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Abstract

We consider the following variational inclusions system of the form

−�u + u ∈ ∂1F(u, v) in RN ,

−�v + v ∈ ∂2F(u, v) in RN ,

with u, v ∈ H1(RN ), where F : R2 → R is a locally Lipschitz function and∂i F(u, v) (i ∈ {1, 2})
are the partial generalized gradients in the sense of Clarke. Under various growth conditions on the
nonlinearity F we study the existence of nonzero weak solutions of the above system (in the sense of
hemivariational inequalities), which are critical points of an appropriate locally Lipschitz function defined
on H1(RN )× H1(RN ). Themain tool used in the paper is the principle of symmetric criticality for locally
Lipschitz functions.
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1. Introduction

This paper is devoted to the study of existence of nonzeroweak solutions for a class of
variational inclusions systems of the form
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−�u + u ∈ ∂1F(u, v) in R
N ,

−�v + v ∈ ∂2F(u, v) in R
N,

u, v ∈ H 1(RN),

(S)

whereN ≥ 2 andF : R
2 → R is a locally Lipschitzfunction. We denote by∂1F(u, v) the

partial generalized gradient ofF(·, v) at the pointu, andby ∂2F(u, v) that of F(u, ·) atv.
In recent years, nonlinear elliptic systems have been the objective of intensive investigations

by many authors, motivated by their theoretical and practicalimportance (see for instance [1,3,
4,8–10,16,18], and references therein).

Costa [7] studied a class of semilinear elliptic system of the form

−�u + a(x)u = Fu(x, u, v) in R
N ,

−�v + b(x)v = Fv(x, u, v) in R
N,

(C)

wherea, b : R
N → R are continuous, coercive functions such thata(x) ≥ a0 > 0 and

b(x) ≥ b0 > 0 for all x ∈ R
N andF ∈ C1(RN × R

2, R). Due tothe coercivityof functionsa
andb, the subspaceEa,b of H 1(RN, R

2) defined by

Ea,b =
{
(u, v) ∈ H 1(RN, R

2) :
∫
RN

(|∇u|2 + |∇v|2 + a(x)u2 + b(x)v2)dx < ∞
}

is compactly embedded inL2(RN , R
2). This makes possible the application of classical minimax

theorems with suitable compactness condition (Palais–Smale or Cerami), depending on the
behaviour ofF “at infinity” (see [7]), obtaining in this manner weak solutions of(C) in the
usualsense.

In our situation the picture is quite different. The difficulties in treating the system(S) arise
from at least two facts. Firstly, we have no such compact embedding as above, i.e. the embedding
H 1(RN) ↪→ Ls(RN) is not compact (withs ∈ [2, 2∗], where 2∗ = 2N

N−2 if N ≥ 3 and 2∗ = ∞
if N = 2). Secondly, the lack of differentiability of the nonlinear termF causes several technical
obstructions; in concrete problems may appear such a non-differentiable term.

Concerning the lack of compactness, our strategy comes from the works of Bartsch and de
Figueiredo [1] andWillem [19]. In [1], the following system is considered:

−�u + u = Fv(x, u, v) in R
N ,

−�v + v = Fu(x, u, v) in R
N ,

(BdF)

where F ∈ C1(RN × R
2, R) verifies some growth and symmetry conditions. The Fountain

theorem and a suitable compactness condition are applied, obtaining infinitely many (radial and
non-radial) solutions of(BdF). In the radial case, Bartsch and de Figueiredo used the fact that
the embeddingH 1

r (RN) ↪→ L p(RN) is compact forp ∈ ]2, 2∗[ (see [17]), whereH 1
r (RN) is

the subspace of the radially symmetric functions inH 1(RN), i.e.

H 1
r (RN) = {u ∈ H 1(RN) : gu = u for all g ∈ G = O(N)}, (1)

wheregu means(gu)(x) = u(g−1x) for all g ∈ O(N), u ∈ H 1(RN) and x ∈ R
N . In the

non-radial case, they used the ingenious construction of Bartsch and Willem [2] (see also [19]);
in dimensionsN = 4 andN ≥ 6, a subgroup ofO(N) (denoted byGN) is constructed such that

H 1
GN

(RN) = {u ∈ H 1(RN) : gu = u for all g ∈ GN} (2)
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is compactly embedded inL p(RN), p ∈ ]2, 2∗[ (see [2, p. 455–457]) and 0 is the only radial
function of it. We will use these embeddings in our arguments.

Because of the non-differentiability ofF , it is important to find an efficient method to
treat the system(S). This method relies on the theory of hemivariational inequalities (see [13,
14]), where instead of an inclusion (which involves the generalized gradient of a given locally
Lipschitz function) ahemivariational inequalityis considered. We treat(S) in the same spirit;
seeDefinition 1.1below.

Throughout the paper, we will make the following assumption onF .

(F1) There existc1 > 0 andp ∈ ]2, 2∗[ suchthat

|w1| + |w2| ≤ c1(|u| + |v| + |u|p−1 + |v|p−1), (3)

for all (u, v) ∈ R
2, andwi ∈ ∂i F(u, v), i ∈ {1, 2}.

Definition 1.1. If (u, v) ∈ H 1(RN) × H 1(RN) satisfies the followinghemivariational
inequalities system(HIS)∫

RN
(∇u∇w + uw)dx +

∫
RN

F0
1 (u(x), v(x); −w(x))dx ≥ 0 for all w ∈ H 1(RN),∫

RN
(∇v∇y + vy)dx +

∫
RN

F0
2 (u(x), v(x); −y(x))dx ≥ 0 for all y ∈ H 1(RN),

we say that(u, v) is aweak solutionof (S).

Here F0
1 (u, v; w) denotes the partial generalized directional derivative ofF(·, v) at the point

u ∈ R in the directionw ∈ R (see Section2). F0
2 (u, v; w) is defined in a similar way.

Remark 1.1. If F ∈ C1(R2, R) then(u, v) ∈ H 1(RN) × H 1(RN) solves (HIS) if andonly if it
is a weak solution (in the usual sense) of

−�u + u = Fu(u, v) in R
N ,

−�v + v = Fv(u, v) in R
N .

