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Abstract

In this paper we study an elliptic problem in R
N which involves the p-Laplacian, p > N � 2, and the

nonlinear term has an oscillatory behavior. By means of a direct variational approach, we establish the
existence of infinitely many homoclinic solutions whose W1,p(RN)-norms tend to zero (to infinity, respec-
tively) whenever the nonlinearity oscillates at zero (at infinity, respectively). The solutions have invariance
properties with respect to certain subgroups of the orthogonal group O(N).
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

Various problems from Physics can be well modelled by means of certain equations which
involve the p-Laplacian operator �p , p > 1. For instance, in Fluid Mechanics, the case p = 2
(p > 2 and p < 2, respectively) corresponds to a Newtonian (dilatant and pseudoplastic, respec-
tively) fluid. In order to fix our ideas, let us consider the problem{

−�pu + |u|p−2u = α(x)f (u), x ∈ R
N ,

u ∈ W 1,p
(
R

N
)
,

(P)
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where 1 < p < ∞, N � 2, α : RN → R is measurable and f : [0,∞[ → R is a continuous func-
tion, f (0) = 0.

Problem (P) has been widely studied when N � p. In the semilinear case (i.e., N � p = 2),
certain solitary waves in the nonlinear Klein–Gordon and Schrödinger equations are solutions
of (P); existence and multiplicity of solutions can be found for instance in [1,3,4,8,9,13], and
references therein. In the quasilinear case (i.e., N � p �= 2), problem (P) was treated in [10,12,
16]. The common feature of these papers is the superlinear or the asymptotical linear behavior at
infinity of the nonlinear term f .

The aim of this paper is twofold. First, we want to handle the case when p > N . Although
important problems can be treated within this framework (see, for instance [5], where a nonlinear
field equation in Quantum Mechanics is considered involving the p-Laplacian, for p = 6), only
a few works are available in this direction, see [11,14,15,20]. Second, instead of some usual
assumption on the nonlinear term f , we assume that it oscillates at zero or at infinity. As an effect
of the oscillatory behavior of f one could expect the existence of infinitely many solutions of
problem (P). Indeed, our main results (see Theorems 1.1 and 1.2 below) give sufficient conditions
on the oscillatory terms such that problem (P) has infinitely many weak solutions. As a byproduct,
these solutions can be constructed in such a way that their norms in W 1,p(RN) tend to zero (to
infinity, respectively) whenever the nonlinearity oscillates at zero (at infinity, respectively), which
can be considered as another ‘reflection’ of the oscillation.

In order to describe precisely our results, we recall some basic concepts. The space W 1,p(RN)

is endowed with the standard norm ‖u‖W 1,p = (‖∇u‖p
p +‖u‖p

p)1/p where ‖ ·‖p is the usual norm
in Lp(RN), 1 < p < ∞. The space L∞(RN) is endowed with the usual sup-norm, denoted by
‖ · ‖∞. Let N � 2 and define the set

GN = {
G ⊆ O(N): G = O(N1) × · · · × O(Nk), k � 1,

N1 + · · · + Nk = N, Nj � 2, j = 1, . . . , k
}
.

Fix a G ∈ GN . A function u : R
N → R is called G-invariant if u(gx) = u(x) for every g ∈ G

and x ∈ R
N. In particular, an O(N)-invariant function is called radial.

Throughout the paper we assume that the potential α : RN → R appearing in problem (P)
fulfills the following hypothesis:

(H) α ∈ L1(RN) ∩ L∞(RN) is radial, nonnegative, and ‖α‖∞ > 0.

