold.

Example 1. a.) Let {ak} and {bk} be two sequences in ]0,∞[ with bk+1 < ak < bk

and limk→∞ ak/bk = 0, limk→∞ bk = 0. We introduce the set A = {r ∈ [2,∞[:
limk→∞ a2

k/br
k = 0}. Clearly, 2 ∈ A. Suppose that A 6= {2}. Let f : R → R be

defined by

f(s) =

{

1
2 ((1 − c)sgn(s) + c + 1)ϕk

(

|s|−bk+1

ak−bk+1

)

, |s| ∈ [bk+1, ak];

0, |s| /∈ [bk+1, ak],

where −1 < c < 0 and ϕk : [0, 1] → [0,∞[ is a sequence of continuous functions
such that ϕk(0) = ϕk(1) = 0, and there are some positive constants c1 and c2 such
that

c1(b
r1

k − br1

k+1)(ak − bk+1)
−1 ≤

∫ 1

0

ϕk(s)ds ≤ c2(b
r2

k − br2

k+1)(ak − bk+1)
−1
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for some r1, r2 ∈ A \ {2}. Now, we can apply Theorem 2.1. Indeed, −f(−s) ≤ f(s)
for every s ≥ 0; thus (i) is satisfied (see Remark 2 a.)). Moreover, F is non-
decreasing on R

+, while c1b
r1

k ≤ F (ak) = max[0,ak] F ≤ c2b
r2

k ; i.e., hypotheses of
Theorem 2.1 are fulfilled. However, Theorem 2.2 cannot be applied because (iii) is
not satisfied.

b.) Sequences in case a.) can be chosen as ak = k−kk+1

and bk = k−kk

. In this
case A = [2,∞[.

Example 2. Let 0 < α < 1 < β and f : R → R be such that f(0) = 0 and
f(s) = |s|α max{0, sin |s|−1} + |s|β min{0, sin |s|−1} for s 6= 0. Now, we can apply
Theorem 2.2 (but not Theorem 2.1).

Remark 3. The weak solutions of (P) are actually the fixed points of the operator
A : HV → HV , A(u)(v) =

∫

R
W (x)f(u)v. Let f(s) = s3 sin s−1 if s ∈ [−π−1, π−1] \

{0}; f(s) = 0 otherwise. In this case, the operator A is uniformly Lipschitz; if
‖W‖1 < κ−2

∞ min{1, V0}(3π−2 + π−1)−1, then A becomes a contraction, and thus
(P) admits only the trivial solution. We notice that f satisfies the assumptions of
Theorem 2.2 except hypothesis (F0+).

2.2. Oscillation at +∞. In this subsection, we state the counterparts of Theorems
2.1 and 2.2 when the nonlinearity f has an oscillation at infinity. We assume that

(S+∞) there are sequences {ak} and {bk} in ]0,∞[ with ak < bk < ak+1 and
limk→∞ bk = +∞ such that

f(s) ≤ 0 for every s ∈ [ak, bk], and

(F+∞) −∞ < lim inf
s→+∞

F (s)

s2
≤ lim sup

s→+∞

F (s)

s2
= +∞.

Remark 4. Assumption (S+∞) is guaranteed, for instance, by the condition

sup{s > 0 : f(s) < 0} = +∞.

Theorem 2.3. Assume that V, W : R → R satisfy (V 1) and (W1), respectively,
and let f : R → R be a continuous function such that (S+∞) and (F+∞) are fulfilled
with

(iv) F (−s) ≤ F (s) for every s ≥ 0.

Assume, in addition, that the sequences {ak} and {bk} from (S+∞) satisfy

(v) limk→∞
ak

bk
= 0 and limk→∞

max[0,ak] F

b2
k

= 0.

Then, problem (P) possesses a sequence {uk} ⊂ HV of weak solutions such that
limk→∞ ‖uk‖V = ∞.

Theorem 2.4. Assume that V, W : R → R satisfy (V 1) and (W1), respectively.
Let f : R → R be a continuous function such that (S+∞) and (F+∞) are fulfilled
and

(vi) there is a non-degenerate interval I ⊂ R
− such that f |I ≥ 0.

