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Abstract

In this paper we consider the differential inclusion problem

⎧⎨
⎩

−�pu + |u|p−2u ∈ �(x)�F(u(x)), x ∈ RN,

u ∈ W1,p(RN),

(DI)

where 2�N < p < + ∞, � ∈ L1(RN) ∩ L∞(RN) is radially symmetric, and �F stands for the
generalized gradient of a locally Lipschitz function F : R → R. Under suitable oscillatory
assumptions on the potential F at zero or at infinity, we show the existence of infinitely many,
radially symmetric solutions of (DI). No symmetry requirement on F is needed. Our approach
is based on a non-smooth Ricceri-type variational principle, developed by Marano and Motreanu
(J. Differential Equations 182 (2002) 108–120).
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1. Introduction and main results

Let � be an open domain in RN and consider the problem,

{ −�pu + |u|p−2u = �(x)f (u) in �,

u ∈ W 1,p(�),
(P�)

where 1 < p < +∞, �p(·) = div(|∇(·)|p−2∇(·)) is the p-Laplacian, � ∈ L1(�), and
f : R → R is a (not necessarily continuous) function. When � is bounded, (P�)

has been extensively studied; for a comprehensive treatment, as well as for updated
list of references we refer the reader to the very recent monograph of Gasiński and
Papageorgiou [8].

In the celebrated work [16], Ricceri elaborated a general variational principle (for
Gâteaux differentiable functionals) which was successfully applied in the paper [17],
in order to treat (P�) subjected to the Neumann boundary condition whenever p >

N . Marano and Motreanu [14] extended Ricceri’s principle to a large class of non-
differentiable functionals, applying their abstract result to a Neumann problem for an
elliptic variational–hemivariational inequality which originates from (P�). By means of
[14], Candito [5] studied (P�) (with Neumann boundary condition as well) when the
nonlinearity f may possesses uncountable discontinuities. Through [16], Cammaroto
et al. [4] treated a version of (P�) subjected to Dirichlet boundary condition. The
aforementioned papers [4,5,14,17] have the following common features: p > N ; the
domain � is bounded; and, without any symmetry requirement on the nonlinearity (f in
(P�)), infinitely many solutions are guaranteed for the studied problems. These results
were achieved by providing the nonlinearity with a suitable oscillatory behavior. We
point out that in their arguments, the compactness of embedding W 1,p(�) ↪→ C0(�)

(p > N) was indispensable.
A natural question arises: can we establish qualitatively similar result(s) studying

(P�), when � is allowed to be unbounded? The main objective of this paper, is to
give an affirmative answer in the case when � = RN , N �2. Unlike to bounded
domains, no compact embedding is available for W 1,p(RN); although the embedding
W 1,p(RN) ↪→ L∞(RN) is continuous due to Morrey’s theorem (p > N ), it is far to be
compact. However, the subspace of radially symmetric functions of W 1,p(RN), denoted
further by W

1,p
r (RN), can be embedded compactly into L∞(RN) whenever 2�N<

p<+∞, (cf. Theorem 3.1); this result constitutes the key point of our investigations.
For N > p = 2 (�p ≡ �), problem (PRN ) has been extensively studied, see

[1,2,18,19] (f continuous); and [9,11] (f is allowed to be discontinuous). In the case
N > p �= 2, important contributions to (PRN ) can be found in [12].

We emphasize that in our approach, no continuity hypothesis will be required on the
function f . So, (PRN ) need not has a solution. To avoid this situation, we consider
such functions f which are locally essentially bounded and we ‘fill the discontinuity
gaps’ of f , replacing f (·) by an interval [f (·), f (·)], where

f (s) = lim
�→0+ essinf |t−s|<� f (t) and f (s) = lim

�→0+ esssup|t−s|<� f (t). (1)
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In this way, instead of (PRN ) we are dealing with a set-valued problem. On the other
hand, it is well known that if F(s) = ∫ s

0 f (t) dt with f ∈ L∞
loc(R), then F becomes

locally Lipschitz and �F(s) = [f (s), f (s)], for every s ∈ R (see [6], [15, Proposition
1.7]), where �F(s) stands for the generalized gradient of F at s ∈ R. This fact motivates
the formulation of the differential inclusion problem:

{ −�pu + |u|p−2u ∈ �(x)�F(u(x)), x ∈ RN,

u ∈ W 1,p(RN),
(DI)

where F : R → R is an arbitrary locally Lipschitz function. By a solution of (DI) it
will be understood an element u ∈ W 1,p(RN) for which there corresponds a mapping
RN 	 x 
→ �x with �x ∈ �F(u(x)) for almost every x ∈ RN having the property that
for every v ∈ W 1,p(RN), the function x 
→ �(x)�xv(x) belongs to L1(RN) and

∫
RN

(|∇u|p−2∇u∇v + |u|p−2uv) dx =
∫

RN
�(x)�xv(x) dx. (2)

In particular, if f is continuous and F is its primitive, as above, then �F(s) = {f (s)}
and the solutions of (DI) are exactly the weak solutions of (PRN ), cf. (2); thus, the
formulation of (DI) is completely justified.

For l = 0 or l = +∞, set

Fl := lim sup
|�|→l

F (�)

|�|p . (3)

Problem (DI) will be studied in the following four cases:

• 0 < Fl < +∞, whenever l = 0 or l = +∞ (see Theorem 2.1); and
• Fl = +∞, whenever l = 0 or l = +∞ (see Theorem 2.2).