Since we are interested in the case when p > N , Morrey’s embedding theorem implies that
W 1,p(RN) is continuously embedded into L∞(RN), and one can consider continuous represen-
tations of the elements from W 1,p(RN). Moreover, every element u ∈ W 1,p(RN) is homoclinic,
i.e., u(x) → 0 as |x| → ∞, see [6, p. 167]. Due to Morrey’s theorem and hypothesis (H), the
energy functional E :W 1,p(RN) → R associated with problem (P)

E(u) = 1

p
‖u‖p

W 1,p −
∫

RN

α(x)F
(
u(x)

)
dx, u ∈ W 1,p

(
R

N
)
, (1)

is well defined, where F(s) = ∫ s

0 f (t) dt , s ∈ R. (Since f (0) = 0 we may assume that f is
extended to the whole real line with zero on ]−∞,0].)
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Now we are in the position to state our first main result which deals with the case when the
nonlinearity f exhibits an oscillation at the origin. More precisely, we assume

(F0) −∞ < lim infs→0+ F(s)
sp � lim sups→0+ F(s)

sp = +∞;
(S0) there are two sequences {ak}, {bk} such that 0 < bk+1 < ak < bk , limk→∞ bk = 0, and

f (s) � 0 for every s ∈ [ak, bk], k ∈ N.

Theorem 1.1 (Oscillation at zero). Let p > N � 2. Let α : RN → R be a function which satisfies
(H) and f : [0,∞[ → R be a continuous function such that (F0), (S0) are fulfilled.

Then, for every G ∈ GN there exists a sequence {uG
k } ⊂ W 1,p(RN) of nonnegative,

G-invariant, homoclinic weak solutions of (P) such that

lim
k→∞E

(
uG

k

) = 0 and lim
k→∞

∥∥uG
k

∥∥
W 1,p = 0. (2)

Example 1.1. Let p and N be as in Theorem 1.1. A simple function which satisfies (F0) and
(S0) is f (s) = sq sin 1

s
for s > 0, and f (0) = 0, where max{p − 3,0} < q < p − 2.

Next, we will state the counterpart of Theorem 1.1 when the nonlinearity oscillates at infinity.
First, we require similar assumptions as in (F0) and (S0), respectively:

(F∞) −∞ < lim infs→+∞ F(s)
sp � lim sups→+∞

F(s)
sp = +∞;

(S∞) there are two sequences {ak}, {bk} such that 0 < ak < bk < ak+1, limk→∞ bk = +∞, and
f (s) � 0 for every s ∈ [ak, bk], k ∈ N.

Theorem 1.2 (Oscillation at infinity). Let p > N � 2. Let α : RN → R be a potential which
satisfies (H) and f : [0,∞[ → R be a continuous function such that f (0) = 0, and (F∞), (S∞)

are fulfilled.
Then, for every G ∈ GN there exists a sequence {uG

k } ⊂ W 1,p(RN) of nonnegative, G-
invariant, homoclinic weak solutions of (P) such that

lim
k→∞E

(
uG

k

) = −∞ and lim
k→∞

∥∥uG
k

∥∥
W 1,p = +∞. (3)

Example 1.2. Let c∈]0,1[ and q ∈]p−1,p] be two fixed numbers. The function f : [0,∞[→R

defined by f (s) = sq(c + sin s) verifies hypotheses (F∞) and (S∞), respectively.

Remark 1.1. It is possible to handle the case when the nonlinear term f has discontinuities in
Theorems 1.1 and 1.2; in such a case, a differential inclusion problem is formulated instead of
(P) in order to ‘fill the discontinuity gaps’ of f , see [14].

Remark 1.2. In [14], the hypothesis limk→∞ bk

ak
= +∞ was indispensable (where {ak} and

{bk} are the sequences appearing in (S0) and (S∞), respectively). The main advantage of the
above results is that one can omit this inconvenient condition, allowing us to include new oscil-
latory nonlinearities within our framework. Furthermore, we are able to guarantee a sequence of
G-invariant weak solutions of (P) for every G ∈ GN , and not only for G = O(N) as in [14].

Our approach is based on an elementary variational technic; in the sequel, we will describe
it briefly here. By using Morrey’s embedding theorem and hypothesis (H), one can show by a
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standard manner that the energy functional E is of class C1 on W 1,p(RN) and its critical points
are precisely the weak solutions of (P), see [15]. It is well known that W 1,p(RN) cannot be
compactly embedded into Lq(RN), q > 1, due to the unboundedness of the domain. However, by
Lions theorem (see [17, Théorème III.3]), the fixed point space of W 1,p(RN) under the action of
G ∈ GN , denoted by W

1,p
G (RN), is compactly embedded into Lq(RN) whenever p < q < +∞.

