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Abstract
We oonsider the following variational inclusions system of the form

—Au+uediF(u,v) in RN,
—Av+v € drF(u,v) in RN,

with u,v € HY®RN), whereF : R2 — R is a locally Lipschitz function and; F(u,v) (i € {1,2})

are the partial generalized gradients in the sense of Clarke. Under various growth conditions on the
nonlinearity F we sudy the existence of nonzero weak solutions of the above system (in the sense of
hemivariational inequalities), which are critical points of an appropriate locally Lipschitz function defined
on HL(®RN) x HL(RN). Themain tool used in the paper is the principle of symmetric criticality for locally
Lipschitz functions.
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1. Introduction

This paper is devoted to the study of existence of nonzexak solutios for a dass of
variational inclusions systems of the form
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—AU+U € 31F (U, v) in RN,
—Av+v € 3F (U, v) in RN, (S)
u,v e HY®N),

whereN > 2 andF : R2 — R is a locally Lipschitzfunction. We denote by F (u, v) the
partial generalized gradient &f(-, v) at the poinu, andby d>F (u, v) that of F(u, -) atv.

In recent years, nonlinear elliptic sigms have been the objective of intensive investigations
by many authors, motivated bleir theoretical and practicahportance (see for instancd 3,
4,8-1016,18], and references therein).

Costa [7] studied a class of semilinear elliptic system of the form

—AU+au=Fyx,u,v) inRN,

C
—Av +bX)v = Fy(X, u, v) in RN, ©

wherea,b : RN — R are continuous, coercive functions such th&t) > a; > 0 and
b(x) > by > O forallx € RN andF e CY(RN x R2, R). Due tothe coercivityof functionsa
andb, the sibspaceE, , of HL(RN, R?) defined by

Eab = {(u, v) € HI®RN, R?) : /N(|Vu|2—|— V|2 + a(x)u? + b(x)v?)dx < oo}
R

is compactly embedded in?(RN, R?). This males possible the application of classical minimax
theorems with suitable compactness condition (Palais—Smale or Cerami), depending on the
behaviour ofF “at infinity” (see [7]), obtaining in this manner weak solutions @) in the
usualsense.

In our situation the picture is quite different. The difficulties in treating the sygt®yarise
from at least two facts. Firstly, we have no such compact embedding as above, i.e. the embedding
HL(®RN) < LS(RN) is not compact (witfs € [2, 2], where 2 = 2% if N > 3and 2 = co
if N = 2). Secondly, the lack of diffentiability of the nonlinear terrr causes several technical
obstructions; in concrete problems may appear such a non-differentiable term.

Concerning the lack of compactness, our sgggteomes from the works of Bartsch and de
Figueiredo L] and Willem [19]. In [1], the fdlowing system is considered:

—AU+Uu=Fy(x,u,v) inRN, (BdF)
—AU+U:FU(X7U1U) inRN,

whereF € CLRN x R2 R) verifies some growth and symmetry conditions. The Fountain
theorem and a suitable compactness condition are applied, obtaining infinitely many (radial and
non-radial) solutions ofBdF). In the ralial case, Bartsch and de Figueiredo used the fact that
the emleddingH (RN) < LP(RN) is compact forp € 12, 2*[ (see 7)), where H}(RN) is

the subspace of the radially symmetric functionslif(RN), i.e.

HI®RY) = {ue HYRN) : gu=uforallg e G = O(N)}, (1)

wheregu means(gu)(x) = u(g—1x) forall g € O(N),u € HY®RN) andx € RN. In the
nonradial case, they used the ingenious construction of Bartsch and Willpfade also 19));
in dimensionsN = 4 andN > 6, a subgroup o©(N) (denoted byGy) is constructed such that

Hg, RN) = {ue H'®RN) : gu=uforallg € Gy} (2)
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is compactly embedded inP(RN), p € 12, 2*[ (see R, p. 455-457]) and O is the only radial
function of it. We will use these embeddings in our arguments.

Because of the non-differentiability df, it is important to find an efficient method to
treat the systen(S). This method relies on the theory of hemivariational inequalities (48e [
14]), where instead of an inclusion (which involves the generalized gradient of a given locally
Lipschitz function) ahemivariational inequalitys considered. We treds) in the same spirit;
seeDefinition 1.1below.

Throughout the paper, we will make the following assumptioriFon

(F1) There exist; > 0 andp € ]2, 2*[ suchthat
lwal + |wal < cr(u + [v] + [ulP~ + [v]P~h, 3)
forall (u, v) € R2, andwi € 8 F(u, v),i € {1, 2}.

Definition 1.1. If (u,v) e HIRN) x HLRN) satisfies the followinghemivariational
inequalities syster(HIS)

/ (VuVw + uw)dx +/ Foux), v(x); —w(x)dx >0  forallw e HY(RN),
RN RN

/N(Vny + vy)dx —|—/N Fu(x), v(x); —y(x)dx >0  forally e HY{(RM),
R R

we say thatu, v) is aweak solutiorof (S).

Here Ff(u, v; w) denotes the partial generalized directional derivativé-6f v) at the point
u € R in the directionw € R (see Sectior). F2°(u, v; w) is defined in a similar way.