Then, the conclusion of Theorem 2.3 holds.

Example 3. Let s0 > 0 be fixed and h ∈ C1([s0,∞[, R) be a coercive, strictly
increasing function such that h(s0) = 0. Let sk = h−1(kπ) for k ∈ N. Assume the
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existence of σ > 0 such that limk→∞
s2+σ

k−1

s2
k

= 0. Let f : R → R be defined by

f(s) =



































− 2s3
0

s2+s2
0
, s ∈] −∞,−s0[;

s, s ∈ [−s0, 0[;
4(π + 1)s, s ∈ [0, s0/2[;
g(s), s ∈ [s0/2, s0[;
s1+σ[(2 + σ) sin h(s) + 2sh′(s) cosh(s)] sin h(s), s ∈ [s2k, s2k+1[;
0, s ∈ [s2k+1, s2k+2[,

where g : [s0/2, s0] → R
+ is continuous with g(s0/2) = 2(π + 1)s0 and g(s0) = 0.

Hence, we can apply Theorem 2.3. Indeed, by simple estimations we can verify con-
ditions (F+∞) and (iv), taking into account that F (s) = (π+1)s2

0/2+
∫ s0

s0/2
g(t)dt+

s2+σ{max {0, sinh(s)}}2 if s ∈ [s0,∞[. (Note, however, that f is not almost odd,
since −f(−s0) = s0 > 0 = f(s0)). Setting ak = s2k−1 and bk = s2k for k ≥ 1, the
assumptions of Theorem 2.3 are fulfilled. However, Theorem 2.4 cannot be applied
because f(s) < 0 for every s < 0.

b.) As a concrete example, set s0 = e, and let h : [e,∞[→ R be defined by
h(s) = ln ln s. Then, every 0 < σ < 2(eπ − 1) fulfills case a.).

Example 4. Let f : R → R be defined by f(s) = s2 sin2 s − 1. We can apply
Theorem 2.4 (but not Theorem 2.3).

Remark 5. Let f(s) = sin s. The operator A(u)(v) =
∫

R
W (x)v sin u is uniformly

Lipschitz; if ‖W‖1 < κ−2
∞ min{1, V0}, then A becomes a contraction, and thus (P)

admits only the trivial solution. Note that f satisfies the assumptions of Theorem
2.4 except hypothesis (F+∞).

3. Preliminaries. Let E : HV → R be defined by E(u) = ‖u‖2
V /2−

∫

R
W (x)F (u).

Since HV is continuously embedded into L∞(R) and compactly into L2(R), it is
possible to prove in a standard way the sequentially weakly lower semicontinuity
of E . Moreover, E is continuously Gâteaux differentiable with derivative given by
E ′(u)(v) = 〈u, v〉V −

∫

R
W (x)f(u)v. Hence, critical points of the energy functional

are precisely weak solutions of (P). In the sequel, we will use the continuous repre-
sentation of every element u ∈ HV ⊂ H1(R) (see [6]). Moreover, it is well-known
that one has u(x) → 0 as |x| → +∞ whenever u ∈ H1(R); in this way, the homo-
clinicity of solutions of (P) is already guaranteed.

Now, we introduce some notations that will be used in the sequel. Let σ ∈]0, 1[,
and define the set

Aσ = {µ > 0 : W (x) > σ‖W‖∞ a.e. x ∈ [x0 − µ, x0 + µ] for some x0 ∈ R}.

Note that Aσ 6= ∅ while supAσ is finite and attained on some µσ ∈ Aσ, due to
assumption (W1). Hence, there exists xσ ∈ R such that

W (x) > σ‖W‖∞ a.e. x ∈ [xσ − µσ, xσ + µσ]. (1)

For every ρ ≥ 0 define

wρ(x) =







0, if |x − xσ| > µσ;
ρ, if |x − xσ| ≤

µσ

2 ;
2ρ
µσ

(µσ − |x − xσ |), if µσ

2 < |x − xσ| ≤ µσ.
(2)
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One can see that wρ belongs to HV because V ∈ L∞
loc(R). If we introduce

ασ =

(

4

µσ
+ 2µσ sup

|x−xσ|≤µσ

V (x)

)1/2

,

then an easy calculation shows that

‖wρ‖V ≤ ρασ. (3)

4. Proof of Theorems 2.1 and 2.3. Throughout the proof of Theorems 2.1 and
2.3, we will use the following lemma that is a consequence of the classical Mean
Value Theorem and the estimation in (3).