In all the cases, under further additional assumptions, the compactness result (Theorem
3.1) makes possible the application of a particular form of [14, Theorem 1.1]. In this
way, we obtain a sequence of critical points (in the sense of Chang [6]) of the energy
functional associated to (DI), which is restricted to W

1,p
r (RN). Applying then the non-

smooth version of the principle of symmetric criticality (see [10]), these points will be
as well critical points of the original functional, thus solutions of (DI), cf. Proposition
3.1. We emphasize that our results seem to be new even in the ‘smooth’ case, i.e.,
when we are finding solutions for (PRN ) assuming the continuity of f .

The organization of the paper is as follows. In Section 2, we state the main results. In
Section 3 we prove an embedding theorem, and a non-smooth Ricceri-type variational
principle is recalled, specializing as well this abstract framework to our appropriate
setting. In Sections 4 and 5 we prove Theorems 2.1 and 2.2, respectively, while in
Section 6 we give some examples showing the applicability of our results.
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Notations

• Lp(�) is the usual Lebesgue space, with norm ‖u‖Lp(�) = (∫
� |u|p)1/p, 1�p <

+∞, and ‖u‖L∞(�) = esssupx∈�|u(x)|. When � = RN , we write ‖ · ‖Lp .
• W 1,p(�) is the usual Sobolev space, endowed with the norm ‖u‖W 1,p(�) =

(‖∇u‖p

Lp(�)
+ ‖u‖p

Lp(�)
)1/p. If � = RN , we write ‖u‖W 1,p .

• “⇀’’ means weak convergence, “→” strong convergence.
• BN(y, r) and BN [y, r] denote the open and closed N-dimensional balls with center

y ∈ RN and radius r > 0, respectively.

2. Main results

We say that a function h : RN → R is radially symmetric if h(gx) = h(x) for
every g ∈ O(N), and x ∈ RN . (Here, O(N) denotes the orthogonal group of RN .)
Throughout the paper, we assume that

(H) • F : R → R is locally Lipschitz, F(0) = 0, and F(s)�0, ∀s ∈ R;
• � ∈ L1(RN) ∩ L∞(RN) is radially symmetric, and �(x)�0, ∀x ∈ RN .

The main results of this paper are as follow.

Theorem 2.1 (The case 0 < Fl < +∞). Let l = 0 or l = +∞, and let 2�N < p <

+∞. Let F : R → R and � : RN → R be two functions which satisfy the hypotheses
(H) and 0 < Fl < +∞. Assume that ‖�‖L∞Fl > 2Np−1 and there exists a number
�l ∈]2N(pFl)

−1, ‖�‖L∞[ such that

2

(2−Np�lFl − 1)1/p
< sup{r : meas(BN(0, r) \ �−1(]�l , +∞[)) = 0}. (4)

Assume further that there are sequences {ak} and {bk} in ]0, +∞[ with ak < bk ,
limk→+∞ bk = l, limk→+∞ bk

ak
= +∞ such that

sup{sign(s)� : � ∈ �F(s), |s| ∈]ak, bk[}�0. (5)

Then, problem (DI) possesses a sequence {un} of solutions which are radially symmetric
and

lim
n→+∞ ‖un‖W 1,p = l.

In addition, if F(s) = 0 for every s ∈]−∞, 0[, then the elements un are non-negative.
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Theorem 2.2 (The case Fl = +∞). Let l = 0 or l = +∞, and let 2�N < p < +∞.
Let F : R → R and � : RN → R be two functions which satisfy (H) and Fl = +∞.
Assume that ‖�‖L∞ > 0, and there exist � > 0 and �l ∈]0, ‖�‖L∞[ such that

meas(BN(0, �) \ �−1(]�l , +∞[)) = 0 (6)

and there are sequences {ak} and {bk} in ]0, +∞[ with ak < bk , limk→+∞ bk = l,
limk→+∞ bk

ak
= +∞ such that

sup{sign(s)� : � ∈ �F(s), |s| ∈]ak, bk[}�0

and

lim sup
k→+∞

max[−ak,ak] F
b

p
k

< (pc
p∞‖�‖L1)

−1, (7)

where c∞ is the embedding constant of W 1,p(RN) ↪→ L∞(RN). Then the conclusions
of Theorem 2.1 hold.

Remark 2.1. Relation (4), as well as (6), imply that � does not vanish in certain
neighborhoods of the origin. By (5), one can deduce in particular that F is non-
decreasing on [−bk, −ak] and it is non-increasing on [ak, bk]. This fact, together with
Fl > 0 gives rise to an oscillatory behavior of the potential F at zero or at infinity.

Remark 2.2. In Theorem 2.2 the embedding constant c∞ of W 1,p(RN) ↪→ L∞(RN)

appears explicitly. For applications, it is worth to point out an upper bound of it. After
elementary estimations (see [3]), one certainly has c∞ �2p(p − N)−1.

Remark 2.3. Every function u ∈ W 1,p(RN) (p > N) admits a continuous representa-
tion, see [3, p. 166]; in the sequel, we will replace u by this element.