Remark 1.1. If F € CL(R?, R) then(u, v) € HYRN) x HL(RN) solves (HS) if andonly if it
is a weak solution (in the usual sense) of
—AU+u=Fyu,v) inRN,
—Av4v=F,uuv) inRN
Therefore, the notion introduced Definition 1.1is natural. We mentiorhiat several papers deal

with the scalr case of the above problem; see e.g. Straligsgnd Bartsch and WillemZ], the
later one treating the non-autonomous case.

Our goal is to find weak solutions dfS) in the spirit of Definition 1.1 To do this, let us
introduce a further set of assumptions.

(F2) F is regular onR2 (in the sense of Clarkes]).
(F3)
max|d; F
M =0, ie{l2.
lul+v=0 U]+ |v]
(F4 There existst > 2 such that
aF(u,v) + Flo(u, v; —U) + on(u, v;—v) <0

for all (u, v) € R2.
(F4 There existy, v > 0 such that

2F (U, v) + F2(u, v; —u) + F(u, v; —v) < —c2(jul” + [v]")
forall (u, v) € R2.
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(F) F > 0andF(u,v) > 0forall (u, v) # (0, 0).

To present our main results, we consider the Sobolev spd¢&N) with the standard inner
product(u, v); = fRN (VuVv+uv)dx and the corresponding norjm|; = +/(u, u);. We define
the function7 : HY(RN) x HYRN) — R by

12, L2
J(u,v) = §||U||1+§|IUII1—/RN F(u, v)dx.

We will prove in Section2 that (due ta(F1) and(F?)) 7 is a locally Lipschitz function and its
critical points (in the sense of Chang])] are weak solutions ofS). In orderto obtain critical
points of 7, we first @nsider the spacel!(RN). Resticting 7 to HXRN) x HI@RN), we
will verify the Palais—Smale condition (see Chai)[ respectively the Cerami condition (see
Kourogenis and Papageorgidii]) in the casessFo‘}), respactively(FU“). Applying the Mountain
Pass Theoremrpved by Kourogenis and Papageorgiad][(involving the Cerami condition for
locally Lipschitz functions), ware able to guarantee critical points of the restricted funcfion
Using then the Principle of Symmetric Criticality of Palais] for locally Lipschitz functions,
proved by Krawcewicz and MarzantowiczZ], the above points will be critical points on the
whole spacéH L(RN) x HL(RN). With a minimal adjustment, using the “non-radial” construction
from (2), we can obtain further critical points f in certain dimensiondore grecisely, our
main results can be formulated as follows.

Theorem 1.1. If F : R? — Ris a locally Lipschitz function satisfyingc1)—(F3), (F) and
(F®), then systeniS) possesses at least one nonzero weak solution. If, in additios, &or
N > 6 and F is even, the(5) has at least two nonzero weak solutions.

Theorem 1.2. Let F : R2 — R be a non-negative locally Lipschitz function satisfyiig')—
(F3). If (F#) holds for some € |max2, %(p— 2)}, 2*[, then systen(S) possesses at least one
nonzero weak solution. If, in addition, N 4 or N > 6 and F is even, the(S) has at least two
nonzero weak solutions.

Next we make some remarks about the hypotheses we considered.

Remark 1.2. The regularity ofF in the sense of Clarke (see Secti®nis not very restrictive.
Indeed, the class of the regular functions is large, containing for example the continuously
differentiable, respectively the convard locally Lipschitz functions (seé,[Proposition 2.3.6]).

Remark 1.3. It would be interesting to investigatender which conditions it can be possible to
obtain infinitely many weak solutions ¢¥) like in [1]. Due to the lack of differentiability of/

this problem is more delicate. Therefore, at the moment, our investigations will be restricted only
to Theorems 1.5nd1.2 a pasible attempt will be considered in future.

Remark 1.4. The hypotheses(Foj‘) and (Fv“) are the non-smooth versions of the
“superquadraticity at infinity”, respectively the “nonquadraticity at infinity"Fo{see ]).

Finally, we give sme examples.
Example 1.1 Let Fi(u, v) = |u3+|v3+|uv|3. ThenF; € CL(R2, R) satisfies each hypothesis

listed above folN € {2, 3, 4, 5}, choosingp = « = v = 3. Thus,Theorems 1.;nd1.2can be
applied.
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Example1.2. Let Fo(u, v) = max{|u|%, |v|%}(|u|g + |v|§)_ This function is docally Lipschitz,
non-differentiable, convex function which satisfigg!)~(F2), (F4) and (F®) in dimensions
N € {2,3,4,5}, if we choosep = 3 anda = g Thus, Theorem 1.1can be applied. A
simple calculation shows th&t does not verify(Fv“) for anyv > 0. We mention that in the
differentiable case, Costd,[Ex. 5)] constructed a function (of cla€?) which is nonquadratic
and it is not superquadratic at infinity, in the senséff), resgectively (F}).

Example 1.3. If we perturbF, from Example 1.2y (u, v) — |ul® + |v|3, i.e. we define
Fa(u, v) = Fa(u, v) + [ul® + [v]?,

then F3 verifies (F1)—(F3) and(F2) in dimensionsN < {2, 3, 4, 5}, choosingp = v = 3 and
¢ = 1. ThereforeTheorem 1.Zan be applied.