Therefore, the notion introduced inDefinition 1.1is natural. We mention that several papers deal
with thescalar case of the above problem; see e.g. Strauss [17] andBartsch and Willem [2], the
later one treating the non-autonomous case.

Our goal is to find weak solutions of(S) in the spirit of Definition 1.1. To do this, let us
introduce a further set of assumptions.

(F2) F is regular onR
2 (in the sense of Clarke [6]).

(F3)

lim|u|+|v|→0

max|∂i F(u, v)|
|u| + |v| = 0, i ∈ {1, 2}.

(F4
α ) There existsα > 2 such that

αF(u, v) + F0
1 (u, v; −u) + F0

2 (u, v; −v) ≤ 0

for all (u, v) ∈ R
2.

(F4
ν ) There existc2, ν > 0 such that

2F(u, v) + F0
1 (u, v; −u) + F0

2 (u, v; −v) ≤ −c2(|u|ν + |v|ν)
for all (u, v) ∈ R

2.
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(F5) F ≥ 0 andF(u, v) > 0 for all (u, v) 
= (0, 0).

To present our main results, we consider the Sobolev spaceH 1(RN) with the standard inner
product(u, v)1 = ∫

RN (∇u∇v+uv)dx and the corresponding norm‖u‖1 = √
(u, u)1. We define

the functionJ : H 1(RN) × H 1(RN) → R by

J (u, v) = 1

2
‖u‖2

1 + 1

2
‖v‖2

1 −
∫
RN

F(u, v)dx.

We will prove in Section2 that (due to(F1) and(F2)) J is a locally Lipschitz function and its
critical points (in the sense of Chang [5]) are weak solutions of(S). In orderto obtain critical
points ofJ , we first consider the spaceH 1

r (RN). Restricting J to H 1
r (RN) × H 1

r (RN), we
will verify the Palais–Smale condition (see Chang [5]), respectively the Cerami condition (see
Kourogenis and Papageorgiou [11]) in the cases(F4

α ), respectively(F4
ν ). Applying the Mountain

Pass Theorem proved by Kourogenis and Papageorgiou [11] (involving the Cerami condition for
locally Lipschitz functions), weare able to guarantee critical points of the restricted functionJ .
Using then the Principle of Symmetric Criticality of Palais [15] for locally Lipschitz functions,
proved by Krawcewicz and Marzantowicz [12], the above points will be critical points on the
whole spaceH 1(RN)×H 1(RN). With a minimal adjustment, using the “non-radial” construction
from (2), we can obtain further critical points ofJ in certain dimensions. More precisely, our
main results can be formulated as follows.

Theorem 1.1. If F : R
2 → R is a locally Lipschitz function satisfying(F1)–(F3), (F4

α ) and
(F5), then system(S) possesses at least one nonzero weak solution. If, in addition, N= 4 or
N ≥ 6 and F is even, then(S)has at least two nonzero weak solutions.

Theorem 1.2. Let F : R
2 → R be a non-negative locally Lipschitz function satisfying(F1)–

(F3). If (F4
ν ) holds for someν ∈ ] max{2, N

2 (p−2)}, 2∗[, then system(S)possesses at least one
nonzero weak solution. If, in addition, N= 4 or N ≥ 6 and F is even, then(S) has at least two
nonzero weak solutions.

Next we make some remarks about the hypotheses we considered.

Remark 1.2. The regularity ofF in the sense of Clarke (see Section2) is not very restrictive.
Indeed, the class of the regular functions is large, containing for example the continuously
differentiable, respectively the convexand locally Lipschitz functions (see [6, Proposition 2.3.6]).

Remark 1.3. It would be interesting to investigateunder which conditions it can be possible to
obtain infinitely many weak solutions of(S) like in [1]. Due to the lack of differentiability ofJ
this problem is more delicate. Therefore, at the moment, our investigations will be restricted only
to Theorems 1.1and1.2; a possible attempt will be considered in future.

Remark 1.4. The hypotheses(F4
α ) and (F4

ν ) are the non-smooth versions of the
“superquadraticity at infinity”, respectively the “nonquadraticity at infinity” ofF (see [7]).

Finally, we give some examples.

Example 1.1. Let F1(u, v) = |u|3+|v|3+|uv| 3
2 . ThenF1 ∈ C1(R2, R) satisfies each hypothesis

listed above forN ∈ {2, 3, 4, 5}, choosingp = α = ν = 3. Thus,Theorems 1.1and1.2can be
applied.
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Example 1.2. Let F2(u, v) = max{|u| 1
2 , |v| 1

2 }(|u| 5
2 +|v| 5

2 ). This function is alocally Lipschitz,
non-differentiable, convex function which satisfies(F1)–(F3), (F4

α ) and (F5) in dimensions
N ∈ {2, 3, 4, 5}, if we choose p = 3 andα = 5

2. Thus, Theorem 1.1can be applied. A
simple calculation shows thatF2 does not verify(F4

ν ) for any ν > 0. We mention that in the
differentiable case, Costa [7, Ex. 5)] constructed a function (of classC2) which is nonquadratic
and it is not superquadratic at infinity, in the sense of(F4

α ), respectively(F4
ν ).

Example 1.3. If we perturbF2 from Example 1.2by (u, v) 
→ |u|3 + |v|3, i.e. we define

F3(u, v) = F2(u, v) + |u|3 + |v|3,
thenF3 verifies(F1)–(F3) and(F4

ν ) in dimensionsN ∈ {2, 3, 4, 5}, choosingp = ν = 3 and
c2 = 1. Therefore,Theorem 1.2can be applied.

The paper is organized as follows. In Section2 the basic notions and preliminary results are
collected; in Section3 we investigate the Palais–Smale, Cerami and the geometric conditions
from the Mountain Pass Theorem (see [11]) for an appropriate function, while in Section4 we
proveTheorems 1.1and1.2.