Lemma 4.1. Let there be two sequences {ak}, {bk} ⊂]0,∞[ such that ak < bk,
limk→∞ ak/bk = 0, and f(s) ≤ 0 for every s ∈ [ak, bk]. Let sk = (bk/κ∞)2 min{1, V0}.
Then,

a) max[0,bk] F = max[0,ak] F ≡ F (sk) with sk ∈ [0, ak].

b) ‖wsk
‖2

V < sk for k big enough (wsk
as in (2)).

Our main tool is a variational principle of Ricceri ([17]) that can be stated as
follows:

Theorem R ([17], Theorem 2.5). Let X be a Hilbert space, and let Φ, Ψ : X → R

be two sequentially weakly lower semicontinuous, continuously Gâteaux differen-
tiable functionals. Assume that Ψ is strongly continuous and coercive. For each
s > infX Ψ, set

ϕ(s) := inf
Ψs

Φ(u) − infclwΨs Φ

s − Ψ(u)
, (4)

where Ψs := {u ∈ X : Ψ(u) < s} and clwΨs is the closure of Ψs in the weak topology
of X. Furthermore, set

δ := lim inf
s→(infX Ψ)+

ϕ(s), γ := lim inf
s→+∞

ϕ(s). (5)

Then, the following conclusions hold.

(A) If δ < +∞, then for every λ > δ, either
(A1) Φ+λΨ possesses a local minimum, which is also a global minimum of Ψ,

or
(A2) there is a sequence {un} of pairwise distinct critical points of Φ + λΨ,

with limn→+∞ Ψ(un) = infX Ψ, weakly converging to a global minimum
of Ψ.

(B) If γ < +∞, then for every λ > γ, either
(B1) Φ + λΨ possesses a global minimum, or
(B2) there is a sequence {un} of critical points of the functional Φ + λΨ such

that limn→+∞ Ψ(un) = +∞.

In our framework Ψ, Φ : HV → R are defined by

Ψ(u) = ‖u‖2
V , Φ(u) = −F(u) = −

∫

R

W (x)F (u), u ∈ HV ;

thus the energy functional becomes E = Ψ/2 + Φ. Moreover, the function from (4)
has the form

ϕ(s) := inf
‖u‖2

V
<s

sup‖v‖2
V
≤s F(v) −F(u)

s − ‖u‖2
V

, s > 0.
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4.1. Proof of Theorem 2.1. Let {ak} and {bk} be as in the hypotheses. Let σ, µσ

and ασ be as in Section 3, and recall from (5) that δ = lim infs→0+ ϕ(s).

Lemma 4.2. δ = 0.

Proof. By definition, δ ≥ 0. Suppose that δ > 0. By (F0+), there exist two positive
numbers M and ̺ such that F (s) > −Ms2 for every s ∈]0, ̺[. Furthermore, let
sk, sk be as in Lemma 4.1, and let wk = wsk

be as in (2). By (ii) and condition
limk→∞

sk

bk
= 0 (0 ≤ sk ≤ ak), there exists k0 ∈ N such that

F (sk)

b2
k

+
1

‖W‖1

(

δ

2
α2

σ + 2µσ‖W‖∞M

)

s2
k

b2
k

<
δ

2

min{1, V0}

κ2
∞‖W‖1

(6)

for k > k0.
Let v ∈ HV be arbitrarily fixed with ‖v‖2

V ≤ sk. Due to the continuous embedding
of HV into L∞(R), we have ‖v‖∞ ≤ bk. In view of (i) and Lemma 4.1, we obtain

F (v(x)) ≤ max
[−bk,bk]

F = max
[0,bk]

F = F (sk), for every x ∈ R.