The paper is organized as follows. In Sectithe basic notions and preliminary results are
collected; in Sectior8 we investigate the Palais—Smale, Cerami and the geometric conditions
from the Mountain Pass Theorem (sdd]) for an appropriate furtion, while in Sectiord we
proveTheorems 1.And1.2

2. Auxiliary results

Let (X, | - ||) be a real Banach space aKd its dual. A functionh : X — R is called locally
Lipschitz if each pointi € X possesses a neighborhddg suchthat

[h(u) — h(u2)| < Ljjuy — uzll, forall ug, uz € Uy,

for a constanL > O depending onUy,. Thegeneralized gradient df atu € X is defined as
being the subset of*

ah(u) = {x* € X*: (x*, z)x < h%u; z) forall ze X},

which isnonempty, convex ang*-compact, wheré, -) x is the duality pairing betweeX* and
X, hO(u; 2) is the generalized directional derivativeloft the pointu € X along the direction
z € X, nanely

h(w +tz) — h(w)

hOu; z) = limsup .

w—u,t—07t

(see B]). Now, we list some fundamental properties of the generalized gradient and directional
derivative which will be used through the paper.

Proposition 2.1 ([6]).

(i) (=h)%u; z2) = hOu; —2) forallu, z € X.
(i) hOu; 2) = max{(x*, z)x : x* € oh(u)} forallu, z € X.
(i) Let j : X — R be a continuously differentiable function. Thgj(u) = {j’(w)}, j°(u; 2)
coincides with(j’(u), z)x and (h + ))°(u; z2) = h%(u; 2) + (j’(u), 2)x forall u, z € X.
(iv) (Lebourg’s mean value theorem) Let u amthe two points in X. Then there exists a point
w in the open segnmé between u and, and X!, € oh(w) suchthat

hu) —h@) = (X}, u—v)x.
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(v) (Second Chain Rule) Let Y be a Banach space an¥ {> X acontinuously differentiable
function. Then b j is locally Lipschitz and

dho () Soh(j(y)oejty)y forallyeY.

A pointu € X is acritical point of hif 0 € dh(u), i.e.h%u, w) > 0 forallw € X. In
this caseh(u) is acritical value of h We definern(u) = inf{||x*||x : x* € ah(u)}. (We will
use the notatiot{x*||x instead of||x*||x+.) Of course, this infimum is attained, singb(u) is
w*-compact.

The functionh satisfies the Palais—Smale condition at leveEdR (denotedPS), if every
seguencexn} C X suchthath(x,) — candin(x,) — 0 contains a convergent subsequence in
X (see p)]).

The functionh satisfies the Cerami condition at levekcR (denoted C).), if every sequence
{xn} € X suchthath(xy) — cand(1 + ||Xn|)Ah(Xn) — O contains a convergent subsequence
in X (see [L1)).

Itis clear that(PS. implies(C)c.

We say thath is regular atu € X (in the sense of Clarkeg)) if for all z € X the usual
one-sided directional derivative

h tz) —h
h'(u; Z) = |lim M
t—0t t
exigs andh’(u; z) = hO(u; 2). hiis regular on X, if it is regular in every pointi € X.
Proposition 2.2. Let h : X x X — R be a locally Lipschitz function which is regular at
(u,v) € X x X. Then

(i) oh(u, v) C d1h(u, v) x d2h(u, v), wheredih(u, v) denotes the partial generalized gradient
of h(., v) at the point u, andi2h(u, v) that of h(u, -) at v.
(i) hOu, v; w,2) < h9u, v; w) + hS(u, v; 2) forall w, z € X.

Proof. For (i), see §, Proposition 2.3.15]. Now, let us fiw, z € X. FromProposition 2.(i) it
follows that there existg™ € ah(u, v) suchthat

hO(u, v; w, 2) = (X*, (W, 2)) xxx-

By (i) we havex* = (X7, X3), wherex® € dih(u, v), andusng the definition of the generalized
gradient, we obtaih®(u, v; w, 2) = (X}, w)x + (x5, 2)x < hd(u, v; w) + (U, v;2). O
Let E be a closed subspaceldf(RN). The inner product and the norm &will be denoted
by (-, -)g, resgectively|| - |g. The Cartesian produ& x E will be also a Hilbert space which is
endowed with the inner product
((u7 U)a (w7 y))EXE = (u7 w)E + (U7 y)E

for everyu,v, w,y € E. Thenorm is|(u, v)||[exe = \/((u, v), (U, v))Exe. Thenorm on
LP@®N) is ullp = (f lulPdx)Y/P. Now we pove a crucl result.

Lemma 2.1. Suppose that F R? — R is a locally Lipschitz function which satisfieg ') and
(F2). ThenF : HYRN) x HY(RN) — R defined by

F(u, v):/ F (u, v)dx
RN
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is locally Lipschitz. Moreover, if E is a closed subspace of(RY) and Fg denotes the
restiction of 7 to E x E then

Feu,v;w,y) < /N FOu), v(x); w(x), y(x))dx
R

forallu,v,w,y € E.