2. Auxiliary results

Let (X, ‖ · ‖) be a real Banach space andX∗ its dual. A functionh : X → R is called locally
Lipschitz if each pointu ∈ X possesses a neighborhoodUu suchthat

|h(u1) − h(u2)| ≤ L‖u1 − u2‖, for all u1, u2 ∈ Uu,

for a constantL > 0 depending onUu. Thegeneralized gradient ofh at u ∈ X is defined as
being the subset ofX∗

∂h(u) = {x∗ ∈ X∗ : 〈x∗, z〉X ≤ h0(u; z) for all z ∈ X},
which isnonempty, convex andw∗-compact, where〈·, ·〉X is the duality pairing betweenX∗ and
X, h0(u; z) is the generalized directional derivative ofh at the pointu ∈ X along the direction
z ∈ X, namely

h0(u; z) = lim sup
w→u,t→0+

h(w + tz) − h(w)

t

(see [6]). Now, we list some fundamental properties of the generalized gradient and directional
derivative which will be used through the paper.

Proposition 2.1 ([6] ).

(i) (−h)0(u; z) = h0(u; −z) for all u, z ∈ X.
(ii) h0(u; z) = max{〈x∗, z〉X : x∗ ∈ ∂h(u)} for all u, z ∈ X.
(iii) Let j : X → R be a continuously differentiable function. Then∂ j (u) = { j ′(u)}, j 0(u; z)

coincides with〈 j ′(u), z〉X and(h + j )0(u; z) = h0(u; z) + 〈 j ′(u), z〉X for all u, z ∈ X.
(iv) (Lebourg’s mean value theorem) Let u andv be two points in X. Then there exists a point

w in the open segment between u andv, and x∗w ∈ ∂h(w) suchthat

h(u) − h(v) = 〈x∗
w, u − v〉X .
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(v) (Second Chain Rule) Let Y be a Banach space and j: Y → X acontinuously differentiable
function. Then h◦ j is locally Lipschitz and

∂(h ◦ j )(y) ⊆ ∂h( j (y)) ◦ j ′(y) for all y ∈ Y.

A point u ∈ X is a critical point of h if 0 ∈ ∂h(u), i.e. h0(u, w) ≥ 0 for all w ∈ X. In
this case,h(u) is acritical value of h. We defineλh(u) = inf{‖x∗‖X : x∗ ∈ ∂h(u)}. (We will
use the notation‖x∗‖X instead of‖x∗‖X∗ .) Of course, this infimum is attained, since∂h(u) is
w∗-compact.

The functionh satisfies the Palais–Smale condition at level c∈ R (denoted(PS)c), if every
sequence{xn} ⊂ X suchthath(xn) → c andλh(xn) → 0 contains a convergent subsequence in
X (see [5]).

The functionh satisfies the Cerami condition at level c∈ R (denoted(C)c), if every sequence
{xn} ⊂ X suchthath(xn) → c and(1 + ‖xn‖)λh(xn) → 0 contains a convergent subsequence
in X (see [11]).

It is clear that(PS)c implies(C)c.
We say thath is regular at u ∈ X (in the sense of Clarke [6]) if for all z ∈ X the usual

one-sided directional derivative

h′(u; z) = lim
t→0+

h(u + tz) − h(u)

t

exists andh′(u; z) = h0(u; z). h is regular on X, if it is regular in every pointu ∈ X.

Proposition 2.2. Let h : X × X → R be a locally Lipschitz function which is regular at
(u, v) ∈ X × X. Then

(i) ∂h(u, v) ⊆ ∂1h(u, v) × ∂2h(u, v), where∂1h(u, v) denotes the partial generalized gradient
of h(·, v) at the point u, and∂2h(u, v) that of h(u, ·) at v.

(ii) h0(u, v; w, z) ≤ h0
1(u, v; w) + h0

2(u, v; z) for all w, z ∈ X.

Proof. For (i), see [6, Proposition 2.3.15]. Now, let us fixw, z ∈ X. FromProposition 2.1(ii) it
follows that there existsx∗ ∈ ∂h(u, v) suchthat

h0(u, v; w, z) = 〈x∗, (w, z)〉X×X .

By (i) we havex∗ = (x∗
1, x∗

2), wherex∗
i ∈ ∂i h(u, v), andusing the definition of the generalized

gradient, we obtainh0(u, v; w, z) = 〈x∗
1, w〉X + 〈x∗

2, z〉X ≤ h0
1(u, v; w) + h0

2(u, v; z). �

Let E be a closed subspace ofH 1(RN). The inner product and the norm onE will be denoted
by (·, ·)E, respectively‖ · ‖E . The Cartesian productE × E will be also a Hilbert space which is
endowed with the inner product

((u, v), (w, y))E×E = (u, w)E + (v, y)E

for every u, v,w, y ∈ E. The norm is ‖(u, v)‖E×E = √
((u, v), (u, v))E×E . The norm on

L p(RN) is ‖u‖p = (
∫
R

|u|pdx)1/p. Now we prove a crucial result.

Lemma 2.1. Suppose that F: R
2 → R is a locally Lipschitz function which satisfies(F1) and

(F2). ThenF : H 1(RN) × H 1(RN) → R defined by

F(u, v) =
∫
RN

F(u, v)dx
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is locally Lipschitz. Moreover, if E is a closed subspace of H1(RN) and FE denotes the
restriction of F to E × E then

F0
E(u, v; w, y) ≤

∫
RN

F0(u(x), v(x); w(x), y(x))dx

for all u, v,w, y ∈ E.

Proof. First, let (u1, u2), (u3, u4) ∈ R
2 be fixed elements. Applying Lebourg’s mean value

theorem, we obtain aw ∈ ∂ F(ξ, ϑ) suchthat

F(u1, u2) − F(u3, u4) = 〈w, (u1 − u3, u2 − u4)〉R2,

where(ξ, ϑ) is in the open line segment between(u1, u2) and(u3, u4). Using the regularity of
F at (ξ, ϑ) andProposition 2.2(i), there existwi ∈ ∂i F(ξ, ϑ) (i ∈ {1, 2}), such that

F(u1, u2) − F(u3, u4) = w1(u1 − u3) + w2(u2 − u4). (4)

From relations(3) and(4), weobtain after a straightforward computation that

|F(u1, u2) − F(u3, u4)| ≤ c3

4∑
i=1

(|ui | + |ui |p−1)(|u1 − u3| + |u2 − u4|), (5)

wherec3 > 0 does not depend on the above points. Now, we fixui ∈ H 1(RN), (i ∈ {1, . . . , 4}).
Using (5), Holder’s inequality and the fact that the embeddingH 1(RN) ↪→ L p(RN) is
continuous (the embedding constant beingc1,p > 0), we have

|F(u1, u2) − F(u3, u4)| ≤ c3

4∑
i=1

(‖ui ‖1 + cp
1,p‖ui ‖p−1

1 )(‖u1 − u3‖1 + ‖u2 − u4‖1).