3. Auxiliary results

3.1. A key embedding result

The action of the orthogonal group O(N) on W 1,p(RN) can be defined by (gu)(x) =
u(g−1x), for every g ∈ O(N), u ∈ W 1,p(RN), x ∈ RN . It is clear that this group acts
linearly and isometrically; in particular ‖gu‖W 1,p = ‖u‖W 1,p , for every g ∈ O(N) and
u ∈ W 1,p(RN). Defining the subspace of radially symmetric functions of W 1,p(RN) by

W
1,p
r (RN) = {u ∈ W 1,p(RN) : gu = u for all g ∈ O(N)},

we can state the following crucial result.



516 A. Kristály / J. Differential Equations 220 (2006) 511–530

Theorem 3.1. The embedding W
1,p
r (RN) ↪→ L∞(RN) is compact whenever 2�N <

p < +∞.

Proof. Let un be a bounded sequence in W
1,p
r (RN). Up to a subsequence, un ⇀ u in

W
1,p
r (RN) for some u ∈ W

1,p
r (RN). Let � > 0 be an arbitrarily fixed number. Due to

the radially symmetric properties of u and un, we have

‖un − u‖W 1,p(BN (g1y,�)) = ‖un − u‖W 1,p(BN (g2y,�)) (8)

for every g1, g2 ∈ O(N) and y ∈ RN . For a fixed y ∈ RN , we can define

m(y, �) = sup{n ∈ N : ∃ gi ∈ O(N), i ∈ {1, . . . , n} such that

BN(giy, �) ∩ BN(gjy, �) = ∅, ∀i �= j}.

By virtue of (8), for every y ∈ RN and n ∈ N, we have

‖un − u‖W 1,p(BN (y,�)) �
‖un − u‖W 1,p

m(y, �)
�

supn∈N ‖un‖W1,p
+ ‖u‖W 1,p

m(y, �)
.

The right-hand side does not depend on n, and m(y, �) → +∞ whenever |y| → +∞
(� is kept fixed, and N �2). Thus, for every ε > 0 there exists Rε > 0 such that for
every y ∈ RN with |y|�Rε one has

‖un − u‖W 1,p(BN (y,�)) < ε(2S�)−1 for every n ∈ N, (9)

where S� > 0 is the embedding constant of W 1,p(BN(0, �)) ↪→ C0(BN [0, �]). Further-
more, we observe that the embedding constant for W 1,p(BN(y, �)) ↪→ C0(BN [y, �])
can be chosen S� as well, independent of the position of the point y ∈ RN . This fact
can be concluded either by a simple translation of the functions u ∈ W 1,p(BN(y, �))

into BN(0, �), i.e. ũ(·) = u(· − y) ∈ W 1,p(BN(0, �)) (thus ‖u‖W 1,p(BN (y,�)) = ‖ũ
‖W 1,p(BN (0,�)) and ‖u‖C0(BN [y,�]) = ‖ũ‖C0(BN [0,�])); or, by the invariance with respect
to rigid motions of the cone property of the balls BN(y, �) when � is kept fixed. Thus,
in view of (9), one has that

sup
|y|�Rε

‖un − u‖C0(BN [y,�]) �ε/2 for every n ∈ N. (10)

On the other hand, since un ⇀ u in W
1,p
r (RN), then in particular, by Rellich theorem

it follows that un → u in C0(BN [0, Rε]), i.e., there exists nε ∈ N such that

‖un − u‖C0(BN [0,Rε]) < ε for every n�nε. (11)
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Combining (10) with (11), one concludes that ‖un − u‖L∞ < ε for every n�nε, i.e.,
un → u in L∞(RN). This ends the proof. �

An alternate proof of Theorem 3.1. Lions [13, Lemme II.1] provided us with a
Strauss-type estimation (see [18]) for radially symmetric functions of W 1,p(RN);
namely, for every u ∈ W

1,p
r (RN) we have

|u(x)|�p1/p(Area SN−1)−1/p‖u‖W 1,p |x|(1−N)/p, x �= 0, (12)

where SN−1 is the N-dimensional unit sphere.
Now, let {un} be a sequence in W

1,p
r (RN) which converges weakly to some u ∈

W
1,p
r (RN). By applying inequality (12) for un −u, and taking into account that ‖un −

u‖W 1,p is bounded, and N �2, then for every ε > 0 there exists Rε > 0 such that

‖un − u‖L∞(|x|�Rε) �C|Rε|(1−N)/p < ε ∀n ∈ N,

where C > 0 does not depend on n. The rest is similar as above. �

Remark 3.1. It is well known that the embedding W
1,p
r (RN) ↪→ Lq(RN) is compact

whenever 2�N �p < +∞ and q ∈]p, +∞[, see Lions [13, Théorème II. 1], but is
no longer compact neither for N = 1 nor for q ∈ {p, +∞}. However, there is no
incompatibility with Theorem 3.1. Indeed, our result works only in the case when
p > N , but it fails if p = N ; the reason is that for bounded domains � ⊂ RN the
embedding W 1,p(�) ↪→ C0(�) is compact for p > N (Rellich theorem), while for
p = N the space W 1,p(�) cannot even be embedded continuously into L∞(�).

3.2. A non-smooth variational principle of Ricceri

Let (X, ‖ · ‖) be a real Banach space and X∗ its topological dual. A function h :
X → R is called locally Lipschitz if each point u ∈ X possesses a neighborhood Nu

such that |h(u1) − h(u2)|�L‖u1 − u2‖ for all u1, u2 ∈ Nu, for a constant L > 0
depending on Nu. The generalized directional derivative of h at the point u ∈ X in
the direction v ∈ X is

h0(u; v) = lim sup
w→u
t↘0

1

t
(h(w + tv) − h(w)).