Since 0 ≤ wk(x) ≤ sk < ̺ for large k ∈ N and for all x ∈ R, taking into account (6)
and ‖wk‖2

V ≤ s2
kα2

σ, it follows that

sup
‖v‖2

V
≤sk

F(v) −F(wk) = sup
‖v‖2

V
≤sk

∫

R

W (x)F (v)dx −

∫

R

W (x)F (wk)dx

≤ ‖W‖1F (sk) + 2µσ‖W‖∞Ms2
k

<
δ

2
(sk − s2

kα2
σ)

≤
δ

2
(sk − ‖wk‖

2
V ).

Since ‖wk‖2
V < sk (cf. Lemma 4.1), and sk → 0 as k → ∞, we obtain

δ ≤ lim inf
k→∞

ϕ(sk) ≤ lim inf
k→∞

sup‖v‖2
V
≤sk

F(v) −F(wk)

sk − ‖wk‖2
V

≤
δ

2
,

a contradiction. This proves our claim.

Lemma 4.3. 0 is not a local minimum of E = Ψ/2 + Φ.

Proof. Let M and ̺ be as in the proof of Lemma 4.2, and let M > 0 be such that

σµσM‖W‖∞ − α2
σ/2 − M‖W‖1 > 0.

By using again (F0+), we deduce the existence of a sequence {s̃k} ⊂]0, ̺[ converging
to zero such that F (s̃k) > Ms̃2

k. Let w̃k ≡ ws̃k
be as in (2). Taking into account

(3) and (1), we have

E(w̃k) = ‖w̃k‖
2
V /2 −

∫

R

W (x)F (w̃k)

≤
α2

σ

2
s̃2

k −

∫

|x−xσ|≤
µσ
2

W (x)F (s̃k) −

∫

µσ
2 ≤|x−xσ|≤µσ

W (x)F (w̃k)

≤ s̃2
k

(

α2
σ

2
− σµσM‖W‖∞ + M‖W‖1

)

< 0 = E(0).

Since ‖w̃k‖V → 0 as k → ∞, 0 is not a local minimum of E , as claimed.
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Proof of Theorem 2.1. Applying Theorem R (A), with λ = 1/2 (due to Lemma
4.2), we can exclude condition (A1) (due to Lemma 4.3). Therefore there exists a
sequence of pairwise distinct critical points of E = Ψ/2 + Φ converging to zero in
HV . �

Remark 6. A closer inspection of the proof of Lemma 4.2 allows us to replace

hypothesis limk→∞
max[0,ak ] F

b2
k

= 0 from (ii) with a weaker but more technical con-

dition. More specifically, it is enough to require that lim supk→∞
max[0,ak] F

b2
k

<
min{1,V0}
2κ2

∞
‖W‖1

. Note that in this latter case we are able to prove that 0 ≤ δ < 1/2, which

is enough to apply Theorem R (A) with λ = 1/2.

4.2. Proof of Theorem 2.3. Let {ak} and {bk} be from Theorem 2.3, and let
σ, µσ and ασ be as in Section 3.

Lemma 4.4. γ = 0, where γ = lim infs→+∞ ϕ(s) is from (5).

Proof. It is clear that γ ≥ 0. Suppose that γ > 0. Let sk, sk be as in Lemma 4.1 and
let wk = wsk

be as in (2). Moreover, by (F+∞) there exist two positive numbers M
and ̺ such that F (s) > −Ms2 for every s > ̺. Due to hypothesis (v), for enough
large natural numbers k we have

F (sk)

b2
k

+
1

‖W‖1

(γ

2
α2

σ + 2µσ‖W‖∞M
) s2

k

b2
k

+
max[0,̺] |F |

b2
k

<
γ

2

min{1, V0}

κ2
∞‖W‖1

,

since sk/bk → 0, and bk → ∞ as k → ∞.
In a similar way as in the proof of Lemma 4.2, using (iv) and the above relation,

one has

sup
‖v‖2

V
≤sk

F(v) −F(wk) = sup
‖v‖2

V
≤sk

∫

R

W (x)F (v)dx −

∫

R

W (x)F (wk)dx

≤ ‖W‖1F (sk) + 2µσ‖W‖∞Ms2
k + ‖W‖1 max

[0,̺]
|F |

<
γ

2
(sk − ‖wk‖

2
V ).

Since sk → +∞,

γ ≤ lim inf
k→∞

ϕ(sk) ≤ lim inf
k→∞

sup‖v‖2
V
≤sk

F(v) −F(wk)

sk − ‖wk‖2
V

≤
γ

2
,

which contradicts γ > 0.