From this relation it follows thatF is locally Lipschitz onH 1(RN) × H 1(RN).
Now, we fix u, v,w, y ∈ E. Since F is continuous,F0(u(x), v(x); w(x), y(x)) can be

expressed as the upper limit of

F(z1 + tw(x), z2 + ty(x)) − F(z1, z2)

t
,

where t → 0+ taking rational values and(z1, z2) → (u(x), v(x)) taking values in a
countable dense subset ofR

2. Being the upper limit of measurable functions ofx ∈ R
N , the

function x 
→ F0(u(x), v(x); w(x), y(x)) is also measurable and it is fromL1(RN) (due to
(F1)).

E being a closed subspace of a separableHilbert space, there exist functionsz1
n, z2

n ∈ E and
numberstn → 0+ suchthat(z1

n, z2
n) → (u, v) in E × E and

F0
E(u, v; w, y) = lim

n→∞
FE(z1

n + tnw, z2
n + tny) − FE(z1

n, z2
n)

tn

and without loss of generality, we may assumez1
n(x) → u(x) andz2

n(x) → v(x) a.e.x ∈ R
N ,

asn → ∞.
We definegn : R

N → R ∪ {+∞} by

gn(x) = − F(z1
n(x) + tnw(x), z2

n(x) + tny(x)) − F(z1
n(x), z2

n(x))

tn
+ c3(|w(x)| + |y(x)|)
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×
[
|z1

n(x)| + |z2
n(x)| + |z1

n(x) + tnw(x)| + |z2
n(x) + tny(x)| + |z1

n(x)|p−1

+ |z2
n(x)|p−1 + |z1

n(x) + tnw(x)|p−1 + |z2
n(x) + tny(x)|p−1

]
.

The functiongn is measurable, anddue to(5) it is non-negative. From Fatou’s lemma we have

A =
∫
RN

lim sup
n→∞

[−gn(x)]dx ≥ lim sup
n→∞

∫
RN

[−gn(x)]dx = B.

Let gn = −Cn + Dn, where

Cn(x) = F(z1
n(x) + tnw(x), z2

n(x) + tny(x)) − F(z1
n(x), z2

n(x))

tn
and

Dn(x) = c3(|w(x)| + |y(x)|)
[
|z1

n(x)| + |z2
n(x)| + |z1

n(x) + tnw(x)|
+ |z2

n(x) + tny(x)| + |z1
n(x)|p−1 + |z2

n(x)|p−1 + |z1
n(x) + tnw(x)|p−1

+ |z2
n(x) + tny(x)|p−1

]
.

Let dn = ∫
RN

Dndx. Then

B = lim sup
n→∞

(∫
RN

Cndx − dn

)
. (6)

First, we obtain the following estimation:∣∣∣∣dn − 2c3

∫
RN

(|w| + |y|)
(
|u| + |v| + |u|p−1 + |v|p−1

)
dx

∣∣∣∣
≤ c3

{
(‖w‖E + ‖y‖E)(2‖z1

n − u‖E + tn‖w‖E + 2‖z2
n − v‖E + tn‖y‖E)

+ (p − 1)2p−2(‖w‖p + ‖y‖p)
[
‖z1

n − u‖p(‖z1
n‖p−2

p + ‖u‖p−2
p ) + (‖z1

n − u‖p

+ tn‖w‖p)((‖z1
n‖p + tn‖w‖p)p−2 + ‖u‖p−2

p ) + ‖z2
n − v‖p(‖z2

n‖p−2
p + ‖v‖p−2

p )

+ (‖z2
n − v‖p + tn‖y‖p)

(
(‖z2

n‖p + tn‖y‖p)
p−2 + ‖v‖p−2

p

)]}
.

Since the embeddingE ⊆ H 1(RN) ↪→ L p(RN) is continuous and‖z1
n−u‖E → 0, ‖z2

n−v‖E →
0 andtn → 0+, weobtain that the sequence{dn} is convergent, its limit being

lim
n→∞ dn = 2c3

∫
RN

(|w| + |y|)
(
|u| + |v| + |u|p−1 + |v|p−1

)
dx.

From(6), weobtain

B = lim sup
n→∞

FE(z1
n + tnw, z2

n + tny) − FE(z1
n, z2

n)

tn
− lim

n→∞ dn

= F0
E(u, v; w, y) − 2c3

∫
RN

(|w| + |y|)
(
|u| + |v| + |u|p−1 + |v|p−1

)
dx.

On the other hand,A ≤ A1 − A2, where

A1 =
∫
RN

lim sup
n→∞

Cn(x)dx and A2 =
∫
RN

lim inf
n→∞ Dn(x)dx.
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Sincez1
n(x) → u(x), z2

n(x) → v(x) a.e.x ∈ R
N andtn → 0+ we have

A2 = 2c3

∫
RN

(|w| + |y|)
(
|u| + |v| + |u|p−1 + |v|p−1

)
dx

and

A1 =
∫

RN
lim sup

n→∞
F(z1

n(x) + tnw(x), z2
n(x) + tny(x)) − F(z1

n(x), z2
n(x))

tn
dx

≤
∫

RN
lim sup

(z1,z2)→(u(x),v(x))

t→0+

F(z1 + tw(x), z2 + ty(x)) − F(z1, z2)

t
dx

=
∫
RN

F0(u(x), v(x); w(x), y(x))dx.