The generalized gradient of h at u ∈ X is defined by

�h(u) = {x∗ ∈ X∗ : 〈x∗, z〉X �h0(u; z) for all z ∈ X},

which is a non-empty, convex and w∗-compact subset of X∗, where 〈·, ·〉X is the duality
pairing between X∗ and X. We say that u ∈ X is a critical point of h, if 0 ∈ �h(u),
see Chang [6].
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We shall apply the following critical point theorem whose smooth version is due to
Ricceri [16, Theorem 2.5].

Theorem 3.2 (Marano and Motreanu [14, Theorem 1.1]). Let (X, ‖ · ‖) be a reflexive
real Banach space, and X̃ another real Banach spaces such that X is compactly
embedded into X̃. Let � : X̃ → R and � : X → R be two locally Lipschitz functions,
such that � is weakly sequentially lower semicontinuous and coercive. For every � >

infX �, put

�(�) = inf
u∈�−1(]−∞,�[)

�(u) − inf
v∈(�−1(]−∞,�[))w

�(v)

� − �(u)
, (13)

where (�−1(] − ∞, �[))w is the closure of �−1(] − ∞, �[) in the weak topology.
Furthermore, set

	 := lim inf
�→+∞ �(�), � := lim inf

�→(infX �)+
�(�). (14)

Then, the following conclusions hold.

(A) If 	 < +∞ then, for every 
 > 	, either
(A1) � + 
� possesses a global minimum, or
(A2) there is a sequence {un} of critical points of � + 
� such that limn→+∞

�(un) = +∞.

(B) If � < +∞ then, for every 
 > �, either
(B1) � + 
� possesses a local minimum, which is also a global minimum of �, or
(B2) there is a sequence {un} of pairwise distinct critical points of � + 
�, with

lim
n→+∞ �(un) = inf

X
�, weakly converging to a global minimum of �.

Remark 3.2. Note that Theorem 3.2 is a particular form of Marano and Motreanu
[14, Theorem 1.1], where the authors put themselves within a very general framework,
considering instead of � functions of the form � + �, where � : X →] − ∞, +∞] is
convex, proper, and lower semicontinuous, i.e. functions of Motreanu–Panagiotopoulos
type (see [15, Chapter 3]).

3.3. Our setting

Consider two functions, F and �, which fulfill (H). Let F : L∞(RN) → R be a
function defined by

F(u) =
∫

RN
�(x)F (u(x)) dx.
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Since F is continuous and � ∈ L1(RN), we easily seen that F is well-defined. Moreover,
if we fix a u ∈ L∞(RN) arbitrarily, there exists ku ∈ L1(RN) such that for every x ∈
RN and vi ∈ R with |vi − u(x)| < 1, (i ∈ {1, 2}) one has

|�(x)F (v1) − �(x)F (v2)|�ku(x)|v1 − v2|.

Indeed, if we fix some small open intervals Ij (j ∈ J ), such that F |Ij
is Lipschitz

function (with Lipschitz constant Lj > 0) and [−‖u‖L∞ − 1, ‖u‖L∞ + 1] ⊂ ∪j∈J Ij ,
then we choose ku = � maxj∈J Lj . (Here, without losing the generality, we supposed
that card J < +∞.) Thus, we are in the position to apply Theorem 2.7.3 from [7,
p. 80]; namely, F is a locally Lipschitz function on L∞(RN) and for every closed
subspace E of L∞(RN) we have

�(F |E)(u) ⊆
∫

RN
�(x)�F(u(x)) dx for every u ∈ E, (15)

where F |E stands for the restriction of F to E. The interpretation of (15) is as follows
(see also [7]): For every � ∈ �(F |E)(u) there corresponds a mapping RN 	 x 
→ �x

such that �x ∈ �F(u(x)) for almost every x ∈ RN having the property that for every
v ∈ E the function x 
→ �(x)�xv(x) belongs to L1(RN) and

〈�, v〉E =
∫

RN
�(x)�xv(x) dx.

Now, let E : W 1,p(RN) → R be the energy functional associated to our problem
(DI), i.e., for every u ∈ W 1,p(RN) set

E(u) = 1

p
‖u‖p

W 1,p − F(u).

It is clear that E is locally Lipschitz on W 1,p(RN) and we have

Proposition 3.1. Any critical point u ∈ W 1,p(RN) of E is a solution of (DI).

Proof. Combining 0 ∈ �E(u) = −�pu+|u|p−2u−�(F |
W 1,p(RN)

)(u) with the interpre-
tation of (15), the desired requirement yields, see (2). �

Since � is radially symmetric, then E is O(N)-invariant, i.e. E(gu) = E(u) for every
g ∈ O(N) and u ∈ W 1,p(RN). Therefore, we are in the position to apply a non-
smooth version of the principle of symmetric criticality, proved by Krawcewicz and
Marzantowicz [10], whose form in our setting is as follows.