Lemma 4.5. E = Ψ/2 + Φ is not bounded from below on HV .

Proof. Let M and ̺ be as in the proof of Lemma 4.4, and let M > 0 be such that

σµσM‖W‖∞ − α2
σ/2 − M‖W‖1 > 0.

By using the second part of (F+∞), we find a sequence {s̃k} which tends to +∞
such that F (s̃k) > Ms̃2

k. Let w̃k ≡ ws̃k
be as in (2). Thanks to (1), one has

E(w̃k) ≤
α2

σ

2
s̃2

k − σµσM‖W‖∞s̃2
k −

∫

µσ
2 ≤|x−xσ|≤µσ

W (x)F (w̃k).
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Set Xσ = {x ∈ R : µσ

2 ≤ |x − xσ| ≤ µσ}. Note that for large k ∈ N we have
∫

Xσ

W (x)F (w̃k) =

∫

Xσ∩{w̃k(x)>̺}

W (x)F (w̃k) +

∫

Xσ∩{w̃k(x)≤̺}

W (x)F (w̃k)

≥ −M

∫

Xσ∩{w̃k(x)>̺}

W (x)|w̃k |
2 − ‖W‖1 max

[0,̺]
|F |

≥ −M‖W‖1s̃
2
k − ‖W‖1 max

[0,̺]
|F |.

Thus,

E(w̃k) ≤ s̃2
k

(

α2
σ

2
− σµσM‖W‖∞ + M‖W‖1

)

+ ‖W‖1 max
[0,̺]

|F |,

which proves that infHV
E = −∞.

Proof of Theorem 2.3. In Theorem R (B) we can choose λ = 1/2 (due to Lemma
4.4). Moreover, thanks to Lemma 4.5 the alternative (B1) can be excluded; then
there exists a sequence {un} of critical points of E = Ψ/2 + Φ such that ‖un‖V →
+∞ as n → ∞. �

Remark 7. It is possible to relax hypothesis limk→∞
max[0,ak] F

b2
k

= 0 from (v) in a

same way as we described in Remark 6.

5. Proof of Theorems 2.2 and 2.4.

5.1. Proof of Theorem 2.2. Let us suppose first that sup{s < 0 : f(s) > 0} = 0
is fulfilled in (iii). Then, one can deduce the existence of a monotone sequence
{ck} such that ck < 0, f(ck) > 0 and ck → 0 as k → ∞. Moreover, let {dk} be
another sequence such that dk < ck < dk+1 with f(s) > 0 for s ∈ [dk, ck]. Then,
simultaneously with (S0+) we have

F (s) ≤ F (ck), s ∈ [dk, ck]; (7)

F (s) ≤ F (ak), s ∈ [ak, bk]. (8)

Note that if the second alternative of (iii) is fulfilled, i.e., there is a δ > 0 such that
f |[−δ,0] ≡ 0, then relation (7) becomes trivial for any sequences {ck}, {dk} with the
properties above.

Define the set

Sk = {u ∈ HV : dk ≤ u(x) ≤ bk for every x ∈ R}.

Lemma 5.1. The energy functional E is bounded from below on Sk, and its infimum
on Sk is attained.

Proof. It is clear that Sk is convex. Moreover, it is closed in HV due to the continuity
of the embedding HV →֒ L∞(R); then Sk is weakly closed. Since

E(u) = ‖u‖2
V /2 −

∫

R

W (x)F (u) ≥ −‖W‖1 max
[dk,bk]

F for u ∈ Sk,

E is bounded from below on Sk. Let γk = infSk
E , and let {un} be a sequence in Sk

such that γk ≤ E(un) ≤ γk + 1/n for all n ∈ N. Then,

‖un‖
2
V /2 ≤ γk + 1 + ‖W‖1 max

[dk,bk]
F
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for all n ∈ N; i.e., {un} is bounded in HV . So, up to a subsequence, {un} weakly
converges in HV to some ũk ∈ Sk. By the sequentially weakly lower semicontinuity
of E , we conclude that E(ũk) = infSk

E .