This completes the proof. �

Remark 2.1. If we suppose in addition that(F3) holds inLemma 2.1, then for all ε > 0 there
existscε > 0 such that

|F(u1, u2) − F(u3, u4)| ≤
(

ε

4∑
i=1

|ui | + cε

4∑
i=1

|ui |p−1

)
(|u1 − u3| + |u2 − u4|) (7)

for all ui ∈ R (i ∈ {1, 2, 3, 4}).
Indeed,(F3) implies that for allε > 0 thereexists δ = δ(ε) > 0 such that

|w1| + |w2| ≤ ε(|u| + |v|) (8)

for all wi ∈ ∂i F(u, v) (i ∈ {1, 2}), with |u| + |v| < δ. On theother hand, if|u| + |v| ≥ δ, from
(3) we have

|w1| + |w2| ≤ c1((|u| + |v|)p−1δ2−p + |u|p−1 + |v|p−1)

≤ c1(2p−1δ2−p + 1)(|u|p−1 + |v|p−1).

Combining the above estimation with(8) we find that:
for all ε > 0 thereexistscε > 0 such that

|w1| + |w2| ≤ ε(|u| + |v|) + cε(|u|p−1 + |v|p−1) (9)

for all (u, v) ∈ R
2 andwi ∈ ∂i F(u, v) (i ∈ {1, 2}). Now, if in (4) we use the estimation(9)

instead of(3), weobtain(7) which will be useful in Section3.

Since H 1(RN) � u 
→ 1
2‖u‖2

1 is of classC1, the function J is locally Lipschitz on
H 1(RN) × H 1(RN). Now, we are in the position to establish the following.

Proposition 2.3. If the function F satisfies(F1) and (F2) then every critical point(u, v) ∈
H 1(RN) × H 1(RN) of J is a weak solution of(S).

Proof. We will apply Lemma 2.1for E = H 1(RN). Since(u, v) is a critical point ofJ , for
everyw, y ∈ H 1(RN) we have

0 ≤ J 0(u, v; w, y) = (u, w)1 + (v, y)1 + (−F)0(u, v; w, y)

= (u, w)1 + (v, y)1 + F0(u, v; −w,−y)

≤ (u, w)1 + (v, y)1 +
∫
RN

F0(u(x), v(x); −w(x),−y(x))dx.
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UsingProposition 2.2(ii), we obtain

0 ≤ (u, w)1 + (v, y)1 +
∫
RN

F0
1 (u(x), v(x); −w(x))dx +

∫
RN

F0
2 (u(x), v(x); −y(x))dx.

Taking y = 0, respectivelyw = 0, in the above inequality, we are led to the required inequalities
from (HIS), i.e.(u, v) is a weak solution of(S). �

Now we recall some notions which will be used in Section4. Let G be a compact Lie
group which acts linear isometrically on the real Banach space(X, ‖ · ‖), i.e. the action
G × X → X : [g, u] 
→ gu is continuous, 1· u = u, (g1g2)u = g1(g2u) for everyg1, g2 ∈ G,
and the mapu 
→ gu is linear such that‖gu‖ = ‖u‖ for everyg ∈ G andu ∈ X.

A functionh : X → R is G-invariant if h(gu) = h(u) for all g ∈ G, u ∈ X. The action on
X induces an action of the same type on the dual spaceX∗, defined by(gx∗)(u) = x∗(gu) for
all g ∈ G, u ∈ X andx∗ ∈ X∗. We have‖gx∗‖ = ‖x∗‖ for all g ∈ G, x∗ ∈ X∗. Supposing that
h : X → R is a G-invariant, locally Lipschitz functional, theng∂h(u) = ∂h(gu) = ∂h(u) for
all g ∈ G, u ∈ X. Therefore, the functionu 
→ λh(u) is G-invariant (see [12]). Let

XG = {u ∈ X : gu = u for all g ∈ G}.
We recall thePrinciple of Symmetric Criticalityof Krawcewicz and Marzantowicz [12,

p. 1045], which will be crucial in the proof of our theorems.

Proposition 2.4. Assume that a compact Lie group G acts linear isometrically on a Banach
space X. If h: X → R is a G-invariant, locally Lipschitz functional and if u∈ XG is a critical
point of h restricted to XG, then u is a critical point of h.

If we endow the Cartesian productX×X with the norm‖(u, v)‖ = √‖u‖2 + ‖v‖2, u, v ∈ X,
thenG acts linear isometrically onX × X, where theactionG × (X × X) 
→ X × X is defined
by

g(u, v) = (gu, gv)

for all g ∈ G andu, v ∈ X. Moreover,

(X × X)G = {(u, v) ∈ X × X : g(u, v) = (u, v) for all g ∈ G} = XG × XG. (10)

Finally, we recall the following “strong” form of theMountain Pass Theoremwhich
involves the Cerami condition for locally Lipschitz functions, proved by Kourogenis and
Papageorgiou [11, Theorem 6].

Theorem 2.1. Let X be a Banach space, and h: X → R be a locally Lipschitz function with
h(0) = 0. Suppose that there exist a point e∈ X and constantsρ, η > 0 suchthat

(i) h(u) ≥ η for all u ∈ X with ‖u‖ = ρ,
(ii) ‖e‖ > ρ and h(e) ≤ 0,
(iii) h satisfies(C)c, with

c = inf
γ∈Γ

max
t∈[0,1]

h(γ (t)),

where

Γ = {γ ∈ C([0, 1], X) : γ (0) = 0, γ (1) = e}.
Then c≥ η and c∈ R is a critical value of h.
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3. Palais–Smale and geometric conditions

In this section we study the Palais–Smale and Cerami conditions forJ , which will be
restricted to a certain subspace ofH 1(RN) × H 1(RN), and we investigate thegeometric
conditions of the Mountain Pass Theorem.

Proposition 3.1. Suppose that F: R
2 → R is a locally Lipschitz function which satisfies(F1)–

(F3). Let E be aclosed subspace of H1(RN) which is compactly embedded in Lp(RN) and
denote byJE the restriction ofJ to E × E. Then:

(i) JE satisfies(PS)c for all c > 0 when(F4
α ) holds.

(ii) JE satisfies(C)c for all c > 0 when F is non-negative and(F4
ν ) holds for someν ∈

] max{2, N
2 (p − 2)}, 2∗[.