Proposition 3.2. Any critical point of Er = E |
W

1,p
r (RN)

will be also a critical point
of E .
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Remark 3.3. In view of Propositions 3.1 and 3.2, it is enough to find critical points
of Er in order to guarantee solutions for (DI). This fact will be carried out by means
of Theorem 3.2, setting

X := W
1,p
r (RN), X̃ := L∞(RN), � := −F and � := ‖ · ‖p

r , (16)

where the notation ‖ · ‖r stands for the restriction of ‖ · ‖W 1,p into W
1,p
r (RN). A

few assumptions are already verified. Indeed, the embedding X ↪→ X̃ is compact (cf.
Theorem 3.1), � = −F is locally Lipschitz, while � = ‖ · ‖p

r is of class C1 (thus,
locally Lipschitz as well), coercive and weakly sequentially lower semicontinuous (see
[3, Proposition III.5]). Moreover, Er ≡ �|

W
1,p
r (RN)

+ 1
p

�. According to (16), the function
� (defined in (13)) becomes

�(�) = inf
‖u‖p

r <�

sup‖v‖p
r �� F(v) − F(u)

� − ‖u‖p
r

, � > 0. (17)

The investigation of the numbers 	 and � (defined in (14)), as well as the cases (A)
and (B) from Theorem 3.2 constitute the objective of the next two sections.

4. Proof of Theorem 2.1 (The case 0 < Fl < +∞)

First, we deal with the case when l = +∞. For simplicity, we write F∞ and �∞
instead of F+∞ and �+∞, respectively.

4.1. The case 0 < F∞ < +∞.

Since limk→+∞ bk = +∞, instead of the sequence {bk}, we may consider a non-
decreasing subsequence of it, denoted again by {bk}. Fix an s ∈ R such that |s| ∈
]ak, bk]. By using Lebourg’s mean value theorem (see [7, Theorem 2.3.7]), there exists
� ∈]0, 1[ and �� ∈ �F(�s + (1 − �)sign(s)ak) such that

F(s) − F(sign(s)ak) = ��(s − sign(s)ak) = sign(s)��(|s| − ak)

= sign(�s + (1 − �)sign(s)ak)��(|s| − ak).

According now to (5), we obtain that F(s)�F(sign(s)ak) for every s ∈ R complying
with |s| ∈]ak, bk]. In particular, we are led to max[−ak,ak] F = max[−bk,bk] F for every
k ∈ N. Therefore, one can fix a �k ∈ [−ak, ak] such that

F(�k) = max[−ak,ak]
F = max[−bk,bk]

F. (18)

Moreover, since {bk} is non-decreasing, the sequence {|�k|} can be chosen non-
decreasingly as well.



A. Kristály / J. Differential Equations 220 (2006) 511–530 521

In view of (4) we can choose a number � such that

2

(2−Np�∞F∞ − 1)1/p
< �

< sup{r : meas(BN(0, r) \ �−1(]�∞, +∞[)) = 0}. (19)

In particular, one has

�(x) > �∞ for a.e. x ∈ BN(0, �). (20)

Inspired by Cammaroto et al. [4], for every k ∈ N we define

uk(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if x ∈ RN \ BN(0, �),

�k if x ∈ BN

(
0,

�

2

)
,

2�k

�
(� − |x|) if x ∈ BN(0, �) \ BN

(
0,

�

2

)
.

(21)

It is easy to see that uk belongs to W 1,p(RN) and it is radially symmetric.
Thus, uk ∈ W

1,p
r (RN). Let �k = (

bk

c∞ )p, where c∞ is the embedding constant of

W 1,p(RN) ↪→ L∞(RN).

Claim 4.1. There exists a k0 ∈ N such that ‖uk‖p
r < �k , for every k > k0.

Since limk→+∞ bk

ak
= +∞, there exists a k0 ∈ N such that

bk

ak

> c∞(�N
NK(p, N, �))1/p for every k > k0, (22)

where 
N denotes the volume of the N-dimensional unit ball and

K(p, N, �) := 2p

�p

(
1 − 1

2N

)
+ 1. (23)

Thus, for every k > k0 one has

‖uk‖p
r =

∫
RN

|∇uk|p dx +
∫

RN
|uk|p dx

�
(

2|�k|
�

)p (
vol BN(0, �) − vol BN

(
0,

�

2

))
+ |�k|pvol BN(0, �)
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= |�k|p�N
NK(p, N, �)�a
p
k �N
NK(p, N, �) (cf. (22))

<

(
bk

c∞

)p

= �k,

which proves Claim 4.1.
Now, let � from (17) and 	 = lim inf�→+∞ �(�) defined in (14).

Claim 4.2. 	 = 0.

By definition, 	�0. Suppose that 	 > 0. Since limk→+∞ �k|�k |p = +∞, there is a
number k1 ∈ N such that for every k > k1 we have

�k

|�k|p
>

2

	
(F∞ + 1)(‖�‖L1 − �∞�N
N) + �N
NK(p, N, �), (24)

where � is an arbitrary fixed number complying with

0 < � < min

{( ‖�‖L1

�∞
N

)1/N

,
�

2

}
. (25)

Moreover, since |�k| → +∞ as k → +∞ (otherwise we would have F∞ = 0), by the
definition of F∞, see (3), there exists a k2 ∈ N such that

F(�k)

|�k|p
< F∞ + 1 for every k > k2. (26)

Now, let v ∈ W
1,p
r (RN) arbitrarily fixed with ‖v‖p

r ��k . Due to the continuous em-
bedding W 1,p(RN) ↪→ L∞(RN), we have ‖v‖p

L∞ �c
p∞�k = b

p
k . Therefore, one has

sup
x∈RN

|v(x)|�bk.