The restriction of E to W
1,p
G (RN), denoted by EG, is weakly sequentially lower semicontinuous

and its critical points are critical points of E as well, due to the principle of symmetric criticality
of Palais (see [22, Theorem 5.4]). The crucial step in our arguments is the construction of an
appropriate sequence of subsets of W

1,p
G (RN), proving that the relative minima of EG on these

sets are actually local minima (thus, critical points) of EG on W
1,p
G (RN), so G-invariant weak

solutions of (P). Then, a suitable subsequence of critical points of EG can be extracted from the
aforementioned local minima of EG having the properties (2) and (3), respectively. We emphasize
that the crucial step described above can be achieved only in the case when p > N (i.e., when one
can apply Morrey’s embedding theorem); in the case p � N , a new method should be elaborated
in order to obtain similar results as Theorems 1.1 and 1.2, respectively.

Our results complement not only the aforementioned papers ([1,3,4,8,9,13], where the case
p � N has been treated) but also some results obtained on bounded domains where elliptic
problems with oscillatory nonlinearities have been considered; Dirichlet problems were studied
in [2,7,21,24], while Neumann type problems in [18,23]. The common feature of these works is
that infinitely many solutions are obtained by means of various methods; for instance, sub–super
solution arguments (see [21]); the general variational principle of Ricceri (see [7,18,23]); conti-
nuity of certain superposition operators (see [2,24]). Note however that our proofs do not use any
abstract argument apart from the compactness result of Lions [17] and the Palais’ principle [22].

2. Variational setting

First of all, note that assumption (S0) implies that f (0) � 0. Consequently, f (0) = 0, due to
the left inequality of (F0). Therefore, in both cases (i.e., in Theorems 1.1 and 1.2) we may extend
continuously the function f to the whole real line with value zero on the interval ]−∞,0].

Note that the functional E , defined in (1), is of class C1 on W 1,p(RN), see [15, Proposi-
tion 2.1]. Moreover, its critical points are precisely the weak solutions of (P). Thus, in order to
prove the theorem, it is enough to find a sequence of distinct critical points of E with the required
properties.

To do this, fix G = O(N1)×· · ·×O(Nk) ∈ GN . The action of G on the space W 1,p(RN) will
be defined by

(gu)(x) = u
(
g−1

1 x1, . . . , g
−1
k xk

)
for every u ∈ W 1,p(RN), g = (g1, . . . , gk), gj ∈ O(Nj ), x = (x1, . . . , xk), xj ∈ R

Nj , j =
1, . . . , k. Let us denote by EG the restriction of the energy functional E to the subspace of G-
invariant functions of W 1,p(RN), i.e.

W
1,p
G

(
R

N
) def= {

u ∈ W 1,p
(
R

N
)
: u(g1x1, . . . , gkxk) = u(x1, . . . , xk)

for all gj ∈ O(Nj ), xj ∈ R
Nj , j = 1, . . . , k

}
.
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Since α is radial, the functional E is G-invariant. Due to the principle of symmetric criticality of
Palais, the critical points of EG are critical points of E as well. (Note that the fixed point space of
the action G on the space W 1,p(RN) is exactly W

1,p
G (RN).)

Proposition 2.1. Functional EG is sequentially weakly lower semicontinuous on W
1,p
G (RN).

Proof. The function ‖ · ‖p

W 1,p is clearly sequentially weakly lower semicontinuous on

W
1,p
G (RN), see [6, p. 35]. Let us prove that the function F :W 1,p

G (RN) → R, defined by
F(u) = ∫

RN α(x)F (u(x)) dx, is sequentially weakly continuous.