Lemma 5.2. Let ũk ∈ Sk be such that E(ũk) = infSk
E . Then, ck ≤ ũk(x) ≤ ak for

all x ∈ R.

Proof. Let X = {x ∈ R : ũk(x) /∈ [ck, ak]}, and suppose that X 6= ∅. Thus,
meas(X) > 0 due to the continuity of ũk. Define

h(x) =







ck, if x < ck;
x, if x ∈ [ck, ak];
ak, if x > ak.

Set ṽk = h◦ ũk. Due to [13], ṽk belongs to H1(R) (since h is uniformly Lipschitz and
h(0) = 0). Moreover, ṽk ∈ HV , since

∫

R
V (x)ṽ2

k ≤
∫

R
V (x)ũ2

k < +∞. In addition,
ṽk ∈ Sk. Denoting by

X1 = {x ∈ X : ũk(x) < ck} and X2 = {x ∈ X : ũk(x) > ak},

we have that ṽk(x) = ũk(x) for all x ∈ R \ X ; ṽk(x) = ck for all x ∈ X1; and
ṽk(x) = ak for all x ∈ X2. Then,

E(ṽk) − E(ũk)

= −
1

2

∫

X

(ũ′
k)2 +

1

2

∫

X

V (x)[ṽ2
k − ũ2

k] −

∫

X

W (x)[F (ṽk) − F (ũk)]

= −
1

2

∫

X

(ũ′
k)2 +

1

2

∫

X1

V (x)[c2
k − ũ2

k] +
1

2

∫

X2

V (x)[a2
k − ũ2

k]

−

∫

X1

W (x)[F (ck) − F (ũk)] −

∫

X2

W (x)[F (ak) − F (ũk)].

From (7) and (8) we obtain that every term of the above expression is not positive.
On the other hand, since E(ṽk) ≥ E(ũk) = infSk

E , then in particular

∫

X

(ũ′
k)2 = 0, (9)

∫

X1

V (x)[c2
k − ũ2

k] =

∫

X2

V (x)[a2
k − ũ2

k] = 0.

By (9) we obtain the existence of a positive measured subset Y of X and a constant
C such that ũk = C on Y . Then, either Y ⊂ X1 or Y ⊂ X2. Assume that the first
case occurs (analogously if Y ⊂ X2). So,

0 =

∫

X1

V (x)[c2
k − ũ2

k] ≤

∫

Y

V (x)[c2
k − C2] ≤ V0[c

2
k − C2]meas(Y ) < 0,

a contradiction. This shows that X has zero measure; therefore, X = ∅.

Lemma 5.3. Let ũk ∈ Sk be such that E(ũk) = infSk
E . Then ũk is a local minimum

of E in HV .

Proof. Suppose the contrary. Then there exists a sequence {un} ⊂ HV which
converges to ũk while E(un) < E(ũk) for all n ∈ N. From the latter, it follows that
un /∈ Sk for any n ∈ N. Since un → ũk in HV , then un → ũk in L∞(R) as well. In
particular, for every 0 < ε < min{ck − dk, bk − ak}/2, there exists nε ∈ N such that
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‖un − ũk‖∞ < ε for every n ≥ nε. By using Lemma 5.2 and taking into account the
choice of the number ε, we conclude that

dk < un(x) < bk for all x ∈ R, n ≥ nε,

which clearly contradicts the fact un /∈ Sk.

Lemma 5.4. Let γk = infSk
E = E(ũk). Then, γk < 0 for all k ∈ N and

limk→∞ γk = 0.