In view of (18), we obtain

F(v(x))� max[−bk,bk]
F = F(�k) for every x ∈ RN. (27)

Hence, for every k > max{k0, k1, k2}, one has

sup
‖v‖p

r ��k

F(v) − F(uk)

= sup
‖v‖p

r ��k

∫
RN

�(x)F (v(x)) dx −
∫

RN
�(x)F (uk(x)) dx (cf. (27), (H))
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�F(�k)‖�‖L1 −
∫

BN(0,�)

�(x)F (uk(x)) dx (cf. (20), (21), (25))

�F(�k)(‖�‖L1 − �∞�N
N) (cf. (25), (26))

�(F∞ + 1)|�k|p(‖�‖L1 − �∞�N
N) (cf. (24))

� 	

2
(�k − |�k|p�N
NK(p, N, �))

� 	

2
(�k − ‖uk‖p

r ).

Since ‖uk‖p
r < �k (cf. Claim 4.1), and �k → +∞ as k → +∞, we obtain

	 = lim inf
�→+∞ �(�)� lim inf

k→+∞ �(�k)� lim inf
k→+∞

sup‖v‖p
r ��k

F(v) − F(uk)

�k − ‖uk‖p
r

� 	

2
,

contradiction. This proves Claim 4.2.

Claim 4.3. Er is not bounded below on W
1,p
r (RN).

By (19), we find a number ε∞ such that

0 < ε∞ < F∞ − 2N

p�∞

((
2

�

)p

+ 1

)
. (28)

In particular, for every k ∈ N, sup|�|�k
F (�)
|�|p > F∞ − ε∞. Therefore, we can fix �̃k

with |�̃k|�k such that

F(�̃k)

|�̃k|p
> F∞ − ε∞. (29)

Now, define wk ∈ W
1,p
r (RN) in the same way as uk , see (21), replacing �k by �̃k . We

obtain

Er (wk) = 1

p
‖wk‖p

r − F(wk)

� 1

p
|�̃k|p�N
NK(p, N, �) −

∫
BN(0,

�
2 )

�(x)F (wk(x)) dx (cf. (20), (29))

� 1

p
|�̃k|p�N
NK(p, N, �) − (F∞ − ε∞)|�̃k|p�∞
N

(�

2

)N
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= |�̃k|p�N
N

(
1

p
K(p, N, �) − 1

2N
(F∞ − ε∞)�∞

)
(cf. (23), (28))

< − 1

p
|�̃k|p
N

(
2

�

)p−N

.

Since |�̃k| → +∞ as k → +∞, we obtain limk→+∞ Er (wk) = −∞, which ends the
proof of Claim 4.3.

Proof concluded (0 < F∞ < +∞). It is enough to apply Remark 3.3. Indeed, since
	 = 0 (cf. Claim 4.2) and the function Er ≡ −F |

W
1,p
r (RN)

+ 1
p
‖ · ‖p

r is not bounded

below (cf. Claim 4.3), the alternative (A1) from Theorem 3.2, applied to 
 = 1
p

, is

excluded. Thus, there exists a sequence {un} ⊂ W
1,p
r (RN) of critical points of Er with

limn→+∞ ‖un‖r = +∞.
Now, let us suppose that F(s) = 0 for every s ∈] − ∞, 0[, and let u be a solution

of (DI). Denote S = {x ∈ RN : u(x) < 0}, and assume that S �= ∅. In virtue of
Remark 2.3, the set S is open. Define uS : RN → R by uS = min{u, 0}. Applying (2)
for v := uS ∈ W 1,p(RN) and taking into account that �x ∈ �F(u(x)) = {0} for every
x ∈ S, one has

0 =
∫

RN
(|∇u|p−2∇u∇uS + |u|p−2uuS) dx =

∫
S

(|∇u|p + |u|p) dx = ‖u‖p

W 1,p(S)
,

which contradicts the choice of the set S. This ends the proof. �

Remark 4.1. A closer inspection of the proof allows us to replace hypothesis (4) by a
weaker, but a more technical condition. More specifically, it is enough to require that
p‖�‖L∞Fl > 1, and instead of (4), put

sup
M

{
N�l

− 1

(1 − �)(p�lFl�N − 1)1/p

}
> 0, (30)

where

M = {(�, �l ) : � ∈](p‖�‖L∞Fl)
−1/N , 1[, �l ∈](pFl�

N)−1, ‖�‖L∞[}

and

N�l
= sup{r : meas(BN(0, r) \ �−1(]�l , +∞[)) = 0}.

Now, in the construction of the functions wk we replace the radius �
2 of the ball by

��, where � is chosen according to (30).



A. Kristály / J. Differential Equations 220 (2006) 511–530 525

4.2. The case 0 < F0 < +∞.

The proof works similarly as in §4.1; we will show only the differences. The sequence
{�k} defined as above, converges now to 0, while the same holds for {�k}. Instead of
Claim 4.2 we can prove that � = lim inf�→0+ �(�) = 0. Since 0 is the unique global
minimum of � = ‖ · ‖p

r , it would be enough to show that 0 is not a local minimum of
Er ≡ −F |

W
1,p
r (RN)

+ 1
p
‖ · ‖p

r , in order to exclude alternative (B1) from Theorem 3.2.