Suppose the contrary, i.e., let {un} ⊂ W
1,p
G (RN) be a sequence which converges weakly to

u ∈ W
1,p
G (RN) but FG(un) � FG(u) as n → ∞. Therefore, up to a subsequence, one can find a

number ε0 > 0 such that

0 < ε0 �
∣∣FG(un) −FG(u)

∣∣ for every n ∈ N,

and by Lions theorem, un converges strongly to u in Lq(RN), for some fixed q ∈ ]p,+∞[. For
every n ∈ N one has 0 < θn < 1 such that

0 < ε0 �
∣∣FG(un) −FG(u)

∣∣ �
∫

RN

α(x)
∣∣f (

u + θn(un − u)
)∣∣ · |un − u|dx

� ‖α‖q ′ max
{∣∣f (s)

∣∣: 0 � s � Mn

}‖un − u‖q,

where q ′ = q(q − 1)−1 and Mn = ‖u‖∞ + ‖un‖∞. Note that supn∈N Mn < +∞; indeed,

W
1,p
G (RN) is continuously embedded into L∞(RN). Letting n → ∞, in the above relation the

right-hand side tends to 0, a contradiction. �
Now, we are going to prove our main results.

3. Proof of Theorem 1.1

Fix a number r < 0 and define the set

Wk = {
u ∈ W

1,p
G

(
R

N
)
: r � u(x) � bk for every x ∈ R

N
}
,

where the sequence {bk} appears in (S0).

Claim 3.1. Functional EG is bounded from below on Wk and its infimum on Wk is attained.

Proof. The set Wk is convex. Moreover, it is closed in W
1,p
G (RN) due to the continuity of the

embedding W 1,p(RN) ↪→ L∞(RN). Consequently, the set Wk is weakly closed. Moreover,

EG(u) = 1

p
‖u‖p

W 1,p −
∫
N

α(x)F
(
u(x)

)
dx � −‖α‖1 max[r,bk]

F for u ∈ Wk.
R
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Thus, EG is bounded from below on Wk . Let ηk = infWk
EG, and {un} be a sequence in Wk such

that ηk � EG(un) � ηk + 1/n for all n ∈ N. Then,

1

p
‖un‖p

W 1,p � ηk + 1 + ‖α‖1 max[r,bk]
F

for all n ∈ N, i.e. {un} is bounded in W
1,p
G (RN). So, up to a subsequence, {un} weakly converges

in W
1,p
G (RN) to some uG

k ∈ Wk . By the sequentially weakly lower semicontinuity of EG, cf.
Proposition 2.1, we conclude that EG(uG

k ) = ηk = infWk
EG. �

Claim 3.2. Let uG
k ∈ Wk be such that EG(uG

k ) = infWk
EG. Then, 0 � uG

k (x) � ak for all x ∈ R
N .

Proof. Let A = {x ∈ R
N : uG

k (x) /∈ [0, ak]} and suppose that A �= ∅. Thus, meas(A) > 0 due to
the continuity of uG

k . Define

h(s) =
⎧⎨
⎩

0, if s < 0;

s, if s ∈ [0, ak];
ak, if s > ak .

Set vk = h◦uG
k . Since h is uniformly Lipschitz and h(0) = 0, vk belongs to W 1,p(RN), cf. [19] or

[24, Lemma 3.4]. Moreover, vk is G-invariant because of uG
k ; thus vk ∈ W

1,p
G (RN). In addition,

vk ∈ Wk . Denoting by

A1 = {
x ∈ A: uG

k (x) < 0
}

and A2 = {
x ∈ A: uG

k (x) > ak

}
,

we have that vk(x) = uG
k (x) for all x ∈ R

N \ A, vk(x) = 0 for all x ∈ A1 and vk(x) = ak for all
x ∈ A2. Then,

EG(vk) − EG

(
uG

k

) = − 1

p

∫
A

∣∣∇uG
k

∣∣p + 1

p

∫
A

[|vk|p − ∣∣uG
k

∣∣p] −
∫
A

α(x)
[
F(vk) − F

(
uG

k

)]

= − 1

p

∫
A

∣∣∇uG
k

∣∣p − 1

p

∫
A1

∣∣uG
k

∣∣p + 1

p

∫
A2

[
a

p
k − (

uG
k

)p]

−
∫
A2

α(x)
[
F(ak) − F

(
uG

k

)]
.