Proof. First, let (u1, u2), (uz, us) € R2 be fixed elements. Applying Lebourg’s mean value
theorem, we obtain @ € dF (&, ©) suchthat

F(uz, u2) — F(uz, us) = (w, (Ug — Uz, U2 — Ug))R2,

where(&, ©) is in the open line segment betwe@n, uz) and(us, us). Using the egularity of
F at (&, ) andProposition 2.8), there existwj € 3 F(&,9) (i € {1, 2}), such hat

F(u1, up) — F(us, ug) = wi(ug — uz) + wo(uz — Ug). 4)

From rdations(3) and(4), we obtain after a straightforward computation that

4
|F (u1, Up) — F(U3, Us)| < a3y _(Iui| + |ui| P (Jus — us| + |uz — ua]), (5)
i=1
wherecz > 0does not depend on the above points. Now, weific HL(RN), (i € {1,...,4}).
Using (5), Holder's inequdity and the fact that the embeddingt(RN) — LP®RN) is
continuous (the embedding constant beifng > 0), we have

4
-1
|F (U1, Uz) — F(uz, ua)| <3 (lluills+f plluillf ) (llus — Uzl + uz — uall).
i=1
From this relation it follows thaf is locally Lipschitz onH1(RN) x HL(RN).
Now, we fix u,v,w,y € E. SinceF is continuous,FO(u(x), v(x); w(x), y(x)) can be
expressed as the upper limit of

F(Z! + tw(x), 22 + ty(x)) — F(ZL, 22
" ,

wheret — 0Ot taking rational values andz!,z?) — (u(x), v(x)) taking values in a
countable dense subset®f. Being the upper limit of measurable functions)fe RN, the
functionx — FO(u(x), v(x); w(x), y(x)) is also measurable and it is fromt (RN) (due to
(F1).

E being a closed subspace of a separ&fileert space, there exist functioa$, z2 € E and
numberg, — 0T suchthat(z}, z3) — (u, v) in E x E and

1t 2 4t v) — 1.2
Feu,v;w,y) = lim TE(Z +thw, Zy +tny) — FEZ, Z))
n—o00 tn
and without loss of generality, we may assugjéx) — u(x) andzz(x) — v(x) a.e.x € RN,

asn — oo.
We defineg, : RN — R U {+00} by

_F@ 0 + taw(x), ZA(X) + thy (X)) = F(Z3(X), ZA(X))
tn

On(X) = + c3(lw()| + y()D
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x {14001+ 3001 + 2300 + taw (0] + [Z260) + tay (0| + 25001
+ 1Z2001P 1+ 12500 + taw(O1PE + 2300 + tay (0[P~
The functiong, is measurale, anddue to(5) it is non-negative. From Fatou’s lemma we have

A =/ lim sup—gn(X)]dx > lim sup [—gn(X)]dx = B.
R

N n—oo n—oo JRN

Letgn = —Cy + Dy, where

F(ZL(X) + thw(X), Z2(X) + thY (X)) — F(ZA(x), Z2(X))
th

Ca(x) =
and
Dn(x) = Ca(lw00] + [YOOD [ 123001 + 123001 + 12500 + tnw ()
+ 1Z300) + tay 00| + 12001PH + 1Z3 00 1P + 12500 + taw ()P~
+ 12200 + tay (0P

Letd, = fRN Dnhdx. Then

B =Ilim sup(/ Chdx — dn) . (6)
n— o0 RN

First, we obtain the following estimation:

dn—zcsf (ol + 1y (jul =+ o] + JulP~ + plP~1) dx
RN

= caf(lwlle + Iyle)2lz5 — ulle +tallwle + 217 - vle + tlyle)
+ (P = D27 2(wllp + IYlp) [128 = ullp(lZl5~ + Ul + (izk = ullp
T tallwllp) (UZ5p + tallwllp) P2+ U572 + 122 = vllp(I1Z215 2 + vl
+ (1 = vllp + tallylp) ((1Z8p + tallyllp) P2 + 01572 ]}

Since he embeddin@g < HY(RN) < LP(RN)iscontinuous angizt—ullg — 0, |Z2—v|g —
0 andt, — 0T, we obtain that the sequen¢ey,} is convergent, its limit being

lim dn=2C3/ (ol + 1D (1l + o] + JulP~ + [0l P~ dx.
n—o0 RN

From (6), we obtain

1 2 1.2
. Z +thw, 22 +thy) — zt z .
B = Ilmsup]:E( n +tw, Zy +y) — FeZn ) lim dq

n—o0 th n— 00
= FRU v w,y) - ZCszN(IwI +1yD (IU| + vl + Ul + |v|Pfl) dx.
On the otler hand A < A; — A, where

A1=/ lim supCp (x)dx and Ag:/ liminf Dp(X)dx.
R ]RN n—o00

N n—oo
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Sincezk(x) — u(x), Z2(x) — v(x) a.e.x € RN andt, — 0t we have
Ao = ZCséN(lwl + IyD) (1l + ol + 0P~ 4+ 0]P~) ok

and

1 2 _ 1 )
Aq =/ lim supF(Z”(X)"H”w(X)’Zn(X)-HnY(X)) F(Zn(x),zn(x))dX
RN n—oo tn
1 2 _ 152
5/ lim sup FEZ +twx),z tty(X)) FEL2)
R