Proof. (i) Let {(un, vn)} be a sequence fromE × E suchthat

JE(un, vn) → c > 0, (11)

λJE (un, vn) → 0, (12)

as n → ∞. We prove that{(un, vn)} is bounded inE × E. For everyn ∈ N there exists
z∗

n ∈ ∂JE(un, vn) suchthat‖z∗
n‖E×E = λJE (un, vn). Clearly,(12) implies that

J 0
E(un, vn; un, vn) ≥ 〈z∗

n, (un, vn)〉E×E

≥ −‖z∗
n‖E×E‖(un, vn)‖E×E ≥ −α‖(un, vn)‖E×E

for n large enough. UsingLemma 2.1, the above estimation, (11) and(F4
α ), we get that for n

large enough

c + 1 + ‖(un, vn)‖E×E ≥ JE(un, vn) − 1

α
J 0

E(un, vn; un, vn)

≥ 1

2
(‖un‖2

E + ‖vn‖2
E) − FE(un, vn) − 1

α
[(un, un)E + (vn, vn)E

+ (−FE)0(un, vn; un, vn)]
=
(

1

2
− 1

α

)
‖(un, vn)‖2

E×E − FE(un, vn) − 1

α
F0

E(un, vn; −un,−vn)

≥
(

1

2
− 1

α

)
‖(un, vn)‖2

E×E −
∫
RN

[
F(un, vn)

+ 1

α
F0(un(x), vn(x); −un(x),−vn(x))

]
dx ≥

(
1

2
− 1

α

)
‖(un, vn)‖2

E×E

−
∫
RN

[
F(un, vn) + 1

α

(
F0

1 (un(x), vn(x); −un(x))

+ F0
2 (un(x), vn(x); −vn(x))

)]
dx ≥

(
1

2
− 1

α

)
‖(un, vn)‖2

E×E .

This shows that{(un, vn)} is bounded inE× E. Sincethe embeddingE ↪→ L p(RN) is compact,
passing to a subsequence if necessary, we may suppose that

(un, vn) → (u, v) weakly in E × E, (13)

un → u strongly in L p(RN), (14)

vn → v strongly in L p(RN). (15)
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On the otherhand, we have

J 0
E(un, vn; u − un, v − vn) = (un, u − un)E + (vn, v − vn)E

+F0
E(un, vn; un − u, vn − v),

J 0
E(u, v; un − u, vn − v) = (u, un − u)E + (v, vn − v)E + F0

E(u, v; u − un, v − vn).

Adding these relations, this yields

‖(un − u, vn − v)‖2
E×E = ‖un − u‖2

E + ‖vn − v‖2
E = I 1

n − I 2
n − I 3

n , (16)

where

I 1
n = F0

E(un, vn; un − u, vn − v) + F0
E(u, v; u − un, v − vn),

I 2
n = J 0

E(un, vn; u − un, v − vn) and I 3
n = J 0

E(u, v; un − u, vn − v).

Now, we will estimateI i
n (i ∈ {1, 2, 3}). UsingLemma 2.1, Proposition 2.1(ii) and (9), we

obtain

I 1
n ≤

∫
RN

[F0(un(x), vn(x); un(x) − u(x), vn(x) − v(x))

+ F0(u(x), v(x); u(x) − un(x), v(x) − vn(x))]dx

≤
∫
RN

[|F0
1 (un(x), vn(x); un(x) − u(x))| + |F0

2 (un(x), vn(x); vn(x) − v(x))|
+ |F0

1 (u(x), v(x); u(x) − un(x))| + |F0
2 (u(x), v(x); v(x) − vn(x))|]dx

=
∫
RN

| max{w1
n(un(x) − u(x)) : w1

n ∈ ∂1F(un(x), vn(x))}|dx

+
∫
RN

| max{w2
n(vn(x) − v(x)) : w2

n ∈ ∂2F(un(x), vn(x))}|dx

+
∫
RN

| max{w1(u(x) − un(x)) : w1 ∈ ∂1F(u(x), v(x))}|dx

+
∫
RN

| max{w2(v(x) − vn(x)) : w2 ∈ ∂2F(u(x), v(x))}|dx

≤
∫
RN

[ε(|un| + |vn|) + cε(|un|p−1 + |vn|p−1)](|un − u| + |vn − v|)dx

+
∫
RN

[ε(|u| + |v|) + cε(|u|p−1 + |v|p−1)](|u − un| + |v − vn|)dx

≤ 4ε(‖un‖2
E + ‖vn‖2

E + ‖u‖2
E + ‖v‖2

E) + cε(‖un‖p−1
p + ‖vn‖p−1

p

+ ‖u‖p−1
p + ‖v‖p−1

p )(‖u − un‖p + ‖v − vn‖p).

Since the sequences{un} and{vn} are bounded inE and keeping in mind the relations(14) and
(15), from the arbitrariness ofε > 0 weobtain

lim sup
n→∞

I 1
n ≤ 0. (17)

Since

I 2
n = J 0

E(un, vn; u − un, v − vn) ≥ 〈z∗
n, (u − un, v − vn)〉E×E

≥ −‖z∗
n‖E×E‖(u − un, v − vn)‖E×E,
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then due to(12), we have

lim inf
n→∞ I 2

n ≥ 0. (18)

Finally, let us fix an elementz∗ ∈ ∂JE(u, v). Thus

I 3
n ≥ 〈z∗, (un − u, vn − v)〉E×E .

From(13)we have

lim inf
n→∞ I 3

n ≥ 0. (19)

Thus the relations(17)–(19)and(16) imply ‖(un − u, vn − v)‖2
E×E → 0 asn → ∞, i.e. the

sequence{(un, vn)} converges strongly to(u, v) in E × E.
(ii) Now, we consider a sequence{(un, vn)} from E × E which satisfies(11)and

(1 + ‖(un, vn)‖E×E)λJE (un, vn) → 0, (20)

as n → ∞. As above, we will prove that{(un, vn)} is bounded inE × E. Again, let z∗
n ∈

∂JE(un, vn) suchthat‖z∗
n‖E×E = λJE (un, vn). Thus,(20) implies that

J 0
E(un, vn; un, vn) ≥ −(1 + ‖(un, vn)‖E×E)‖z∗

n‖E×E

for n large enough. Therefore,Lemma 2.1, theabove inequality,(11), (20) and(F4
ν ) imply that

for n large enough

2c + 1 ≥ 2JE(un, vn) − J 0
E(un, vn; un, vn)

= −2FE(un, vn) − (−FE)0(un, vn; un, vn)

≥ −
∫
RN

[2F(un, vn) + F0(un(x), vn(x); −un(x),−vn(x))]dx

≥ −
∫
RN

[2F(un, vn) + F0
1 (un(x), vn(x); −un(x))

+ F0
2 (un(x), vn(x); −vn(x))]dx ≥ c2(‖un‖ν

ν + ‖vn‖ν
ν).