To this end, we fix �̃k with |�̃k|� 1
k

such that

F(�̃k)

|�̃k|p
> F0 − ε0,

where ε0 is fixed in a similar manner as in (28), replacing �∞, F∞ by �0, F0, respec-
tively. If we take wk as in §4.1, then it is clear that {wk} strongly converges now to
0 in W

1,p
r (RN), while Er (wk) < − 1

p
|�̃k|p
N (2/�)p−N < 0 = Er (0). Thus, 0 is not a

local minimum of Er . So, there exists a sequence {un} ⊂ W
1,p
r (RN) of critical points

of Er such that limn→+∞ ‖un‖r = 0 = inf
W

1,p
r (RN)

�. This concludes completely the
proof of Theorem 2.1.

5. Proof of Theorem 2.2 (The case Fl = +∞)

5.1. The case F∞ = +∞

Due to (6),

�(x) > �∞ for a.e. x ∈ BN(0, �). (31)

Let �k and �k as in §4.1, as well as uk , defined this time by means of � > 0 from
(31).

Claim 5.1. There exists a k0 ∈ N such that ‖uk‖p
r < �k , for every k > k0.

The proof is similarly as in §4.1.

Claim 5.2. 	 < 1
p

.

Note that F(�k) = max[−ak,ak] F , cf. (18). Since |�k|�ak , then limk→+∞ |�k |
bk

= 0.
Combining this fact with (7), and choosing ε > 0 sufficiently small, one has

lim sup
k→+∞

F(�k) + |�k|p�N
Np−1‖�‖−1
L1 K(p, N, �)

b
p
k

< ((p + ε)c
p∞‖�‖L1)

−1,



526 A. Kristály / J. Differential Equations 220 (2006) 511–530

where K(p, N, �) is from (23). According to the above inequality, there exists k3 ∈ N

such that for every k > k3 we readily have

F(�k)‖�‖L1 � (p + ε)−1c
−p∞ b

p
k − p−1|�k|p�N
NK(p, N, �)

� 1

p + ε

(
�k − p + ε

p
‖uk‖p

r

)
<

1

p + ε

(
�k − ‖uk‖p

r

)
.

Thus, for every k > k3, one has

sup
‖v‖p

r ��k

F(v) − F(uk) < F(�k)‖�‖L1 <
1

p + ε
(�k − ‖uk‖p

r ).

Hence 	� 1
p+ε

< 1
p

, which concludes the proof of Claim 5.2.

Claim 5.3. Er is not bounded below on W
1,p
r (RN).

Since F∞ = +∞, for an arbitrarily large number M > 0, we can fix �̃k with |�̃k|�k

such that

F(�̃k)

|�̃k|p
> M. (32)

Define wk ∈ W
1,p
r (RN) as in (21), putting �̃k instead of �k . We obtain

Er (wk) = 1

p
‖wk‖p

r − F(wk)

� 1

p
�N
N |�̃k|pK(p, N, �) −

∫
BN(0,

�
2 )

�(x)F (wk(x)) dx (cf. (31), (32))

� |�̃k|p�N
N

(
1

p
K(p, N, �) − 1

2N
M�∞

)
.

Since |�̃k| → +∞ as k → +∞, and M is large enough we obtain that limk→+∞
Er (wk) = −∞. The proof of Claim 5.3 is concluded.

Proof concluded. Since 	 < 1
p

(cf. Claim 5.2), we can apply Theorem 3.2 (A) for


 = 1
p

. The rest is the same as in §4.1. �

5.2. The case F0 = +∞

We follow the line of §5.1. The sequences {�k}, {�k} are defined as above; they
converge to 0. Let � > 0 be as in (31), replacing �∞ by �0. Instead of Claim 5.2,
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we may prove that � = lim inf�→0+ �(�) < 1
p

. Now, we are in the position to apply

Theorem 3.2 (B) with 
 = 1
p

. Since F0 = +∞, for an arbitrarily large number M > 0,

we may choose �̃k with |�̃k|� 1
k

such that

F(�̃k)

|�̃k|p
> M.

Define wk ∈ W
1,p
r (RN) by means of �̃k as above. It is clear that {wk} strongly converges

to 0 in W
1,p
r (RN) while

Er (wk)� |�̃k|p�N
N

(
1

p
K(p, N, �) − 1

2N
M�0

)
< 0 = Er (0).

Consequently, in spite of the fact that 0 is the unique global minimum of � = ‖ · ‖p
r ,

it is not a local minimum of Er ; thus, (B1) can be excluded. The rest is the same as
in §4.2. This completes the proof of Theorem 2.2. �

6. Examples

Throughout this section we suppose that 2�N < p < +∞.

Example 6.1. Let F : R → R be defined by

F(s) = 2N+p+3

p
|s|p max{0, sin ln(ln(|s| + 1) + 1)},

and � : RN → R by

�(x) = 1

(1 + |x|N)2
. (33)

Then (DI) has an unbounded sequence of radially symmetric solutions.

Proof. The functions F and � clearly fulfill (H). Moreover, F∞ = 2N+p+3

p
. Since

‖�‖L∞ = 1, we may fix �∞ = 1
4 which verifies (4). For every k ∈ N let

ak = ee(2k−1)�−1 − 1 and bk = ee2k�−1 − 1.

If ak � |s|�bk , then (2k − 1)�� ln(ln(|s| + 1) + 1)�2k�, thus F(s) = 0 for every
s ∈ R complying with ak � |s|�bk . So, �F(s) = {0} for every |s| ∈]ak, bk[ and (5) is
verified. Thus, all the assumptions of Theorem 2.1 are satisfied. �
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Example 6.2. Fix � ∈ R. Let F : R → R be defined by

F(s) =
⎧⎨
⎩

8N+1

p
sp−� max

{
0, sin ln ln

1

s

}
, s ∈]0, e−1[,

0, s /∈]0, e−1[,

and let � : RN → R be as in (33). Then, for every � ∈ [0, min{p − 1, p(1 − e−�)}[,
(DI) admits a sequence of non-negative, radially symmetric solutions which strongly
converges to 0 in W 1,p(RN).