N (@,22) - (ux),0(x))
t—01

= / FO((x), v(x); w(x), y(x))dXx.
RN
This completes the proof. O

Remark 2.1. If we suppose in addition th&aF3) holds inLemma 2.1 then br all ¢ > 0 there
exidgsc, > 0 such that

4 4
|F(ug, u2) — F(u3, ug)| < (8 Doluil+c ) lu Ipl) (Jup —ug[ +Juz—ua))  (7)
i=1 i=1
forallui e R (i € {1,2, 3,4}).
Indeed,(F3) implies that for alls > 0 thereexigs s = §(¢) > 0 such hat
[wi| + [w2] < e(lul + [v]) (8)

forall wj € ;F(u,v) (i € {1, 2}), with |u| + |v] < §. On theother hand, ifu| + |v| > &, from
(3) we have

ca((ul + [ P~2827P 4 Ju|P~t 4 vl P
c1(2P71827P + 1) (julPL + juP Y.

Combining the above estimation wi8) we find that:
for all ¢ > O thereexigsc, > 0 such hat

lwil + [wz| < e(ul + [v]) + C:(JulP~L + [u]P~1) )

for all (u,v) € RZandwj € 3 F(u,v) (i € {1,2}). Now, if in (4) we use the estimatiof)
instead of(3), we obtain(7) which will be useful in Sectio3.

lwi| + |wa| <
=

Since HY®N) > u — 1|u|? is of classC?, the function 7 is locally Lipschitz on
HL®RN) x HY(RN). Now, we aein the position to establish the following.

Proposition 2.3. If the fundion F satisfies(F1) and (F?) then every critical pointu, v) €
HL®RN) x HY(RN) of 7 is a weak solution ofS).

Proof. We will apply Lemma 2.1for E = H1(RN). Since(u, v) is a critical point of 7, for
everyw, y € HY®RN) we have

0<J7%u,v;w,y) = U w1+ @Y1+ (=P vw,y)
= (U, w)1 + (v, V)1 + FowU, v; —w, —y)

< U w1+ @Y1+ /R FOW00. vx): ~w00. ~y(0)dx.
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Using Proposition 2.di), we obtain

O<uwi+@y1+ /RN FRU(X), v(X); —w(x))dx + /RN F2(U(x), v(X); —y(x))dXx.

Takingy = 0, respectivelyw = 0, in the above inequality, we are led to the required inequalities
from (HIS), i.e.(u, v) is a weak solution ofS). O

Now we recall some notions which will be used in SectibnLet G be a compact Lie
group which acts linear isometrically on the real Banach spate| - ||), i.e. the action
G x X — X : [g,u] — guiscontinuous, 2 u = u, (g1g2)u = g1(gou) for everygs, g2 € G,
and the magp — guis linear such thatgu|| = |lu|| for everyg € G andu € X.

A functionh : X — R is G-invariantif h(gu) = h(u) forall g € G, u € X. The ation on
X induces an action of the se type on the dual spac€’, defined by(gx*)(u) = x*(gu) for
allg € G, u e Xandx* € X*. We have|gx*|| = ||x*| forall g € G, x* € X*. Supposing that
h: X — Ris aG-invariant, Iccally Lipschitz functional, thegoh(u) = ah(gu) = ah(u) for
all g € G, u € X. Therdore, the functioru — An(u) is G-invariant (see12)). Let

X6 ={ue X:gu=uforallg e G}.

We recall thePrinciple of Symmetric Criticalityof Krawcewicz and MarzantowiczlP,
p. 1045], which will be crucial in the proof of our theorems.

Proposition 2.4. Assume that a compact Lie group G acts linear isometrically on a Banach
space X. If h: X — R is a G-invariant, locally Lipschitz functional and if & X is a critical
point of h restricted to ¥, then uis a critical point of h.

If we endow the Cartesian produétx X with the norm||(u, v)|| = +/||u]|2 + ||[v]|2, u, v € X,
thenG acts linear isometrically oX x X, where tleactionG x (X x X) — X x X is defined
by

g(u, v) = (gu, gv)
forall g € G andu, v € X. Moreover,
(X x X)® ={(u,v) € X x X :g(u,v) = (u,v) forallg e G} = X x XC. (10)

Finally, we recall the following “strong” form of theMountain Pass Theoremwhich
involves the Cerami condition for locally Lipschitz functions, proved by Kourogenis and
Papgeorgiou L1, Theorem 6].

Theorem 2.1. Let X be a Banach space, and:hX — R be a locally Lipghitz function with
h(0) = 0. Suppose that there exist a pointeX and constantg, n > 0 suchthat

(i) h(u) > nforallu € X with |Ju|| = p,
(i) llell > p and h(e) < O,
(ii) h saisfies(C)c, with

c = inf max h(y()),
yel te[0,1]

where
I'={y € C(0,1], X) : y(0) =0, y(1) = €}.
Thenc> n and ce R is a critical value of h.
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3. Palais-Smale and geometric conditions

In this section we study the Palais—Smale and Cerami conditions7fowhich will be
restricted to a certain subspace EfE(RN) x HL(RN), and we invetigate thegeometric
conditions of the Mountain Pass Theorem.