By (S0), one has that F(s) � F(ak) for every s ∈ [ak, bk]. Using this fact, we observe that every
term of the right-hand side of the above expression is non-positive. On the other hand, since
EG(vk) � EG(uG

k ) = infWk
EG, then in particular,

∫ ∣∣∇uG
k

∣∣p = 0,
A
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∫
A1

∣∣uG
k

∣∣p =
∫
A2

[
a

p
k − (

uG
k

)p] = 0.

By the first equality we obtain the existence of a positive measured subset B of A and a constant
M ∈ R such that uG

k = M on the set B . Then, either B ⊂ A1 or B ⊂ A2. If B ⊂ A1, then

0 =
∫
A1

∣∣uG
k

∣∣p �
∫
B

∣∣uG
k

∣∣p = |M|p meas(B) > 0,

a contradiction. If B ⊂ A2, then

0 =
∫
A2

[
a

p
k − (

uG
k

)p]
�

∫
B

[
a

p
k − (

uG
k

)p] = [
a

p
k − Mp

]
meas(B) < 0,

a contradiction. This shows that A has zero measure, therefore, A = ∅. �
Claim 3.3. Let uG

k ∈ Wk be such that EG(uG
k ) = infWk

EG. Then uG
k is a local minimum point of

EG in W
1,p
G (RN).

Proof. Indeed, otherwise there would be a sequence {un} ⊂ W
1,p
G (RN) which converges to uG

k

and EG(un) < EG(uG
k ) = infWk

EG for all n ∈ N. From this inequality it follows that un /∈ Wk for

any n ∈ N. Since un → uG
k in W

1,p
G (RN), then due to Morrey’s theorem, un → uG

k in L∞(RN)

as well. In particular, for every 0 < δ < min{−r, bk − ak}/2, there exists nδ ∈ N such that
‖un − uG

k ‖∞ < δ for every n � nδ . By using Claim 3.2 and taking into account the choice of
the number δ, we conclude that

r < un(x) < bk for all x ∈ R
N, n � nδ,

which clearly contradicts the fact un /∈ Wk . �
Claim 3.4. Let ηk = infWk

EG = EG(uG
k ). Then ηk < 0 for all k ∈ N and limk→∞ ηk = 0.

Proof. Since ‖α‖∞ > 0, then for every number 0 < θ < 1 one can find a measurable set Sθ

with positive measure such that α(x) > θ‖α‖∞ for a.e. x ∈ Sθ . Moreover, since α is radial, one
can assume that Sθ is O(N)-invariant, i.e., gSθ = Sθ for every g ∈ O(N). For simplicity, let us
fix θ = 1/p, and denote S0 = S1/p . Then, one can find x0 ∈ R

N and μ0 > 0, with μ0 < |x0|
whenever x0 �= 0, such that

meas
{
S0 \ {

x ∈ R
N :

∣∣|x| − |x0|
∣∣ � μ0/2

}} = 0.

Define for every s > 0 the function ws : RN → R by

ws(x) =

⎧⎪⎨
⎪⎩

0, if ||x| − |x0|| � μ0;

s, if ||x| − |x0|| � μ0/2;
2s (μ0 − ||x| − |x0||), if μ0/2 < ||x| − |x0|| < μ0.

(4)
μ0
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It is clear that ws ∈ W 1,p(RN) and it is radial, thus in particular, ws ∈ W
1,p
G (RN). Moreover,

a simple estimation shows that

‖ws‖p

W 1,p � sp

(
1 + 2p

μ
p

0

)
meas

{
x ∈ R

N :
∣∣|x| − |x0|

∣∣ � μ0
} =: spC(x0,μ0).

By (F0) there exist two positive numbers l and 	 such that F(s) > −lsp for every s ∈ ]0, 	[. Let
L > 0 be such that

L‖α‖∞ measS0 − l‖α‖1p − C(x0,μ0) > 0. (5)

By using the right-hand side of (F0), there exists a sequence {sk} ⊂ ]0, 	[ converging to zero,
and F(sk) > Ls

p
k . Let {slk } be a decreasing subsequence of {sk} such that slk � bk for all k ∈ N

and wk ≡ wslk
as in (4). It is clear that wk ∈ Wk . Moreover, due to (5), one has

EG(wk) � s
p
lk

(
1

p
C(x0,μ0) + l‖α‖1 − 1

p
L‖α‖∞ measS0

)
< 0.