Proof. By (F0+) there exist two positive numbers M and ̺ such that F (s) > −Ms2

for every s ∈]0, ̺[. Let M > 0 be such that

σµσM‖W‖∞ − α2
σ/2 − M‖W‖1 > 0,

where σ, µσ and ασ are as in Section 3. With this choice of M , by using (F0+) again
there exists a sequence {sk} ⊂]0, ̺[ converging to zero such that F (sk) > Ms2

k. Let
{slk} be a decreasing subsequence of {sk} such that slk ≤ bk for all k ∈ N and
wk ≡ wslk

, as in (2). It is clear that wk ∈ Sk. A similar calculation as in the proof
of Lemma 4.3 shows that

E(wk) = ‖wk‖
2
V /2 −

∫

R

W (x)F (wk)

≤ s2
lk

(

α2
σ

2
− σµσM‖W‖∞ + M‖W‖1

)

< 0.

Thus, γk = infSk
E ≤ E(wk) < 0.

Now we will prove that γk → 0 as k → ∞. One has

0 > γk = ‖ũk‖
2
V /2 −

∫

R

W (x)F (ũk) ≥ −‖W‖1 max
[d1,b1]

|f | ‖ũk‖∞.

Taking into account that ‖ũk‖∞ ≤ max{|ck|, ak}, and that the sequences {ck}, {ak}
tend to zero, then γk → 0.

Proof of Theorem 2.2. Since ũk are local minima of E (cf. Lemma 5.3), they are
critical points of E and thus weak solutions of (P). Due to Lemma 5.4, there are
infinitely pairwise distinct ũk. Moreover,

‖ũk‖
2
V /2 =

∫

R

W (x)F (ũk) + γk ≤ ‖W‖1 max
[d1,b1]

|f | max{|ck|, ak},

which proves that ‖ũk‖V → 0. �

5.2. Proof of Theorem 2.4. By (S+∞) we deduce that F (s) ≤ F (ak), s ∈ [ak, bk].
Moreover, by applying (vi) we can fix d < c < 0 such that F (s) ≤ F (c), s ∈ [d, c].

Define the set

Tk = {u ∈ HV : d ≤ u(x) ≤ bk for every x ∈ R}.

The proofs of the next three lemmas are the same as in Subsection 5.1.

Lemma 5.5. The energy functional E is bounded from below on Tk, and its infimum
on Tk is attained.

Lemma 5.6. Let z̃k ∈ Tk be such that E(z̃k) = infTk
E . Then, c ≤ z̃k(x) ≤ ak for

all x ∈ R.

Lemma 5.7. Let z̃k ∈ Tk be such that E(z̃k) = infTk
E . Then z̃k is a local minimum

of E in HV .
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Lemma 5.8. Let δk = infTk
E. Then limk→∞ δk = −∞.

Proof. By (F+∞) there exist two positive numbers M and ̺ such that F (s) > −Ms2

for every s > ̺. Let M > 0 be such that

σµσM‖W‖∞ − α2
σ/2 − M‖W‖1 > 0,

where σ, µσ and ασ are as in Section 3. By using the second part of (F+∞), there
exists a sequence {sk} which tends to +∞ such that F (sk) > Ms2

k. Let {blk} be an
increasing subsequence of {bk} such that sk ≤ blk for all k ∈ N and wk ≡ wsk

, as in
(2). It is clear that wk ∈ Tlk . Moreover, in a similar way as in the proof of Lemma
4.5, one can deduce that

E(wk) ≤ s2
k

(

α2
σ

2
− σµσM‖W‖∞ + M‖W‖1

)

+ ‖W‖1 max
[0,̺]

|F |,

which proves that δlk = infTlk
E ≤ E(wk) → −∞ as k → ∞. Since the sequence

{δk} is non-increasing, our claim follows.

Proof of Theorem 2.4. Due to Lemmas 5.7 and 5.8, there are infinitely pairwise
distinct local minima z̃k of E with z̃k ∈ Tk. Now we will prove that ‖z̃k‖V → ∞.
Assume for contradiction that there is a subsequence {z̃nk

} of {z̃k} which is bounded
in HV . Thus, it is bounded in L∞(R) as well. In particular we can find m0 ∈ N

such that z̃nk
∈ Tm0 for all k ∈ N. For every nk ≥ m0 one has

δm0 ≥ δnk
= inf

Tnk

E = E(z̃nk
) ≥ inf

Tm0

E = δm0 ,

which proves that δnk
= δm0 for all nk ≥ m0, contradicting Lemma 5.8. �
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