Proposition 3.1. Suppose that F R? — R is a locally Lipschitz function which satisfi¢g1)—
(F3). Let E be aclosed subspace of HRN) which is ompactly embedded inA(RN) and
denote by7g the restriction of 7 to E x E. Then:

() Je satisfiegP9S for all ¢ > 0 when(F2) holds.
(i) Je satisfies(C)c for all c > 0 when F is non-negative andF,j‘) holds for somev €

1max(2, 5 (p - 2)}, 2°.
Proof. (i) Let {(up, vn)} be a sequence froe x E suchthat

jE(Un, Un) — C > 0, (11)
A 7 (Un, vn) = O, (12)

asn — oo. We piove that{(un, vn)} is bounded inE x E. For everyn € N there exists
z}, € 3Je(un, vn) suchthat||z;lexe = A7z (Un, vn). Clearly,(12)implies that

jg(un, Un; Un, vn) > (Z;, (Un, vn))ExE
> —|ZallexE | (Un, vn) lExE = —all(Un, vn)[EXE

for n large enough. UsingL.emma 2.1 the almve estination, (11) and (F2), we get that for n
large enough

1
C+ 1+ [(un, vn)llexe = Je(Un, vn) — ajg(un, Un; Un, vn)

2
_l’_
1 1 2 1 o
= (E - ;) lUn, v)lIig g — FE(Un, vn) — E}—E(u”’ Un; —Un, —Un)

1 1 2
E—E ||(Un,vn)||EXE—/RN F (un, vn)

1 1 1
+ = FOUn(x), un(X); —un(x), —Un(x))j| dx > (— - —) Il (Un, va) 12
o 2 «
1 0
— / F (Un, vn) + = (Fl(un(x),vn(xx —Un(x))
RN o

1 1
+ on(un(x), un(X); —Un(X))) i| dx > <§ - E) [l (un, Un)||ZEXE'

This shows that(un, vn)} is bounded irE x E. Sincethe emleddingE — LP(RN) is compact,
passing to a subsequence if necessary, we may suppose that
(Un, vn) — (U, v) weakly inE x E, (13)
Un— u  stonglyin LP(RN), (14)
vn— v stonglyin LP(RN). (15)
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On the othehand, we have

jg(un, vn; U—Un, v —vp) = (Un,U—Un)E + (vn, v — vn)E
+f|2(un, Un; Un — U, vn — v),
JS(U, V;Up—U,op —v) = (U, Up — WE + (v, vn — V)E +7-'|c_;)(U, v; U —Up, v — vp).

Adding these relations, this yields

IUn = U, vn — V)1 E g = llun — UlE + llvn — vllE = 15 = 17— 13, (16)
where

Inl = }"g(un, Un; Un — U, vp — v) +}"g(u, v; U— Up, v — vp),

12=72Un, vn;U—Un,v—vy)  and 13 = J2U, v; Up — U, vy — ).

Now, we will estimatel,i1 (i € {1,2,3}). UsingLemma 2.1 Proposition 2.{i) and (9), we
obtain

12 < /RN[FO(un(x), Un(X); Un(X) — U(X), tn(X) — (X))
+ FO(u(x), v(X); U(X) — Un(X), v(X) — vp(X))]dx
< /R IFPWA 00, un(0): Un () = U))] + [FZ(Un(X), tn(X): vn(X) = v(X))]
+FLPU0, v(X): UX) — Un(X))] + [F2UX), v(X); v(X) — va (X)) [1dX

= /R I maxwg(Un(x) = u(x) : wy € 31F (Un(x), vn (X))} dx
+ fR | Imaxwiun(x) — v(x)) : wi € B2F (Un(X), vn(x))}Hdx
4 /R I max (U0 — Un() < w € BF U, vx)) dx
+fRN | max(w?(v(x) — vn(X)) : w? € d2F (U(x), v(x))}|dx
< A;N[suum+|vn|)+cg(|un|p—1+|vn|p—1)1(|un—u|+|vn—v|)dx

+ /RN[e(|u|+|v|)+cg(|u|p*1+|v|p*1>](|u—un|+|v—vn|)dx

-1 -1
< de(lunliE + llvnllE + luliE + 1vlI2) + ce(lunll B + llvnllp
-1 -1
Ul 4+ vl U = unllp + llv — vallp)-

Since he sequencesln} and{vy} are bounded ifE and keeping in mind the relatiof$4) and
(15), from the arbitrariness of > 0 we obtain

limsupl! <o. (17)

n—oo
Since
2
Iy = jg(un, Un; U—Un, v — vp) > (Z3, (U—Un, ¥ — Un))ExE
> —l1ZilexEll(U — Un, v — V) lEXE.
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then due tq12), we have
liminf 12 > 0. (18)

n— oo
Finally, let us fix an elemer#* € 3 7e (u, v). Thus
Iy > (Z°, (Un — U, vn — v))ExE-
From(13)we have

liminf 13 > 0. (19)

n—o00

Thus the relationgl7)—(19)and(16)imply [|(Un — U, vn — v)[|Z, ¢ — 0 asn — oo, i.e. the
sequence (un, vp)} converges strongly t@u, v) in E x E.
(ii) Now, we consider a sequenéeuy, vy)} from E x E which satisfieg11)and

(1 + I (un, va)llExE)A F (Un, vn) — O, (20)

asn — oo. As alove, we will prove that{(un, vn)} is bounded inE x E. Again, letz; €
dJe(Un, vn) suchthat||z;llexe = Az (Un, vn). Thus,(20)implies that