Thus, ηk = infWk
EG � EG(wk) < 0.

Now we will prove that ηk → 0 as k → ∞. Due to Claim 3.2, for every x ∈ R
N one has

∣∣F (
uG

k (x)
)∣∣ �

ak∫
0

|f | � ak max
[0,ak]

|f | � ak max
[0,a1]

|f |. (6)

Then

0 > ηk = EG

(
uG

k

)
� −

∫
RN

α(x)F
(
uG

k

)
� −‖α‖1 max

[0,a1]
|f | ak.

Since the sequence {ak} tends to zero, then ηk → 0 as k → ∞. �
Proof of Theorem 1.1 concluded. Since uG

k are local minima of EG (cf. Claim 3.3), they are
critical points of EG, thus G-invariant weak solutions of (P). Due to Claim 3.4, there are infinitely
many distinct uG

k . Moreover, due to (6), we have

1

p

∥∥uG
k

∥∥p

W 1,p =
∫

RN

α(x)F
(
uG

k

) + ηk � ‖α‖1 max
[0,a1]

|f |ak,

which proves that ‖uG
k ‖W 1,p → 0 as k → ∞. �
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4. Proof of Theorem 1.2

Let r < 0 and define similarly as in Section 3 the set

Wk = {
u ∈ W

1,p
G : r � u(x) � bk for every x ∈ R

N
}
.

The first part of the proof is similar to that of Theorem 1.1. Indeed, we can prove that the
functional EG is bounded from below on Wk and its infimum on Wk is attained (see Claim 3.1).
Moreover, if uG

k ∈ Wk is chosen such that EG(uG
k ) = infWk

EG, then 0 � uG
k (x) � ak for all

x ∈ R
N (see Claim 3.2), and uG

k is a local minimum point of EG in W
1,p
G (RN) (see Claim 3.3).

Instead of Claim 3.4, we prove

Claim 4.1. Let δk = infWk
EG = EG(uG

k ). Then limk→∞ δk = −∞.

Proof. By (F∞) there exist two positive numbers l and 	 such that F(s) > −lsp for every s > 	.
Let L > 0 be such that

L‖α‖∞ measS0 − l‖α‖1p − C(x0,μ0) > 0, (7)

where S0, μ0, x0 and C(x0,μ0) are from the previous section. Due to the right part of (F∞), there
exists a sequence {sk} which tends to +∞ such that F(sk) > Ls

p
k . Let {blk } be an increasing

subsequence of {bk} such that sk � blk for all k ∈ N and wk ≡ wsk as in (4). It is clear that
wk ∈ Wlk . Moreover, one can deduce that

EG(wk) � s
p
k

(
1

p
C(x0,μ0) + l‖α‖1 − 1

p
L‖α‖∞ measS0

)
+ ‖α‖1 max

[0,	]
|F |.

The term near s
p
k in the above estimation is strictly negative due to (7), which proves that

δlk = infWlk
EG � EG(wk) → −∞ as k → ∞. Since the sequence {δk} is non-increasing, we

are done. �
Proof of Theorem 1.2 concluded. It is clear that we have infinitely many pairwise distinct local
minimum points uG

k of EG with uG
k ∈ Wk . Now we will prove that ‖uG

k ‖W 1,p → +∞ as k → ∞.
Let us assume the contrary. Therefore, there is a subsequence {uG

nk
} of {uG

k } which is bounded

in W
1,p
G (RN). Thus, it is also bounded in L∞(RN). In particular we can find m0 ∈ N such that

uG
nk

∈ Wm0 for all k ∈ N. For every nk � m0 one has

δm0 � δnk
= inf

Wnk

EG = EG

(
uG

nk

)
� inf

Wm0

EG = δm0,

which proves that δnk
= δm0 for all nk � m0, contradicting Claim 4.1. This concludes our

proof. �
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