Hence, the sequences

{un}, {vn} are bounded inLν(RN). (21)

SinceF(0, 0) = 0, from(7) we have that there existsc4 > 0 such that

F(u, v) ≤
[

1

8
(|u| + |v|) + c4(|u|p−1 + |v|p−1)

]
(|u| + |v|) (22)

for all (u, v) ∈ R
2. Therefore, from(22)

1

2
‖(un, vn)‖2

E×E − JE(un, vn) =
∫
RN

F(un, vn)dx

≤ 1

4
‖(un, vn)‖2

E×E + 2c4(‖un‖p
p + ‖vn‖p

p).

In conclusion, forn large enough

‖(un, vn)‖2
E×E ≤ 4(c + 1) + 8c4(‖un‖p

p + ‖vn‖p
p). (23)

Now, we distinguish three cases.
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(I) Whenν ∈ ]p, 2∗[. We have theinterpolation inequality

‖u‖p ≤ ‖u‖1−t
ν ‖u‖t

2 for all u ∈ Lν(RN) ∩ L2(RN) (24)

with 1/p = (1− t)/ν+ t/2. Using the Sobolev embeddingE ⊂ H 1(RN) ↪→ Ls(RN), (s ∈
[2, 2∗[), from (21), (23)and(24)we obtain

‖(un, vn)‖2
E×E ≤ 4(c + 1) + c5(‖un‖tp

E + ‖vn‖tp
E )

≤ 4(c + 1) + 21− tp
2 c5‖(un, vn)‖tp

E×E,

wherec5 > 0. Sincetp < 2, then{(un, vn)} is bounded inE × E.
(II) Whenν ∈ ]2, p[. If N ≥ 3, we have similarly

‖u‖p ≤ ‖u‖1−t
ν ‖u‖t

2∗ for all u ∈ Lν(RN) ∩ L2∗
(RN)

with 1/p = (1 − t)/ν + t/2∗. From thefact thatν > N
2 (p − 2) we have againtp < 2.

Since E ⊂ H 1(RN) ↪→ Ls(RN), (s ∈ [2, 2∗]) is continuous, a similar calculation as
above shows that{(un, vn)} is bounded inE × E. If N = 2, thenν < p < ν + 2.
Therefore

‖u‖p ≤ ‖u‖1−t
ν ‖u‖t

ν+2 for all u ∈ Lν(R2) ∩ Lν+2(R2)

with 1/p = (1− t)/ν + t/(ν +2). The rest is similar to (I), using the continuous embedding
E ⊂ H 1(R2) ↪→ Ls(R2), (s ∈ [2,∞[).

(III) Whenν = p. From(23)and(21) it follows that{(un, vn)} is bounded inE × E.
In conclusion, the sequence{(un, vn)} is bounded inE × E in each case. Now, we can

follow the line of the proof of (i); the only minor modification is in the estimation ofI 2
n ,

where we use(20) instead of(12). This completes the proof. �

Proposition 3.2. Let E 
= {0} be a closed subspace of H1(RN) and suppose that a locally
Lipschitz function F: R

2 → R satisfies(F1)–(F3). If either

(i) (F4
α ) and(F5) hold or

(ii) F is non-negative and(F4
ν ) holds for someν ∈ ]2, 2∗[, then there existη > 0, ρ > 0 and

e ∈ E such that

JE(u, v) ≥ η for all ‖(u, v)‖E×E = ρ (25)

and

‖(e, e)‖E×E > ρ and JE(e, e) ≤ 0. (26)

Proof. In both cases, we haveF(0, 0) = 0. To prove(25), we use(22) and the fact that the

functiont 
→ (at + bt)
1
t , t > 0 isnon-increasing(a, b ≥ 0). We have

JE(u, v) = 1

2
‖(u, v)‖2

E×E −
∫
RN

F(u, v)dx

≥ 1

2
‖(u, v)‖2

E×E −
∫
RN

[
1

8
(|u| + |v|) + c4(|u|p−1 + |v|p−1)

]
(|u| + |v|)dx

≥ 1

2
‖(u, v)‖2

E×E − 1

4
‖(u, v)‖2

E×E − 2c4(‖u‖p
p + ‖v‖p

p)

≥ 1

4
‖(u, v)‖2

E×E − 2c4cp
1,p(‖u‖p

E + ‖v‖p
E)
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≥ 1

4
‖(u, v)‖2

E×E − 2c4cp
1,p(‖u‖2

E + ‖v‖2
E)

p
2

=
(

1

4
− 2c4cp

1,p‖(u, v)‖p−2
E×E

)
‖(u, v)‖2

E×E .

Choosing‖(u, v)‖E×E = ρ > 0 small enough, the number

η =
(

1

4
− 2c4cp

1,pρ
p−2

)
ρ2

will be strictly positive, due to the fact thatp > 2. Thus(25)holds. To prove(26), we distinguish
the two cases.

(I) When(F4
α ) and(F5) hold.

We firstshow that

tα F(u, v) ≤ F(tu, tv) for all t > 1 and (u, v) ∈ R
2. (27)

To this end, we fix arbitrarily(u, v) ∈ R
2. From the Second Chain Rule andProposition 2.2

(i) we have

∂t F(tu, tv) ⊆ ∂ F(tu, tv) ◦ (u, v) ⊆ ∂1F(tu, tv)u + ∂2F(tu, tv)v

for all t > 0, where∂t stands for the generalized gradient with respect tot ∈ R. Since
t 
→ t−α F(tu, tv), t > 0 is locally Lipschitz then for allt > 0

∂t (t
−α F(tu, tv)) = −αt−α−1F(tu, tv) + t−α∂t F(tu, tv).