Proof. Since � < p − 1, (H) is verified. We distinguish two cases: � = 0, and � ∈
]0, min{p − 1, p(1 − e−�)}[.

Case 1: � = 0. We have F0 = 8N+1

p
. If we choose �0 = (1 + 2N)−2, this clearly

verifies (4). For every k ∈ N set

ak = e−e2k�
and bk = e−e(2k−1)�

. (34)

For every s ∈ [ak, bk], one has (2k − 1)�� ln ln 1
s
�2k�; thus F(s) = 0. So, �F(s) =

{0} for every s ∈]ak, bk[ and (5) is verified. Now, we apply Theorem 2.1.
Case 2: � ∈]0, min{p − 1, p(1 − e−�)}[. We have F0 = +∞. In order to verify (6),

we fix for instance �0 = (1 + 2N)−2 and � = 2. Take {ak} and {bk} in the same way
as in (34). The inequality in (7) becomes obvious since

lim sup
k→+∞

max[−ak,ak] F

b
p
k

� 8N+1

p
lim sup
k→+∞

a
p−�
k

b
p
k

= 8N+1

p
lim

k→+∞ e[p−e�(p−�)]e(2k−1)� = 0.

Therefore, we may apply Theorem 2.2. �

Example 6.3. Let {ak} and {bk} be two sequences such that a1 = 1, b1 = 2 and
ak = kk , bk = kk+1 for every k�2. Define, for every s ∈ R the function

f (s) =
⎧⎨
⎩

b
p

k+1 − b
p
k

ak+1 − bk

if s ∈ [bk, ak+1[,
0 otherwise.

Then the problem

{
−�pu + |u|p−2u ∈ �

(1 + |x|N)2
[f (u(x)), f (u(x))], x ∈ RN,

u ∈ W 1,p(RN),

possesses an unbounded sequence of non-negative, radially symmetric solutions when-

ever 0 < �< N
p

(
p−N

2p

)p

(Area SN−1)−1. (The notations f and f come from (1).)
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Proof. Let F(s) = ∫ s

0 f (t) dt . Since the function f is locally (essentially) bounded, F

is locally Lipschitz. A more explicit expression of F is

F(s) =

⎧⎪⎪⎨
⎪⎪⎩

b
p
k − b

p

1 + b
p

k+1 − b
p
k

ak+1 − bk

(s − bk) if s ∈ [bk, ak+1[,
b

p
k − b

p

1 if s ∈ [ak, bk[,
0 otherwise.

An easy calculation shows, as we expect, that �F(s) = [f (s), f (s)] for every s ∈ R.

Taking �(x) = �
(1+|x|N)2 , (H) is verified, and ‖�‖L1 = �

N
Area SN−1. Moreover,

F∞ = lim sup
|s|→+∞

F(s)

|s|p � lim
k→+∞

F(ak)

a
p
k

= lim
k→+∞

b
p
k − b

p

1

a
p
k

= +∞.

Choosing � = 1 and �∞ = �/4, (6) is verified, while (5) becomes trivial. Since
max[−ak,ak] F = F(ak) = b

p
k − b

p

1 , relation (7) reduces to pc
p∞‖�‖L1 < 1 which is

fulfilled due to the choice of � and to Remark 2.2. It remains to apply
Theorem 2.2. �
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[9] F. Gazzola, V. Rădulescu, A nonsmooth critical point theory approach to some nonlinear elliptic
equations in RN , Differential Integral Equations 13 (2000) 47–60.

[10] W. Krawcewicz, W. Marzantowicz, Some remarks on the Lusternik-Schnirelman method for non-
differentiable functionals invariant with respect to a finite group action, Rocky Mountain J. Math.
20 (1990) 1041–1049.

[11] A. Kristály, Infinitely many radial and non-radial solutions for a class of hemivariational inequalities,
Rocky Mountain J. Math., in press.

[12] G. Li, S. Yan, Eigenvalue problems for quasilinear elliptic equations on RN , Comm. Partial
Differential Equations 14 (1989) 1291–1314.

[13] P.-L. Lions, Symétrie et compacité dans les espaces Sobolev, J. Funct. Anal. 49 (1982) 315–334.
[14] S. Marano, D. Motreanu, Infinitely many critical points of non-differentiable functions and applications

to a Neumann-type problem involving the p-Laplacian, J. Differential Equations 182 (2002)
108–120.

[15] D. Motreanu, P.D. Panagiotopoulos, Minimax Theorems and Qualitative Properties of the Solutions
of Hemivariational Inequalities, Kluwer Academic Publishers, Dordrecht, 1999.

[16] B. Ricceri, A general variational principle and some of its applications, J. Comput. Appl. Math. 113
(2000) 401–410.

[17] B. Ricceri, Infinitely many solutions of the Neumann problem for elliptic equations involving the
p-Laplacian, Bull. London Math. Soc. 33 (2001) 331–340.

[18] W.A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977)
149–162.

[19] M. Willem, Minimax Theorems, Birkhäuser, Basel, 1995.