0
Jg (Un, vn; Un, vn) = —(1+ [[(Un, vn) lEXE) I ZhllEXE

for n large enough. Thereford,emma 2.1 the above inequality(11), (20) and(F2) imply that
for n large enough

2c+ 1> 2Je(Un, vn) — jg(un, Un; Un, tn)

= —2Fe(Un, vn) — (—}—E)O(Un, Un; Un, vn)

—/RN [2F (Un, vn) + FO(Un(X), vn(X); —Un(X), —vn(x))]dx

v

v

—'[RN [2F (Un, vn) + FL(Un(X), vn(X); —Un(X))

+ F2(Un(X), vn ()5 —onO)1dx = c2([lunlly + lvnll}).-
Hence, the sequences
{un}, {vn} are bounded in." (RN). (21)
SinceF (0, 0) = 0, from(7) we have that there exists > 0 such that

1
F(u,v) < [§(|u| +v]) + ca(julP~t + |v|p—1)} (lul + [v) (22)

for all (u, v) € R2. Therdore, from(22)

1
Slun, w12, g — JEUn, vn)

/ F(Un, Un)dx
RN

A

1
< I, v 1%, g + 2ca(lunllh + llonll ).
In conclusion, fon large enough

I (Un, vl g < 4(C+ 1) + 8ca(lunllp + llnllB). (23)
Now, we distinguish three cases.
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() Whenv € ]1p, 2*[. We have theinterpolation inequality
lullp < uli~tuly, — forallue LY@®RN) N LARN) (24)
with 1/p = (1—t)/v+t/2. Using the Sobolev embeddiigc HY(RN) — LSRN), (s e
[2, 2*]), from (21), (23) and(24) we obtain
I(Un, o) 2 g < 4+ D) + cslunllE + llnll )
< 4c+ 1)+ 2" Fos)(Un, v 1P ¢
wherecs > 0. Sincetp < 2, then{(up, vy)} is bounded inE x E.
(I Whenv € 12, p[. If N > 3, we have similarly
lullp < ulXYuls.  forallu e LY@®RN) N LZ (RN)

with 1/p = (1 —t)/v + t/2*. From thefact thatv > %(p — 2) we have agaitp < 2.
SinceE ¢ HIRN) — LS@®RMN), (s € [2,2%]) is continuous, a similar calculation as
above shows thaf(up, vn)} is bounded inE x E. If N = 2, thenv < p < v + 2.
Therefore

lullp < lulldtullt,,  forallue LY(R? NL""([R?)

withl/p= (1—t)/v+t/(v+2). Therestis similar to (1), using the continuous embedding
E c HY(R?) — LS(R?), (se [2, o0).
(1) Whenv = p. From(23)and(21)it follows that{(up, vn)} is bounded inE x E.
In conclusion, the sequené@un, vn)} is bounded inE x E in each case. Now, we can
follow the line of the proof of (i); the only minor modification is in the estimationl ,5)‘
where we us€20) instead of(12). This mmpletes the proof. O

Proposition 3.2. Let E # {0} be a closed subspace of RN) and suppose that a locally
Lipschitz function F: R? — R satisfies(F1)—(F3). If either

(i) (F% and(F®) hold or
(i) F isnon-negative andF?) holds for some € ]2, 2*[, then here existy > 0, p > 0 and
e € E sut that

Je,v)>=n  forall [(u,v)lexe =p (25)
and
Ie,e)llexe >p and  Je(ee) <0. (26)

Proof. In both cases, we have(0,0) = 0. To prove(25), we use(22) and the fact that the
functiont — (a' + bt)fl, t > 0 isnon-increasinga, b > 0). We have

1
Je(u.v) = Sli(u, g e —/RN F(u, v)dx

1 1 _ _

> Zl(u, v>||ZExE—/ ~(ul + [v]) + ca(uP~ 4 [Py [ (ul + Ju)dx
2 RN 8
1 2 1 2 p p

> Sl )IE e = 10 0IE e — 2ea(iullp + vl

1
21U I e — 2640 p(IUIIE + 1011E)

v
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p
2

v

1
21 IE e — 20acf ((IUIE + vIR)

4
Choosing||(u, v)||Exe = p > 0 anall enough, the number

1 _
n= <Z — 204C£F),<)p 2) ,02

will be strictly positive, due to the fact thgt > 2. Thus(25) holds. To prové26), we dstinguish
the two cases.

(I) When(F2) and (F®) hold.

1 -2
(— - 204C£p||(U, v)IIEX5> Ilu, VI g

We firstshow that
t*F(u,v) < F(tu,tv) forallt>1 and (u,v) € R% (27)
To this end, we fix arbitrarily(u, v) € R2. From the ®cond Chain Rule androposition 2.2
(i) we have

dtF(tu, tv) € aF (tu, tv) o (U, v) € 1F (tu, tv)u 4 d2F (tu, tv)v

forallt > O, whered; stands for the generalized gradient with respect ta R. Since
t > t7*F(tu, tv),t > Ois locdly Lipschitz then for allt > 0

(Y F(tu, tv)) = —at " LF(tu, tv) + t~8 F(tu, tv).
Therefore
HETCF(tu, tv)) €t H—aF(tu, tv) + tudiF (tu, tv) + tvdL F (tu, tv)] (28)

forallt > 0. Now,we fixt > 1. Due to the Lebourg’s mean value theorem &), there
exigst € 11, t[ suchthat

t7*F(tu, tv) — F(u,v) € 3t (t “F(ru, Tv))(t — 1)
C 1% Y—aF(tu, Tv) + UL F (TU, TV) + TV F (TU, TV)](t — 1).