Therefore

∂t (t
−α F(tu, tv)) ⊆ t−α−1[−αF(tu, tv) + tu∂1F(tu, tv) + tv∂2F(tu, tv)] (28)

for all t > 0. Now,we fix t > 1. Due to the Lebourg’s mean value theorem and(28), there
exists τ ∈ ]1, t[ suchthat

t−α F(tu, tv) − F(u, v) ∈ ∂t (τ
−α F(τu, τv))(t − 1)

⊆ τ−α−1[−αF(τu, τv) + τu∂1F(τu, τv) + τv∂2F(τu, τv)](t − 1).

Thus there existwτ
i ∈ ∂i F(τu, τv) (i ∈ {1, 2}), such that

t−α F(tu, tv) − F(u, v) = −τ−α−1[αF(τu, τv) + wτ
1(−τu) + wτ

2(−τv)](t − 1).

Using(F4
α ), we have

t−α F(tu, tv) − F(u, v) ≥ −τ−α−1[αF(τu, τv) + F0
1 (τu, τv; −τu)

+ F0
2 (τu, τv; −τv)](t − 1) ≥ 0.

This leads exactly to(27).
Now, we choose an elementu0 ∈ E such that ‖u0‖E = 1. Due to (F5),∫
RN F(u0, u0)dx > 0. Moreover, by(27)we get

JE(tu0, tu0) = t2 −
∫
RN

F(tu0, tu0)dx

≤ t2 − tα
∫
RN

F(u0, u0)dx → −∞

as t → ∞, becauseα > 2. Thus, choosingt0 > ρ/
√

2 large enough and denoting by
e = t0u0 ∈ E, we are led to(26).
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(II) When F is non-negative and(F4
ν ) holds for someν ∈ ]2, 2∗[.

We show that

F(tu, tv) ≥ t2F(u, v) + c2

ν − 2
(|u|ν + |v|ν)(tν − t2) (29)

for all t > 1 and (u, v) ∈ R
2. To this end, we fix again(u, v) ∈ R

2. We define
K : ]0,∞[→ R by

K (t) = t−2F(tu, tv) − c2

ν − 2
(|u|ν + |v|ν)tν−2.

It is clear thatK is locally Lipschitz and a similar calculation to that in(28)shows that

∂t K (t) ⊆ t−3{−2F(tu, tv) + t[∂1F(tu, tv)u + ∂2F(tu, tv)v]} − c2tν−3(|u|ν+|v|ν).
Using again Lebourg’s mean value theorem, for allt > 1 thereexists τ ∈ ]1, t[ suchthat

K (t) − K (1) ∈ ∂t K (τ )(t − 1).

Moreover, there existswτ
i ∈ ∂i F(τu, τv) (i ∈ {1, 2}), such that

K (t) − K (1) = −τ−3[2F(τu, τv) + wτ
1(−τu) + wτ

2(−τv)

+ c2(|τu|ν + |τv|ν)](t − 1).

From(F4
ν ), we have

K (t) − K (1) ≥ −τ−3[2F(τu, τv) + F0
1 (τu, τv; −τu) + F0

2 (τu, τv; −τv)

+ c2(|τu|ν + |τv|ν)](t − 1) ≥ 0,

which leads us to(29).
Let u0 ∈ E suchthat‖u0‖E = 1. Thus, due to the choice ofν and(29), we have

JE(tu0, tu0) = t2 −
∫
RN

F(tu0, tu0)dx

≤ t2 −
∫
RN

t2F(u0, u0)dx − 2c2

ν − 2
(tν − t2)

∫
RN

|u0|νdx

≤ t2 − 2c2

ν − 2
(tν − t2)‖u0‖ν

ν → −∞,

ast → ∞. Further we proceed as above.�

4. Proof of Theorems

Proof of Theorem 1.1. It is clear thatE = H 1
r (RN) (introduced in(1)) is a closed subspace

of H 1(RN), which iscompactly embedded inL p(RN) (see [17]). ChoosingX = E × E and
h = JE, the geometric conditions (i) and (ii) fromTheorem 2.1are verified forJE, due to
Proposition 3.2(i). Let η > 0 ande ∈ E be the corresponding elements from(25) and(26).
Defining c ∈ R like in Theorem 2.1for the element(e, e) ∈ E × E, we have thatc ≥ η.
By Proposition 3.1(i), JE satisfies(PS)c, so also(C)c. Hence there exists at least one critical
point (u1, v1) ∈ E × E of JE, the critical valuec = JE(u1, v1) being strictly positive, which
means that(u1, v1) cannot be (0,0). It is standard to see thatO(N) acts linear isometrically on
H 1(RN) × H 1(RN) andJ is O(N)-invariant. In view of Proposition 2.4and relation(10), we
may conclude that(u1, v1) will be a critical point ofJ on the whole spaceH 1(RN) × H 1(RN).
Consequently, byProposition 2.3, this element will be a weak solution of(S).
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When N = 4 or N ≥ 6, the spaceE = H 1
GN

(RN) (introduced in(2)) is a closed subspace

of H 1(RN) and it is compactly embedded inL p(RN) (see [2, p. 455–457] or [19, p. 20]).
Moreover, the only radial function ofH 1

GN
(RN) is 0 and the subgroupGN of O(N) acts linear

isometrically onH 1(RN). SinceF is even,J is GN -invariant (see for detail [2, p. 456]). Now,
following the proof of the first part forE = H 1

GN
(RN) instead ofH 1

r (RN) and forGN instead

of O(N), weobtain a weak solution(u2, v2) 
= (0, 0) of (S), with u2, v2 ∈ H 1
GN

(RN). Clearly,
(u1, v1) 
= (u2, v2), whichcompletes the proof. �

Proof of Theorem 1.2. The framework is the same as inTheorem 1.1, using (ii) instead of (i)
from Propositions 3.1and3.2. �

Remark 4.1. We mention that our arguments also work for non-autonomous functionsF :
R

N × R
2 → R, providing thatF is radial in the variablex ∈ R

N .
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