Thus there exist € 0 F(ru, Tv) (i € {1, 2}), such hat

t™*F(tu, tv) — F(U, v) = =t HaF(zu, Tv) + wi(—=7u) + wi(—7v)](t — 1).
Using (FJ), we have

tF(tu, tv) — F(u,v) > —t ¢ YaF(zu, Tv) + FY(zu, tv; —7U)

+ F2(zu, tv; —tv)I(t — 1) > 0.
This leads exactly t¢27).
Now, we choose an elementy € E suchthat |uplle = 1. Due to (F>),

Jgn F(uo, ug)dx > 0. Moreover, by(27) we get

JE (tuo, tug) = t2 —/ F (tug, tug)dx

]RN
< t2 — ta/ F (ug, ug)dx — —oo
RN

ast — oo, becausex > 2. Thus, choosingo > p/+/2 large enough and denoting by
e =toup € E, we are led tq26).
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(I) When F is non-negative and:v“) holds for some € ]2, 2*.
We show that

F(tu, tv) > t°F(u, v) +

@2 QU+ o) — 1) (29)
v—2

forallt > 1 and(u,v) € R2 To this exd, we fix again(u,v) € R2. We define
K : 10, co[— R by
C2

v—2

Itis clear thatK is locally Lipschitz and a similar calculation to that(28) shows that
&K (1) C t73(=2F (tu, tv) + t[31F (tu, tv)u + 92F (tu, tv)v]} — cot"~3(Jul’ +|v]").

Using again Lebourg’s mean value theorem, fortatt 1 thereexigdst € 11, t[ suchthat
Kt) — K@) € gK(z)(t —1).

Moreover, there exista)f € 3 F(zu, v) (i € {1, 2}), such hat

K(t) =t 2F(tu, tv) — (qup¥ + o)t =2,

K(t) — K(1) = —t3[2F (zu, Tv) + w](—TU) 4+ wh(—70)
+ca(zul” + |To[")](t - 1).
From(F%), we have
K@) — K@) > —t’?’[ZF(tu, Tv) + Flo(ru, Tv; —TU) + on(ru, TV; —TV)
+c2(jzul” + |Tv[M)It - 1) > 0,

which leads us t¢29).
Letug € E suchthat|ug||e = 1. Thus, due to the choice ofand(29), we have

Je(tug, tug) = t2 — / F (tug, tug)dx
RN

2C
v—2

< t2 —/ t2F (U, ug)dx —
RN

2c
<2 22 (Y — t2)||ug||” — —oo,
v—2

(t” —tz)f |u|”dx
RN

ast — oo. Further we proceed as above[]
4. Proof of Theorems

Proof of Theorem 1.1. It is clear thatE = H}(RN) (introduced in(1)) is a cbsed subspace
of HY@®RN), which iscompactly embedded inP(RN) (see 7). ChoosingX = E x E and
h = Jg, thegeometric conditions (i) and (ii) frontheorem 2.1are verified forJg, due to
Proposition 3.9). Let » > 0 ande € E be the corresponding elements fr¢&b) and (26).
Definingc € R like in Theorem 2.1for the elemente,e) € E x E, we have that > .
By Proposition 3.{i), Je satisfies(PSc, so also(C).. Herce there exists at least one critical
point (u1, v1) € E x E of Jg, the citical valuec = Jg(us, v1) being grictly positive, which
means thatus, v1) cannot be (0,0). It is standard to see t4iN) acts linear isometrically on
HIRN) x HY®RN) and.7 is O(N)-invariant In view of Proposition 2.4and relation(10), we
may conclude thatuz, v1) will be a ciitical point of 7 on the whole spacel }(RN) x HL(RN).
Consequently, byProposition 2.3this elenent will be a weak solution ofS).
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WhenN = 4 or N > 6, the spacé&E = H¢ (RV) (introduced in(2)) is a cbsed subspace

of HY(®RN) and it is compactly embedded inP(RN) (see P, p. 455-457] or 19, p. 20]).
Moreover, the only radial function d-ﬂéN (RN) is 0 and the subgrouy of O(N) acts linear

isometrically onH1(RN). SinceF is even,7 is Gy-invariant (see for detail p. 456]). Now,
following the proof of the first part foE = HéN(RN) instead ofH(RN) and forGy instead

of O(N), we obtain a weak solutiofuz, v2) # (0, 0) of (S), with up, v2 € HéN(RN). Clearly,
(u1, v1) # (U2, v2), whichcompletes the proof. O

Proof of Theorem 1.2. The framework is the same as Tineorem 1.1lusing (i) instead of (i)
from Propositions 3.And3.2 O

Remark 4.1. We mention that our arguments also work for non-autonomous functions
RN x R? — R, providing thatF is radial in the variable € RN.
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